Supporting Information

t-BuOK-Mediated Reductive Addition of P(O)-H Compounds to Alkynes Forming

β -Arylphosphine oxides

Ji-Shu Zhang,^a Jian-Qiu Zhang,^a Tieqiao Chen,^{*a} and Li-Biao Han^{*b}

^a State Key Laboratory of Chemo/Biosensing and Chemo metrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

^b National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

E-Mail: chentieqiao@hnu.edu.cn; libiao-han@aist.go.jp

EXPERIMENTAL SECTION

General information: All reactions were carried out in oven-dried Schlenk tubes under N₂ atmosphere. Solvents were treated by the standard procedure. Reagents were used as received unless otherwise noted. The pure products were obtained by means of column chromatography on silica (petroleum ether and ethyl acetate were used as the gradient eluting solvents). ¹H NMR, ¹³C NMR and ³¹P NMR data were acquired on a 400 MHz spectrometer (400 MHz for ¹H, 100.6 MHz for ¹³C, and 162 MHz for ³¹P NMR spectroscopy). Chemical shifts for ¹H NMR are referred to internal Me₄Si (0 ppm) and reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. Data for ³¹P NMR were referred to H₃PO₄ (85% solution in D₂O, 0 ppm). The ionization method of the high-resolution mass spectrum (HRMS) is Electron Impact (EI). The type of the mass analyzer is quadrupole.

General procedure for the t-BuOK-Mediated Reductive Addition of P(O)-H Compounds to Alkynes.

Under N₂ atmosphere, 1.7 mmol P(O)-H compounds, 1 mmol alkynes, 1 mmol KCl, 2 mmol isopropyl alcohol (IA), 0.2 mmol *t*-BuOK and 4.0 mL dioxane were charged into a 25 mL schlenk tube, then the mixture was stirred at 80 °C for 16 h. After removal of the volatiles, the residues were passed through a short silica chromatography column (particle size $37-54 \mu m$, petroleum ether/ethyl acetate as the eluent) to afford analytically pure products **3**.

Synthesis of (E)-diphenyl(styryl)phosphine oxide A.⁴

Diphenylphosphine oxide (2 mmol), ethynylbenzene (3 mmol), CuI (0.2 mmol) and ethylenediamine (EDA) (0.3 mmol) were dissolved in 5.0 mL DMSO under nitrogen atmosphere and heated at 60 °C for 3 h. The resulting solution was cooled to room temperature, and then 30 mL chloroform and 30 mL brine were added to the solution, the organic layer was washed with brine (20 mL × 2) and was dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* to give a pale yellow semisolid. The crude product was then purified by silica gel column chromatography using EtOAc/hexane (1:1) as the eluent to provide the pure target product as a pale white solid (*E*)-diphenyl(styryl)phosphine oxide **A** in 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (t, 4H, *J* = 8.0 Hz), 7.47-7.51 (m, 9H), 7.36 (s, 3H), 6.84 (q, 1H, *J* = 18.0 Hz, *J* = 22.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 24.4; ¹³C NMR (100.6 MHz, CDCl₃) δ 147.6 (d, *J*_{P-C} = 3.5 Hz), 135.1 (d, *J*_{P-C} = 17.9 Hz), 133.0 (d, *J*_{P-C} = 105.8 Hz), 131.9 (d, *J*_{P-C} = 2.5 Hz), 131.4 (d, *J*_{P-C} = 10.0 Hz), 130.1, 128.9, 128.6 (d, *J*_{P-C} = 12.1 Hz), 127.79, 119.3 (d, *J*_{P-C} = 104.4 Hz). MS (EI): 304.

Synthesis of Bisphosphorylethane compound B.⁶

A mixture of diphenylphosphine oxide (10 mmol), ethynylbenzene (10 mmol), *t*-BuOK (0.5 mmol) and THF (15.0 mL) was heated at 70 °C for 4 h. The resulting solution was cooled to room temperature and then concentrated in *vacuo* to give a pale solid. The crude product was then purified by silica gel column chromatography using EtOAc/Petroleum ether (from 4:1 to 5:1) as the eluent to provide the pure target product as a pale white solid in 99% yield. ¹H NMR (CDCl₃, 400 MHz) δ 8.06 (b, 2H), 7.08-7.78 (m, 20H), 8.85 (b, 3H), 4.30 (b, 1H), 3.18 (b, 1H), 2.88 (b, 1H); ³¹P NMR (CDCl₃, 162 MHz) δ 35.3 (d, *J* = 46.5 Hz), 30.1 (d, *J* = 47.1 Hz); ¹³C NMR (CDCl₃, 100.6 MHz) δ 134.4 (d, *J*_{C-P} = 2.5 Hz), 134.1 (d, *J*_{C-P} = 10.0 Hz), 133.4 (d, *J*_{C-P} = 1.2 Hz), 133.4 (*J*_{C-P} = 2.9 Hz), 131.9 (d, *J*_{C-P} = 38.0 Hz), 131.8 (d, *J*_{C-P} = 11.0 Hz), 131.8, 131.6, 131.5, 131.3 (d, *J*_{C-P} = 1.4 Hz), 130.9 (d, *J*_{C-P} = 10.6 Hz), 130.8, 130.7, 130.3, 130.2, 129.1 (d, *J*_{C-P} = 68.7 Hz).

Synthesis of raw materials spC-deuterated phenylacetylene.⁵

$$\begin{array}{c} \hline \\ (1) 2 \ eq \ n-BuLi, \ 10 \ mL \ hexane, \ -78 \ ^{o}C, \ 30 \ min \\ \hline \\ (2) 4 \ mL \ D_{2}O, \ R.T. \ 16 \ h \\ \hline \\ 5 \ mmol \end{array} \begin{array}{c} \hline \\ 3ab \ 98\% \end{array}$$

To a solution of phenylacetylene (5 mmol) in dry hexane (10 ml) was added *n*-BuLi (1.60 M in hexane solution, 2. 0 equiv) dropwisely at -78 °C under N₂ atmosphere. After being stirred at the same temperature for 30 min, D₂O (4 mL) was added at the room temperature under N₂ condition,

stirred continuously at the same temperature for 16 h and then stopped reaction. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with CH_2Cl_2 (10 mL× 3), dried over Na₂SO₄ and filtered. The filtrate was concentrated in *vacuo* to afford the corresponding target product with 98% deuterium incoporation.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, 2H, *J* = 6.8 Hz), 7.22-7.28 (m, 3H), 2.99 (s, 0.02H).

The reductive addition of diphenyl phosphine oxide to spC-deuterated phenylacetylene.

Under N₂ atmosphere, 1.7 mmol diphenylphosphine oxide, 1 mmol *sp*C-deuterated phenylacetylene, 1 mmol KCl, 2 mmol isopropyl alcohol (IA), 0.2 mmol *t*-BuOK and 4.0 mL dioxane were charged into a 25 mL schlenk tube, then the mixture was stirred at 80 °C for 16 h. After removal of the volatiles, the residues were passed through a short silica chromatography column (particle size 37–54 μ m, petroleum ether/ethyl acetate as the eluent) to afford analytically pure products **3a-D**. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, 4H, *J* = 8.4 Hz, *J* = 10.4 Hz), 7.46-7.54 (m, 6H), 7.25 (d, 2H, *J* = 7.6 Hz), 7.15-7.19 (m, 3H), 2.90-2.96 (m, 1.7H), 2.55-2.62 (m, 1.8H). ³¹P NMR (162 MHz, CDCl₃): δ 31.8. ¹³C NMR (100.6 MHz, CDCl₃): δ 141.2 (d, *J*_{C-P} = 15.2 Hz), 132.7 (d, *J*_{C-P} = 97.8 Hz), 131.9 (d, *J*_{C-P} = 1.7 Hz), 130.8 (d, *J*_{C-P} = 9.3 Hz), 128.8, 128.7 (d, *J*_{C-P} = 7.4 Hz), 128.1, 126.4, 31.9 (31.80) (d, *J*_{C-P} = 69.4 Hz), 27.5 (dd, *J*_{C-P} = 3.0 Hz, *J*_{C-D} = 9.0 Hz).

H-D exchange of 3a with D₂O under the reaction conditions:

Ph-Ph + D₂O
$$20\% t$$
-BuOK, 1 eq KCl (H)D O
Ph-Ph + D₂O 1 mL dioxane, 80 °C, 16 h Ph-Ph
0.2 mmol 2 eq

Under N₂ atmosphere, 0.2 mmol **3a**, 0.4 mmol D₂O, 0.2 mmol KCl, 0.04 mmol *t*-BuOK and 1.0 mL dioxane were charged into a 25 mL schlenk tube, then the mixture was stirred at 80 °C for 16 h. After the reaction was cooled, reaction mixture was evaporated under the reduced pressure, as indicated from ¹ H NMR spectroscopy, the C adjacent to phosphoryl group was deuterated with ca. 8% of deuterium incorporation. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, 4H, *J* = 8.0 Hz, *J* = 11.6 Hz), 7.46-7.55 (m, 6H), 7.26 (dd, 2H, *J* = 7.2 Hz, *J* = 7.6 Hz), 7.15-7.19 (m, 3H), 2.90-2.95 (m, 2H), 2.56-2.63 (m, 1.83H).

H₂ detection by GC:

Under N₂ atmosphere, 1 mmol ethynylbenzene, 1.7 mmol diphenylphosphine oxide compounds, 1 mmol KCl, 2 mmol isopropyl alcohol (IA), 0.2 mmol *t*-BuOK and 4.0 mL dioxane were charged into a 25 mL schlenk tube, then the mixture was stirred at 80 °C for 16 h. After the reaction was cooled to room temperature, the gas was analyzed by GC (Agilent

Technologies 7820A GC system, TCD detector, AE.5A column, oven temperature: 50 °C, carrier: Ar, 45 mL/min.). The pick time was checked by standard samples.

Characterization data of products 3.

Phenethyldiphenylphosphine oxide (3a).³ Following the general procedure, **3a** was isolated as a white crystals (275.4 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, 4H, *J* = 8.0 Hz, *J* = 11.6 Hz), 7.46-7.55 (m, 6H), 7.26 (dd, 2H, *J* = 7.2 Hz, J = 7.6 Hz), 7.15-7.19 (m, 3H), 2.90-2.96 (m, 2H), 2.55-2.62 (m, 2H); ³¹P NMR (162 MHz, CDCl₃) δ 31.7; ¹³C NMR (100.6 MHz, CDCl₃) δ 141.2 (d, *J*_{P-C} = 15.3 Hz), 132.8 (d, *J*_{P-C} = 97.8 Hz), 131.9 (d, *J*_{P-C} = 2.8 Hz), 130.8 (d, *J*_{P-C} = 9.2 Hz), 128.8, 128.7 (d, *J*_{P-C} = 6.4 Hz), 128.1, 126.4, 31.9 (d, *J*_{P-C} = 69.5 Hz), 27.6 (d, *J*_{P-C} = 3.1 Hz). MS (EI): 306. This compound is known.

(4-methylphenethyl)diphenylphosphine oxide (3b). Following the general procedure, 1.0 equiv *t*-BuOK was used. 3b was isolated as a white crystals (294.4 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (dd, 4H, *J* = 7.6 Hz, *J* = 11.2 Hz), 7.45-7.54 (m, 6H), 7.06 (b, 4H), 2.83-2.92 (m, 2H), 2.53-2.60 (m, 2H), 2.30 (s, 3H). ³¹P NMR (162 MHz, CDCl₃): δ 31.5. ¹³C NMR (100.6 MHz, CDCl₃): δ 138.1 (d, *J*_{C-P} = 15.4 Hz), 135.9, 132.9 (d, *J*_{C-P} = 97.5 Hz), 131.8 (d, *J*_{C-P} = 2.6 Hz), 130.8 (d, *J*_{C-P} = 9.3 Hz), 129.3, 128.7 (d, *J*_{C-P} = 11.6 Hz), 127.9, 32.0 (d, *J*_{C-P} = 69.3 Hz), 27.1 (d, *J*_{C-P} = 3.0 Hz), 20.9. Melting point: 123.7~123.8 °C. HRMS: Cal. for C₂₁H₂₁OP 320.1330. Found 320.1336.

(2-methylphenethyl)diphenylphosphine oxide (3c). Following the general procedure, 3c was isolated as a white crystals (294.6 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (dd, 4H, *J* = 7.2 Hz, *J* = 11.2 Hz), 7.45-7.54 (m, 6H), 7.10 (b, 4H), 2.88-2.94 (m, 2H), 2.47-2.55 (m, 2H), 2.20 (s, 3H). ³¹P NMR (162 MHz, CDCl₃): δ 31.6. ¹³C NMR (100.6 MHz, CDCl₃): δ 139.4 (d, *J*_{C-P} = 14.9 Hz), 135.8, 132.9 (d, *J*_{C-P} = 97.5 Hz), 131.8 (d, *J*_{C-P} = 2.7 Hz), 130.8 (d, *J*_{C-P} = 9.2 Hz), 130.4, 128.7 (d, *J*_{C-P} = 11.6 Hz), 128.4, 126.5, 126.3, 30.6 (d, *J*_{C-P} = 69.1 Hz), 24.9 (d, *J*_{C-P} = 3.0 Hz), 19.1. Melting point: 109.0~109.3 °C. HRMS: Cal. for C₂₁H₂₁OP 320.1330. Found 320.1325.

(4-propylphenethyl)diphenylphosphine oxide (3d). Following the general procedure, 3d was isolated as a white crystals (285.4 mg, 82%). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (dd, 4H, *J* = 7.6 Hz, *J* = 10.8 Hz), 7.45-7.54 (m, 6H), 7.07 (b, 4H), 2.87-2.93 (m, 2H), 2.51-2.61 (m, 4H), 1.55-1.64 (m, 2H), 0.92 (t, 3H, *J* = 7.2 Hz). ³¹P NMR (162 MHz CDCl₃): δ 31.7. ¹³C NMR (100.6 MHz, CDCl₃): δ 140.7, 138.4 (d, *J*_{C-P} = 15.3 Hz), 132.9 (d, *J*_{C-P} = 97.2 Hz), 131.8 (d, *J*_{C-P} = 2.7 Hz), 130.8 (d, *J*_{C-P} = 9.2 Hz), 128.7 (d, *J*_{C-P} = 11.5 Hz), 128.7, 127.9, 37.6, 31.9 (d, *J*_{C-P} = 69.2 Hz), 27.1 (d, *J*_{C-P} = 3.1 Hz), 24.6, 13.8. MS (EI): 348. Melting point: 100.0~101.3°C. HRMS: Cal. for C₂₃H₂₅OP 348.1643. Found 348.1631.

(4-ethylphenethyl)diphenylphosphine oxide (3e). Following the general procedure, 3e was isolated as a pale white crystals (276 mg, 80%). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (dd, 4H, *J* = 7.6 Hz, *J* = 10.4 Hz), 7.43-7.54 (m, 6H), 7.08 (b, 4H), 2.87-2.93 (m, 2H), 2.54-2.62 (m, 4H), 1.20 (t, 3H, *J* = 7.6 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 31.7. ¹³C NMR (100.6 MHz, CDCl₃): δ 142.3, 138.4 (d, *J*_{C-P} = 15.2 Hz), 132.9 (d, *J*_{C-P} = 97.6 Hz), 131.8 (d, *J*_{C-P} = 2.7 Hz), 130.8 (d, *J*_{C-P} = 9.3 Hz), 128.7 (d, *J*_{C-P} = 11.6 Hz), 128.1, 128.1, 31.9 (d, *J*_{C-P} = 69.3 Hz), 28.4, 27.1 (d, *J*_{C-P} = 3.0 Hz), 15.7. Melting point: 69 °C. HRMS: Cal. for C₂₂H₂₃OP 334.1487. Found 334.1470.

(4-(tert-butyl)phenethyl)diphenylphosphine oxide (3f). Following the general procedure, 3f was isolated as a white crystals (293.2 mg, 81%). ¹H NMR (400 MHz, CDCl₃): δ 7.68 (dd, 4H, *J* = 7.2 Hz, *J* = 11.2 Hz), 7.36-7.45 (m, 6H), 7.20 (d, 2H, *J* = 8.0 Hz), 7.02 (d, 2H, *J* = 8.0 Hz), 2.80-2.86 (m, 2H), 2.47-2.54 (m, 2H), 1.21 (s, 9H). ³¹P NMR (162 MHz, CDCl₃): δ 31.6. ¹³C NMR (100.6 MHz, CDCl₃): δ 149.2, 138.1 (d, *J*_{C-P} = 15.2 Hz), 132.9 (d, *J*_{C-P} = 97.6 Hz), 131.8 (d, *J*_{C-P} = 2.7 Hz), 130.8 (d, *J*_{C-P} = 9.2 Hz), 128.8 (d, *J*_{C-P} = 11.6 Hz), 127.8, 125.508, 34.4, 31.8 (d, *J*_{C-P} = 69.4 Hz), 31.4, 26.9 (d, *J*_{C-P} = 2.1 Hz). Melting point: 118.6 °C. HRMS: Cal. for C₂₄H₂₇OP 362.1800. Found 362.1780.

(4-pentylphenethyl)diphenylphosphine oxide (3g). Following the general procedure, 1.0 equiv *t*-BuOK was loaded. 3g was isolated as a white crystals (315.8 mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (dd, 4H, *J* = 7.6 Hz, *J* = 11.2 Hz), 7.44-7.53 (m, 6H), 7.07 (b, 4H), 2.87-2.93 (m, 2H), 2.52-2.61 (m, 4H), 1.54-1.61 (m, 2H), 1.28-1.35 (m, 4H), 0.88 (t, 3H, *J* = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 31.5. ¹³C NMR (100.6 MHz, CDCl₃): δ 140.9, 138.3 (d, *J*_{C-P} = 15.2 Hz), 132.9 (d, *J*_{C-P} = 97.5 Hz), 131.8 (d, *J*_{C-P} = 2.6 Hz), 130.8 (d, *J*_{C-P} = 9.2 Hz), 128.7 (d, *J*_{C-P} = 11.6 Hz), 128.6, 127.9, 35.5, 31.9 (d, *J*_{C-P} = 69.3 Hz), 31.5, 31.2, 27.1 (d, *J*_{C-P} = 3.1 Hz), 22.5, 14.0. Melting point: 100.0~100.2 °C. HRMS: Cal. for C₂₅H₂₉OP 376.1956. Found 376.1944.

(4-methoxyphenethyl)diphenylphosphine oxide (3h).² Following the general procedure, 1.0 equiv *t*-BuOK was loaded. 3h was isolated as a white crystals (292.3 mg, 87%). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (dd, 4H, *J* = 7.6 Hz, *J* = 11.2 Hz), 7.46-7.52 (m, 6H), 7.06 (d, 2H, *J* = 8.4 Hz), 6.78 (d, 2H, *J* = 8.4 Hz), 3.74 (s, 3H), 2.84-2.90 (m, 2H), 2.51-2.58 (m, 2H). ³¹P NMR (162 MHz, CDCl₃): δ 31.4. ¹³C NMR (100.6 MHz, CDCl₃): δ 158.1, 133.2 (d, *J*_{C-P} = 15.4 Hz), 132.9 (d, *J*_{C-P} = 97.5 Hz), 131.8 (d, *J*_{C-P} = 2.6 Hz), 130.8 (d, *J*_{C-P} = 9.2 Hz), 129.0, 128.7 (d, *J*_{C-P} = 11.5 Hz), 114.0, 55.3, 32.1 (d, *J*_{C-P} = 69.0 Hz), 26.7 (d, *J*_{C-P} = 3.1 Hz). This compound is known.

(3-aminophenethyl)diphenylphosphine oxide (3i). Following the general procedure, 1.0 equiv *t*-BuOK was loaded in 6 mL dioxane. 3i was isolated as a pale yellow crystals (276.1 mg, 86%). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (dd, 4H, J = 8.0 Hz, J = 10.8 Hz), 7.37-7.51 (m, 6H), 7.00 (t, 1H,

J = 7.6 Hz), 6.45-6.52 (m, 3H), 3.67 (b, 2H), 2.77-2.83 (m, 2H), 2.49-2.56 (m, 2H). ³¹P NMR (162 MHz, CDCl₃): δ 31.8. ¹³C NMR (100.6 MHz, CDCl₃): δ 146.8, 142.4 (d, $J_{C-P} = 15.2$ Hz), 132.8 (d, $J_{C-P} = 97.7$ Hz), 131.8 (d, $J_{C-P} = 2.6$ Hz), 130.8 (d, $J_{C-P} = 9.2$ Hz), 129.5, 128.7 (d, $J_{C-P} = 11.6$ Hz), 118.0, 114.8, 113.1, 31.7 (d, $J_{C-P} = 69.4$ Hz), 27.5 (d, $J_{C-P} = 3.0$ Hz). Melting point: 152.2~153.7 °C. HRMS: Cal. for C₂₀H₂₀NOP 321.1283. Found 321.1275.

(4-fluorophenethyl)diphenylphosphine oxide (3k).² Following the general procedure, 3k was isolated as a white crystals(181.4 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, 4H, *J* = 7.6 Hz, *J* = 10.8 Hz), 7.45-7.54 (m, 6H), 7.10 (dd, 2H, *J* = 7.6 Hz, *J* = 5.6 Hz), 6.92 (dd, 2H, *J* = 8.4 Hz, *J* = 8.4 Hz), 2.87-2.93 (m, 2H), 2.51-2.58 (m, 2H); ³¹P NMR (162 MHz, CDCl₃) δ 31.5; ¹³C NMR (100.6 MHz, CDCl₃) δ 161.5 (d, *J* _{F-C} = 242.9 Hz), 136.7 (dd, *J* _{F-C} = 3.3 Hz, *J* _{P-C} = 14.9 Hz), 132.6 (d, *J* _{P-C} = 97.9 Hz), 131.9 (d, *J* _{P-C} = 2.7 Hz), 130.8 (d, *J* _{P-C} = 9.3 Hz), 129.5 (d, *J* _{F-C} = 7.8 Hz), 128.8 (d, *J* _{P-C} = 11.6 Hz), 115.4 (d, *J* _{F-C} = 21.1 Hz), 31.9 (d, *J* _{P-C} = 69.2 Hz), 26.8 (d, *J* _{P-C} = 2.9 Hz). MS (EI): 324. This compound is known.

(4-chlorophenethyl)diphenylphoshine oxide (31).² Following the general procedure, 1.0 equiv *t*-BuOK was used. 31 was isolated as a pale white crystals (278.8 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, 4H, *J* = 8.0 Hz, *J* = 8.0 Hz), 7.46-7.56 (m, 6H), 7.21 (d, 2H, *J* = 8.0 Hz), 7.08 (d, 2H, *J* = 8.0 Hz), 2.88-2.94 (m, 2H), 2.52-2.58 (m, 2H); ³¹P NMR (162 MHz, CDCl₃) δ 31.4; ¹³C NMR (100.6 MHz, CDCl₃) δ 139.6 (d, *J*_{P-C} = 14.9 Hz), 132.6 (d, *J*_{P-C} = 95.7 Hz), 132.1 (d, *J*_{P-C} = 2.4 Hz), 131.9 (d, *J*_{P-C} = 2.6 Hz), 130.8 (d, *J*_{P-C} = 9.2 Hz), 129.5, 128.8 (d, *J*_{P-C} = 11.5 Hz), 128.7, 31.8 (d, *J*_{P-C} = 69.5 Hz), 27.0 (d, *J*_{P-C} = 2.9 Hz). MS (EI): 340. This compound is known.

(3-chlorophenethyl)diphenylphoshine oxide (3m). Following the general procedure, 3m was isolated as a pale white crystals (289.0 mg, 85%). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (dd, 4H, *J* = 7.6 Hz, *J* = 11.6 Hz), 7.45-7.54 (m, 6H), 7.13-7.18 (m, 3H), 7.03 (d, 1H, *J* = 7.2 Hz), 2.88-2.94 (m, 2H), 2.52-2.59 (m, 2H). ³¹P NMR (162 MHz, CDCl₃): δ 31.1. ¹³C NMR (100.6 MHz, CDCl₃): δ 143.1 (d, *J*_{C-P} = 15.0 Hz), 134.3, 132.6 (d, *J*_{C-P} = 98.1 Hz), 131.9 (d, *J*_{C-P} = 2.7 Hz), 130.8 (d, *J*_{C-P} = 9.3 Hz), 129.87, 128.8 (d, *J*_{P-C} = 11.5 Hz), 128.2, 126.6, 126.4, 31.6 (d, *J*_{C-P} = 68.5 Hz), 27.3 (d, *J*_{C-P} = 2.9 Hz). Melting point: 125.6~126.9 °C. HRMS: Cal. for C₂₀H₁₈CIOP 340.0784. Found 340.0773.

(4-bromophenethyl)diphenylphosphine oxide (3n). Following the general procedure, 1.0 equiv *t*-BuOK was loaded. 3n was isolated as a white crystals (292.6 mg, 76%). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (dd, 4H, *J* = 7.6 Hz, *J* = 10.8 Hz), 7.42-7.51 (m, 6H), 7.31 (d, 2H, *J* = 8.0 Hz), 6.99 (d, 2H, *J* = 7.6 Hz), 2.83-2.89 (m, 2H), 2.48-2.55 (m, 2H). ³¹P NMR (162 MHz, CDCl₃): δ 31.1. ¹³C NMR (100.6 MHz, CDCl₃): δ 140.1 (d, *J*_{C-P} = 14.7 Hz), 132.7 (d, *J*_{C-P} = 97.9 Hz), 131.9 (d, *J*_{C-P} = 2.6 Hz), 131.6, 130.7 (d, *J*_{C-P} = 9.2 Hz), 129.9, 128.8 (d, *J*_{P-C} = 11.6 Hz), 120.1, 31.7 (d, *J*_{C-P} = 69.5 Hz), 27.1 (d, *J*_{C-P} = 3.0 Hz). Melting point: 171.6~172.2 °C. HRMS: Cal. for C₂₀H₁₈BrOP 384.0279. Found 384.0280.

4-(2-diphenylphosphoryl)ethyl)benzonitrile (30). Following the general procedure, **30** was isolated as a white crystals (244.9 mg, 74%). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (dd, 4H, *J* = 7.6 Hz, *J* = 11.6 Hz), 7.47-7.57 (m, 8H), 7.27 (d, 2H, *J* = 8.0 Hz), 2.93-3.04 (m, 2H), 2.54-2.61 (m, 2H). ³¹P NMR (162 MHz, CDCl₃): δ 30.8. ¹³C NMR (100.6 MHz, CDCl₃): δ 146.6 (d, *J*_{C-P} = 14.2 Hz), 132.4 (d, *J*_{C-P} = 98.4 Hz), 132.4, 132.0 (d, *J*_{C-P} = 2.7 Hz), 130.7 (d, *J*_{C-P} = 9.3 Hz), 129.0, 128.8 (d, *J*_{C-P} = 11.7 Hz), 118.8, 110.3, 31.3 (d, *J*_{C-P} = 69.5 Hz), 27.8 (d, *J*_{C-P} = 2.8 Hz). Melting point: 196.3~197.5 °C. HRMS: Cal. for C₂₁H₁₈NOP 331.1126. Found 331.1112.

Diphenyl(4-trifluoromethyl)phosphine oxide (3p). Following the general procedure, **3p** was isolated as a white crystals (269.3 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, 4H, *J* = 7.6 Hz, *J* = 11.2 Hz), 7.09-7.20 (m, 8H), 6.90 (d, 2H, *J* = 7.6 Hz), 2.61-2.68 (m, 2H), 2.19-2.26 (m, 2H); ³¹P NMR (162 MHz, CDCl₃) δ 30.99; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.43; ¹³C NMR (100 MHz, CDCl₃) δ 145.16 (db, *J* _{P-C} = 14.2 Hz), 132.49 (d, *J* _{P-C} = 98.1 Hz), 131.92 (d, *J* _{P-C} = 2.7 Hz), 131.34 (q, *J* _{C-F} = 10.0 Hz), 130.73 (d, *J* _{P-C} = 9.3 Hz), 128.77 (d, *J* _{P-C} = 11.6 Hz), 128.50, 125.47(q, *J* _{F-C} = 3.8 Hz), 123.91 (q, *J* _{F-C} = 270.2 Hz), 31.50 (d, *J* _{P-C} = 69.6 Hz), 27.49 (d, *J* _{P-C} = 3.0 Hz). Melting point: 99.1~99.8 °C. MS (EI): 374. HRMS: Cal. for C₂₁H₁₈F₃OP 374.1047. Found 374.1027.

(3, 5-bis(trifluoromethyl)phenethyl)diphenylphosphine oxide (3q). Following the general procedure (80 °C, 16 h), 1.0 equiv *t*-BuOK was loaded. **3q** was isolated as a white crystals (344.7 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, 4H, *J* = 8.4 Hz), 7.67 (s, 1H), 7.60 (s, 2H), 7.46-7.56 (m, 6H), 3.104 (dt, 2H, *J* = 7.6 Hz, *J* = 8.8 Hz), 2.62 (dt, 2H, *J* = 7.6 Hz, *J* = 10.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 30.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9; ¹³C NMR (100.6 MHz, CDCl₃) δ 143.3 (db, *J* _{P-C} = 13.6 Hz), 132.2 (d, *J* _{P-C} = 98.8 Hz), 132.1 (d, *J* _{P-C} = 2.7 Hz), 131.8 (q, *J* _{F-C} = 32.9 Hz), 131.72 (d, *J* _{P-C} = 9.4Hz), 128.6 (d, *J* _{P-C} = 11.7 Hz), 128.5 (q, *J* _{F-C} = 2.8 Hz), 123.2 (q, *J* _{F-C} = 271.0 Hz), 120.5 (dq, *J* _{P-C} = 3.7 Hz), 31.3 (d, *J* _{P-C} = 69.6 Hz), 27.5 (d, *J* _{P-C} = 2.9 Hz). Melting point: 151.6~152.8 °C. MS (EI): 442. HRMS: Cal. for C₂₂H₁₇F₆OP 442.0921. Found 442.0907.

(2-(naphthalene-1-yl)ethyl)diphenylphosphine oxide (3r). Following the general procedure, 3r was isolated as a pale yellow crystals (284.8 mg, 80%). ¹H NMR (400 MHz, CDCl₃): δ 7.78-7.87 (m, 6H), 7.70 (d, 1H, *J* = 8.0 Hz), 7.46-7.55 (m, 8H), 7.29-7.37 (m, 2H), 3.36-3.42 (m, 2H), 2.66-2.72 (m, 2H). ³¹P NMR (162 MHz, CDCl₃): δ 31.5. ¹³C NMR (100.6 MHz, CDCl₃): δ 137.3 (d, *J*_{C-P} = 14.5 Hz), 133.9, 132.9 (d, *J*_{C-P} = 97.6 Hz), 131.9 (d, *J*_{C-P} = 2.6 Hz), 131.3, 130.8 (d, *J*_{C-P} = 9.3 Hz), 128.9, 128.8 (d, *J*_{C-P} = 11.5 Hz), 127.2, 126.19, 125.8, 125.7, 125.6, 123.3, 31.2 (d, *J*_{C-P} = 69.0 Hz), 24.8 (d, *J*_{C-P} = 2.8 Hz). Melting point: 122.9~123.3 °C. HRMS: Cal. for C₂₄H₂₁OP 356.1330. Found 356.1318.

Ferrocenetheyldiphenylphosphine oxide (3s). Following the general procedure, **3s** was isolated as a yellow crystals (339.4 mg, 82%). ¹H NMR (400 MHz CDCl₃): δ 7.76 (dd, 4H, *J* = 7.6 Hz, *J* = 7.6 Hz), 7.48-7.54 (m, 6H), 4.06 (s, 5H), 4.03 (b, 4H), 2.62-2.68 (m, 2H), 2.46-2.52 (m, 2H). ³¹P NMR (162 MHz CDCl₃): δ 31.59. ¹³C NMR (100 MHz CDCl₃): δ 132.89 (d, *J*_{C-P} = 97.6 Hz), 131.81 (d, *J*_{C-P} = 2.7 Hz), 130.78 (d, *J*_{C-P} = 9.3 Hz), 128.74 (d, *J*_{C-P} = 11.5 Hz), 88.30 (d, *J*_{C-P} = 18.1 Hz), 68.60, 67.70, 67.44, 31.47 (d, *J*_{C-P} = 70.0 Hz), 21.55 (d, *J*_{C-P} = 2.8 Hz). Melting point: 170.8~170.9 °C.

Diphenyl(2-(priding-2-yl)ethyl)phosphine oxide (3t).^{1, 2} Following the general procedure. **3t** was isolated as a pale yellow crystals (214.9 mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, 2H, J = 4.8 Hz), 7.77 (dd, 4H, J = 7.6 Hz, J = 10.8 Hz), 7.42-7.53 (m, 7H), 7.11 (d, 1H, J = 8.0 Hz), 7.06 (dd, 1H, J = 6.4 Hz, J = 6.4 Hz), 3.07-3.13 (m, 2H), 2.74-2.81 (m, 2H). ³¹P NMR (162 MHz, CDCl₃): δ 32.3. ¹³C NMR (100 MHz, CDCl₃): δ 160.2 (d, J_{C-P} = 14.4 Hz), 149.3, 136.5, 132.8 (d, J_{C-P} = 98.9 Hz), 131.7 (d, J_{C-P} = 2.7 Hz), 130.8 (d, J_{C-P} = 9.3 Hz), 128.7 (d, J_{C-P} = 11.6 Hz), 123.1, 121.5, 29.7 (d, J_{C-P} = 2.7 Hz), 29.2 (d, J_{C-P} = 71.1 Hz). This compound is known.

Diphenyl(2-(priding-3-yl)ethyl)phosphine oxide (3u). Following the general procedure, **3u** was isolated as a pale yellow crystals (211.8 mg, 69%). ¹H NMR (400 MHz, CDCl₃): δ 8.39 (b, 2H), 7.74 (dd, 4H, J = 8.4 Hz, J = 10.0 Hz), 7.46-7.53 (m, 7H), 7.14 (b, 1H), 2.92 (dt, 2H, J = 7.6 Hz, J = 8.0 Hz), 2.55 (dt, 2H, J = 6.8 Hz, J = 10.4 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 31.3. ¹³C NMR (100.6 MHz, CDCl₃): δ 149.5, 147.8, 136.4 (d, J_{C-P} = 14.3 Hz), 135.7, 132.4 (d, J_{C-P} = 98.3 Hz), 132.0 (d, J_{C-P} = 2.6 Hz), 130.7 (d, J_{C-P} = 9.3 Hz), 128.8 (d, J_{C-P} = 11.6 Hz), 123.5, 31.5 (d, J_{C-P} = 69.6 Hz), 24.9 (d, J_{C-P} = 2.9 Hz). Melting point: 104.0~104.6 °C. HRMS: Cal. for C₁₉H₁₈NOP 307.1126. Found 307.1120.

Diphenyl(2-thiophen-2-yl)ethyl)phosphine oxide (3v). Following the general procedure, **3v** was isolated as a pale yellow crystals (227.7 mg, 73%). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (dd, 4H, *J* = 7.6 Hz, *J* = 10.8 Hz), 7.44-7.53 (m, 6H), 7.07 (d, 1H, *J* = 4.8 Hz), 6.84 (dd, 1H, *J* = 4.0 Hz, *J* = 4.0 Hz), 6.76 (b, 1H), 3.10-3.16 (m, 2H), 2.61-2.68 (m, 2H), ³¹P NMR (162 MHz, CDCl₃): δ 31.2. ¹³C NMR (100 MHz, CDCl₃): δ 143.8 (d, *J* _{C-P} = 17.3 Hz), 132.5 (d, *J* _{C-P} = 97.1 Hz), 131.9 (d, *J* _{C-P} = 2.5 Hz), 130.8 (d, *J* = 9.4 Hz), 128.8 (d, *J* = 11.7 Hz), 126.9, 124.6, 123.6, 32.2 (d, *J* _{C-P} = 69.2 Hz), 22.1 (d, *J* _{C-P} = 2.4 Hz). Melting point: 125.2~127.9 °C. HRMS: Cal. for C₁₈H₁₇OPS 312.0738. Found 312.0731.

Diphenyl(thiophen-3-yl)ethyl)phosphine oxide (3w). Following the general procedure, 1.0 equiv *t*-BuOK was loaded. **3w** was isolated as a pale yellow crystals (268.3 mg, 86%). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (dd, 4H, *J* = 7.6 Hz, *J* = 10.2 Hz), 7.45-7.54 (m, 6H), 7.22 (b, 1H), 6.94 (b, 1H), 6.90 (d, 1H, *J* = 4.8 Hz), 2.93-2.99 (m, 2H), 2.55-2.62 (m, 2H). ³¹P NMR (162 MHz, CDCl₃): δ 31.47. ¹³C NMR (100 MHz, CDCl₃): δ 141.33 (d, *J* _{C-P} = 15.7 Hz), 132.75 (d, *J* _{C-P} = 97.8 Hz), 131.84 (d, *J* _{C-P} = 2.7 Hz), 130.79 (d, *J* _{C-P} = 9.3 Hz), 128.74 (d, *J* _{C-P} = 11.6 Hz), 127.73, 125.90, 120.53, 30.97 (d, *J* _{C-P} = 69.8 Hz), 22.22 (d, *J* _{C-P} = 2.8 Hz). Melting point: 111.2~111.7 °C. HRMS: Cal. for C₁₈H₁₇OPS 312.0738. Found 312.0722.

Phenethyldi-*p*-tolylphosphine oxide (3x). Following the general procedure, 1.0 equiv *t*-BuOK was loaded. 3x was isolated as a white crystals (273.8 mg, 82%). ¹H NMR (400 MHz, CDCl₃): δ 7.65 (dd, 4H, *J* = 8.0 Hz, *J* = 10.8 Hz), 7.22-7.27 (m, 6H), 7.14-7.16 (m, 3H), 2.89-2.95 (m, 2H), 2.50-2.57 (m, 2H), 2.37 (s, 6H). ³¹P NMR (162 MHz, CDCl₃): δ 31.8. ¹³C NMR (100 MHz, CDCl₃): δ 142.2 (d, *J*_{C-P} = 2.7 Hz), 141.4 (d, *J*_{C-P} = 15.3 Hz), 130.8 (d, *J*_{C-P} = 9.6 Hz), 129.7 (d, *J*_{C-P} = 100.1 Hz), 129.4 (d, *J*_{C-P} = 11.9 Hz), 128.6, 128.1, 126.3, 32.1 (d, *J*_{C-P} = 69.6 Hz), 27.6 (d, *J*_{C-P} = 3.0 Hz), 21.6. Melting point: 99.5~100.4 °C. HRMS: Cal. for C₂₂H₂₃OP 334.1487. Found 334.1480.

Butyl(phenethyl)(phenyl)phosphine oxide (3y). Following the general procedure, 0.5 equiv *t*-BuOK was loaded. **3y** was isolated as a colorless oil (225.9 mg, 79%). ¹H NMR (400 MHz, CDCl₃): δ 7.69 (dd, 2H, *J* = 8.0 Hz, *J* = 8.0 Hz), 7.43-7.50 (m, 3H), 7.20 (dd, 2H, *J* = 7.6 Hz, *J* = 7.6 Hz), 7.08-7.13 (m, 3H), 2.89-2.99 (m, 1H), 2.61-2.71 (m, 1H), 2.27-2.33 (m, 1H), 2.07-2.17 (m, 1H), 1.78-1.99 (m, 2H), 1.54-1.62 (m, 1H), 1.27-1.43 (m, 3H), 0.82 (t, 3H, *J* = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 39.7. ¹³C NMR (100.6 MHz, CDCl₃): δ 141.2 (d, *J*_{C-P} = 14.2 Hz), 132.3 (d, *J*_{C-P} = 91.6 Hz), 131.6 (d, *J*_{C-P} = 2.6 Hz), 130.4 (d, *J*_{C-P} = 8.7 Hz), 128.7 (d, *J*_{C-P} = 11.1 Hz), 128.6, 128.0, 126.3, 31.9 (d, *J*_{C-P} = 65.7 Hz), 29.8 (d, *J*_{C-P} = 68.1 Hz), 27.5 (d, *J*_{C-P} = 3.3 Hz), 24.0 (d, *J*_{C-P} = 14.4 Hz), 23.5 (d, *J*_{C-P} = 4.1 Hz), 13.5. HRMS: Cal. for C₁₈H₂₃OP 286.1487. Found 286.1474.

Dibutyl(phenethyl)phosphine oxide (3z). Following the general procedure, 1.0 equiv *t*-BuOK was loaded. **3z** was isolated as a colorless oil (170.2 mg, 64%). ¹H NMR (400 MHz, CDCl₃): δ 7.31 (dd, 2H, *J* = 6.0 Hz, *J* = 6.0 Hz), 7.23 (parad, 3H, *J* = 6.0 Hz), 2.90-2.95 (m, 2H), 1.99-2.10 (m, 2H), 1.68-1.73 (m, 4H), 1.53-1.57 (m, 4H), 1.38-1.45 (m, 4H), 0.93 (t, 6H, *J* = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 48.2. ¹³C NMR (100.6 MHz, CDCl₃): δ 141.2 (d, *J*_{C-P} = 10.3 Hz), 128.7, 128.1, 126.4, 29.7 (d, *J*_{C-P} = 49.7 Hz), 27.8 (d, *J*_{C-P} = 51.7 Hz), 27.7 (d, *J*_{C-P} = 2.5 Hz), 24.3 (d, *J*_{C-P} = 11.4 Hz), 23.8 (d, *J*_{C-P} = 3.0 Hz), 13.6. MS (EI): 266.

References:

- (1) Jr R. A. S.; Taylor R. I.; Thompson L. E.; Patel P. B. Org. Lett. 2005, 7, 851.
- (2) Isley N. A.; Linstadt R. T. H.; Slack E. D.; Lipshutz B. H. Dalton Trans. 2014, 43, 13196.
- (3) Miao W.; Gao Y.; Li X.; Gao Y.; Tang G. Zhao Y. Adv. Synth. Catal. 2012, 354, 2659.
- (4) Niu M.; Fu H.; Jiang Y.; Zhao Y. Chem. Commun. 2007, 272. DOI: 10.1039/B613416E.
- (5) Eisch J. J.; Liu W.; Zhu L.; Rheingold A. L. Eur. J. Org. Chem. 2015, 2015, 7384.
- (6) A. Yoshimura, Y. Saga, Y. Sato, A. Ogawa, T. Chen and L.-B. Han, Tetrahedron Lett., 2016, 57, 3382.

Copies of ¹H NMR, ³¹P NMR and ¹³C NMR spectroscopies

11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

140 110 80 60 40 20 0 -30 -60 -90 -130 -170 -210

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

and the first of	The state of the s	contraction for contract	A 1. A 14	1 . 1		the start of the s	2.1 × 10× 1 ×	Contract to a second se	e to sold by the s	Free Provides Press Pres	a real of these of the		B-2
140	110	80	60	40	20	0	-30 f1	-60 (ppm)	-90	-130	-170	-210	

