Supporting Information

Direct access to isoxazolino and isoxazolo benzazepines from 2-((hydroxyimino)methyl) benzoic acid via a post-Ugi heteroannulation

Saeed Balalaie^{*a, b}, Mohammad Shamakli^a, Ali Nikbakht^a, Nahid S. Alavijeh^a, Frank Rominger^c, Shahnaz Rostamizadeh^a, Hamid Reza Bijanzadeh^d

^{a.} Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran, balalaie@kntu.ac.ir, Tel: +98-21-23064226, Fax: +98-21-22889403.

^{b.} Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.

^{c.} Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.

^{d.} Department of biophysics, Tarbiat Modares University, Tehran, Iran.

General Methods

Reagents. Unless otherwise stated, reactions were carried out in a small glass balloon at room temperature, no special conditions/atmosphere were needed. Chemicals were purchased from Merck and used without further purification. All solvents were purchased from standard chemical suppliers. Analytical thin layer chromatography (TLC) was performed on silica gel coated plates (Merck 60 F254) with the indicated solvent mixture; visualization was done using ultraviolet (UV) irradiation ($\lambda = 260$ nm).

Analytical Methods. All new compounds were characterized by ¹H NMR, ¹³CNMR, IR spectroscopy and HRMS. ¹H NMR spectra were recorded on a BRUKER DRX-300 AVANCE (300 MHz), ¹³C NMR spectra were recorded on a BRUKER DRX-300 (75 MHz) spectrometer. Infrared spectra were recorded on an FTLA 2000 (ABB FT-IR) spectrometer. High-resolution mass spectra were recorded on a Mass-ESI-POS (Apex Qe-FT- ICR instrument) spectrometer. All ¹H NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signals for CHCl₃ (7.27 ppm). All ¹³C NMR spectra were reported in ppm relative to residual CHCl₃ (77 ppm) and were obtained with ¹H decoupling. X-ray analysis was performed on an SIMENS CCD diffractometer and Calculated by SADABS 2006/1 and SHELXTL2001 softwares.

Synthetic procedures

General procedure A: Synthesis of the 2-((hydroxyimino) methyl) benzoic acid

To a solution of hydroxylamine hydrochloride (1.05 equiv) and NaOH (1.05 equiv) in 5 ml EtOH, Phthalaldehyde (1 equiv) was added at room temperature. After 1h stirring, the solution was filtered and the ethanol was evaporated leading to the formation of a Colourless precipitate (80%).

General procedure B: Synthesis of isoxazolino benzazepinones (6a-k) via a post-Ugi heteroannulation involving intramolecular 1,3-dipolar cycloaddition reaction of nitrile oxides with alkenes

To a solution of aldehyde (1 mmol) in MeOH (5 ml) was added allylamine as a primary amine (1 mmol), and the reaction was stirred at room temperature (25°C) for 30 min. Then 2-((hydroxyimino) methyl) benzoic acid (1 mmol) was added and stirring was continued for 5 min, followed by addition of isocyanide (1 mmol). The mixture was stirred for 24 h. after completion of reaction, the solvent was removed under vacuum. Without any isolation or purification, DCM (5 ml) was added to the residue. Then NaOCl (10%, 1.8 ml) was added to the mixture at 0°C within 15 min. Then, the reaction was stirred at room temperature for 4 h. The progress of the reaction was monitored using TLC (n-hexane/ EtOAc 3:1). Next the reaction was quenched by H₂O (30 ml), the resultant mixture was extracted by CH₂Cl₂ (2 × 30 ml), the combined organic layers were washed with brine (30 ml) and dried over MgSO₄. Removal of the solvent followed by recrystallization in MeOH gave the desired product as a solid precipitate.

N-cyclohexyl-2-(4-fluorophenyl)-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (6a):

Colourless powder, isolated yield 84%; m.p.: 238-240 °C; IR (KBr, cm⁻¹): v =1643, 2932, 3079, 3256; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.06-1.21 (m, 3H, H-cyclohexyl), 1.25-1.42 (m, 2H, H-cyclohexyl), 1.58-1.71 (m, 3H, Hcyclohexyl), 1.91-1.95 (m, 2H, H-cyclohexyl), 3.26 (dd, J = 13.7, 8.4Hz, 1H, CH₂O), 3.43 (*dd*, *J* = 15.2, 5.8Hz, 1H, CH₂N), 3.68 (*dd*, J = 15.1, 2.9Hz, 1H, CH₂N), 3.74-3.87 (m, 1H, CH-cyclohexyl), 3.89-4.00 (m, 1H, CHC=N), 4.46 (*dd*, *J* = 10.6, 8.5Hz, 1H, CH₂O), 5.99 (*d*, *J* = 7.0Hz, 1H, NH), 6.32 (s, 1H, CHCON), 7.07-7.13 (m, 2H, H-Ar), 7.36-7.41 (m, 2H, H-Ar), 7.53-7.55 (m, 2H, H-Ar), 7.88-7.91 (m, 1H, H-Ar), 8.02-8.06 (m, 1H, H-Ar); ¹³C NMR (75 MHz, $CDCl_3$): $\delta(ppm) = 24.7, 25.4, 32.7, 32.8, 42.7, 48.7, 52.6, 61.1, 71.9, 116.20 (d, J = 21.5Hz, C-C-$ F), 126.2, 126.8, 130.4, 131.2, 131.3, 131.6, 132.5, 133.5, 159.0, 162.8 (d, J = 247.8Hz, C-F),

168.3, 170.5; Mass: HR-MS (ESI-POS) = Calc. for $C_{25}H_{27}FN_3O_3$ [M+H]⁺ 436.20318, Found 436.20310. Calc. C₂₅H₂₆FN₃NaO₃ [M+Na] ⁺ 458.18509, Found 458.18504.

N-(tert-butyl)-2-(4-chlorophenyl)-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (6b):

Colourless powder, isolated yield 82%; m.p.: 171-173 °C; IR (KBr, cm⁻¹): $\upsilon =$ 1647, 2978, 3086, 3312; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.38 (s, 9H, t-Bu), 3.32 (*dd*, *J* = 13.7, 8.4Hz, 1H, CH₂O), 3.41 (*dd*, *J* = 15.1, 6.1Hz, 1H, CH₂N), 3.65 (*dd*, *J* = 15.1, 2.7Hz, 1H, CH₂N), 3.88-3.99 (m, 1H, CHC=N), 4.49 (*dd*, *J* =

10.6, 8.5Hz, 1H, CH₂O), 5.84 (s, 1H, NH), 6.20 (s, 1H, CHCON), 7.33 (d, J = 8.5Hz, 2H, H-Ar), 7.40 (*d*, *J* = 8.5Hz, 2H, H-Ar), 7.53-7.56 (m, 2H, H-Ar), 7.91-7.94 (m, 1H, H-Ar), 8.04-8.07 (m, 1H, H-Ar); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 28.6, 42.8, 52.0, 52.4, 61.6, 72.0, 126.1, 126.8, 129.4, 130.5, 130.7, 131.6, 132.5, 133.5, 133.8, 135.0, 159.1, 168.3, 170.5; Mass: HR-MS (ESI-POS) = Calc. for $C_{23}H_{25}N_3O_3Cl [M+H]^+ 426.15796$, Found 426.15790. Calc. $C_{23}H_{24}N_3NaO_3Cl$ [M+Na]⁺ 448.13989, Found 448.13984.

2-(4-bromophenyl)-N-(tert-butyl)-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4e] azepin-5(6H)-yl) acetamide (6c):

Colourless powder, isolated yield 75%; m.p.: 177-179 °C; IR (KBr, cm⁻¹): $\upsilon =$ 1643, 2971, 3302; ¹H NMR (300 Mz, CDCl₃): δ (ppm) = 1.38 (s, 9H, t-Bu), 3.33 (*dd*, *J* = 13.6, 8.3Hz, 1H, CH₂O) 3.40 (*dd*, *J* = 15.1, 6.1Hz, 1H, CH₂N), 3.65 (*dd*, J = 15.1, 2.8Hz, 1H, CH₂N), 3.89-3.99 (m, 1H, CHC=N), 4.50 (dd, J = 10.7,

8.4Hz, 1H, CH₂O), 5.80 (s, 1H, NH), 6.20 (s, 1H, CH), 7.27 (d, J = 8.2Hz, 2H, H-Ar), 7.51-7.56 (m, 4H, H-Ar), 7.92-7.95 (m, 1H, H-Ar), 8.05-8.08 (m, 1H, H-Ar); ¹³C NMR (75 MHz, CDCl₃): $\delta(\text{ppm}) = 28.6, 42.8, 52.0, 52.4, 61.7, 72.0, 123.1, 126.1, 1268, 130.4, 130.9, 131.6, 132.3, 132.5, 13$ 133.4, 134.3, 159.1, 168.3, 170.5; Mass: HR-MS (ESI-POS) = Calc. for C₂₃H₂₄N₃NaO₃Br [M+Na]⁺ 492.08941, Found 492.08933.

N-cyclohexyl-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4-e]azepin-5(6H)-yl)-2-(p-tolyl) acetamide (6d):

Colourless powder, isolated yield 73%; m.p.: 245-248 °C; IR (KBr, cm⁻¹): $v = 1640, 2930, 3263; {}^{1}H$ NMR (300 MHz, CDCl₃): δ (ppm) = 1.02-1.21 (m, 3H, H-cyclohexyl), 1.29-1.41 (m, 2H, H-cyclohexyl), 1.57-1.72 (m, 3H, H-cyclohexyl), 1.91-1.95 (m, 2H, H-cyclohexyl), 2.37 (s, 3H, CH₃), 3.17 (*dd*, *J* = 13.7, 8.4Hz,

1H, CH₂O), 3.44 (*dd*, *J* = 15.3, 5.4, 1H, CH₂N), 3.68 (*dd*, *J* = 15.3, 2.9Hz, 1H, CH₂N), 3.78-3.89 (m, 1H, CH-cyclohexyl), 3.91-4.01 (m, 1H, CHC=N), 4.37 (*dd*, *J* = 10.8, 8.5Hz, 1H, CH₂O), 5.89 (*d*, *J* = 7.86Hz, 1H, NH), 6.31(s, 1H, CHCON), 7.21 (*d*, *J* = 8.1Hz, 2H, H-Ar), 7.26 (*d*, *J* = 8.1Hz, 2H, H-Ar), 7.49-7.54 (m, 2H, H-Ar), 7.83-7.86 (m, 1H, H-Ar), 8.02-8.05 (m, 1H, H-Ar); ¹³C NMR (75MHz, CDCl₃): δ (ppm) = 21.2, 24.7, 24.8, 25.4, 32.8, 42.5, 48.7, 52.8, 61.9, 71.8, 126.2, 126.7, 129.5, 129.9, 130.3, 131.5, 132.2, 132.4, 133.8, 139.0, 159.2, 168.8, 170.5; Mass: HR-MS (ESI-POS) = Calc. for C₂₆H₂₉N₃NaO₃ [M+Na]⁺ 454.21015, Found 454.21011.

N-cyclohexyl-2-(4-methoxyphenyl)-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (6e):

Colourless powder, isolated yield 80%; m.p.: 219-221 °C; IR (KBr, cm⁻¹): $\upsilon = 1643, 2933, 3263; {}^{1}\text{H}$ NMR (300 MHz, CDCl₃): $\delta(\text{ppm}) = 1.08-1-25$ (m, 3H, H-cyclohexyl), 1.25-1.52 (m, 2H, H-cyclohexyl), 1.55-1.80 (m, 3H, H-cyclohexyl), 1.92 (brs, 2H, H-cyclohexyl), 3.17 (*dd*, *J* = 12.9, 8.3Hz, 1H, CH₂O), 3.43-3.47

(m, 1H, CH₂N), 3.67-3.72 (m, 1H, CH₂N), 3.82 (s, 3H, CH₃), 3.75-3.85 (m, 1H, CH-cyclohexyl), 3.85-3.95 (m, 1H, CHC=N), 4.34-4.40 (m, 1H, CH₂O), 5.83 (*d*, *J* = 6.2Hz, 1H, NH), 6.27 (s, 1H, CHCON), 6.92 (*d*, *J* = 7.5Hz, 2H, H-Ar), 7.31 (*d*, *J* = 7.7Hz, 2H, H-Ar), 7.52 (brs, 2H, H-Ar), 7.81 (brs, 1H, H-Ar), 8.04 (s, 1H, H-Ar); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 24.7, 25.4, 32.8, 42.3, 48.7, 52.9, 55.3, 61.6, 71.7, 114.5, 126.3, 126.7, 127.0, 130.3, 131.0, 131.5, 132.4, 133.8, 159.2, 160.0, 168.9, 170.6; Mass: HR-MS (ESI-POS) = Calc. for C₂₆H₂₉N₃NaO₄ [M+Na]⁺ 470.20507, Found 470.20503.

N-cyclohexyl-2-(3-nitrophenyl)-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (6f):

Yellow powder, isolated yield 66%; m.p.: 180-182 °C; IR (KBr, cm⁻¹): $\upsilon = 1638$, 1674, 3266; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.11-1.25 (m, 3H, H-cyclohexyl), 1.35-1.41 (m, 2H, H-cyclohexyl), 1.60-1.26 (m, 3H, H-cyclohexyl), 1.91-2.00 (m, 2H, H-cyclohexyl), 3.42 (*dd*, *J* = 14.8, 7.5Hz, 1H, CH₂O), 3.53 (*dd*,

J = 13.5, 8.5Hz, 1H, CH₂N), 3.65-3.75 (m, 1H, CH₂N), 3.81-4.01 (m, 2H, CH-cyclohexyl, CHC=N), 4.55-4.69 (m, 1H, CH₂O), 6.30 (*d*, *J* = 7.5Hz, 1H, NH), 6.49 (s, 1H, CHCON), 7.50-

7.74 (m, 4H, H-Ar), 8.04-8.09 (m, 2H, H-Ar), 8.24 (d, J = 9.2Hz, 2H, H-Ar); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 24.7, 25.3, 32.7, 32.8, 43.6, 48.9, 51.7, 60.1, 72.5, 123.6, 125.8, 126.9, 130.1, 130.6, 131.8, 132.8, 132.9, 134.9, 137.4, 148.6, 158.9, 167.1, 170.4; Mass: HR-MS (ESI-POS) = Calc. for C₂₅H₂₇N₄O₅ [M+1]⁺ 463.1994, Found 463.1976. Calc. C₂₅H₂₆N₄NaO₅ [M+Na] ⁺ 485.1810, Found 485.1795.

N-(tert-butyl)-2-(4-fluorophenyl)-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (6g):

Colourless powder, isolated yield 79%; m.p.: 168-171 °C; IR (KBr, cm⁻¹): v = 1643, 2974, 3306; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.39 (s, 9H, *t*-Bu), 3.26 (*dd*, *J* = 13.7, 8.4Hz, 1H, CH₂O), 3.43 (*dd*, *J* = 15.2, 5.8Hz, 1H, CH₂N), 3.67 (*dd*, *J* = 15.2, 2.9Hz, 1H, CH₂N), 3.87-3.98 (m, 1H, CHC=N), 4.45 (*dd*, *J* = 10.7, 8.4Hz, 1H, CH₂O), 5.71 (s, 1H, NH), 6.20 (s, 1H, CHCON), 7.09-7.14 (m, 2H, H-Ar), 7.39 (*dd*, *J* = 8.5, 5.3Hz, 2H, H-Ar), 7.52-7.59 (m, 2H, H-Ar), 7.88-7.92 (m, 1H, H-Ar), 8.01-8.10 (m, 1H, H-Ar); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 28.6, 51.9, 52.6, 61.5, 116.1, 116.3, 126.2, 126.8, 130.4, 131.1, 131.2, 131.3, 131.6, 132.5, 133.6, 159.1, 162.5 (d, J=225, C-F), 168.6, 170.5; Mass: HR-MS (ESI-POS) = Calc. for C₂₃H₂₅FN₃O₃ [M+H]⁺ 410.18751, Found 410.18745. Calc. C₂₃H₂₄FN₃NaO₃ [M+Na]⁺ 432.16944, Found 432.16939.

2-(4-bromophenyl)-N-cyclohexyl-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (6h):

Colourless powder, isolated yield 83%; m.p.: 261-264 °C; IR (KBr, cm⁻¹): $\upsilon = 1646$, 2926, 3261; ¹H NMR (300 MHz, CDCl₃) δ 1.08-1.15 (m, 3H, H-cyclohexyl), 1.29-1.36 (m, 2H, H-cyclohexyl), 1.57-1.65 (m, 3H, H-cyclohexyl), 1.89-1.93 (m, 2H, H-cyclohexyl), 3.33 (*dd*, *J* = 13.5, 8.4Hz, 1H, CH₂O), 3.41 (*dd*, *J* = 15.2, 6.0Hz, 1H, CH₂N), 3.66 (*dd*, *J* = 15.2, 2.3Hz, 1H, CH₂N), 3.77-

3.82 (m, 1H, CH-cyclohexyl), 3.88-3.97 (m, 1H, CHC=N), 4.50 (*dd*, J = 8.4, 10.5, 1H, CH₂O), 6.12 (*d*, J = 7.5Hz, 1H, NH), 6.34 (s, 1H, CHCON), 7.30-7.40 (m, 4H, H-Ar), 7.51-7.54 (m, 2H, H-Ar), 7.91-7.95 (m, 1H, H-Ar), 7.99-8.02 (m, 1H, H-Ar) ; ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) = 24.4, 24.5, 25.1, 32.1, 42.2, 47.9, 52.6, 60.8, 70.9, 121.7, 126.0, 126.3, 130.3, 131.6, 131.8, 132.0, 133.7, 135.8, 159.0, 167.9, 169.5; Mass: HR-MS (ESI-POS) = Calc. for C₂₅H₂₇N₃O₃Br [M+H]⁺ 498.12104, Found 498.12098. Calc. C₂₅H₂₆N₃NaO₃Br [M+Na] ⁺ 518.10504, Found 518.10498.

2-(4-chlorophenyl)-N-cyclohexyl-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (6i):

Colourless powder, isolated yield 87%; m.p.: 256-258 °C; IR (KBr, cm⁻¹): $v = 1638, 2931, 3260; {}^{1}\text{H}$ NMR (300 MHz, CDCl₃): $\delta(\text{ppm}) = 1.08-1.15$ (m, 3H, H-cyclohexyl), 1.29-1.36 (m, 2H, H-cyclohexyl), 1.57-1.75 (m, 3H, H-cyclohexyl), 1.89-1.93 (m, 2H, H-cyclohexyl), 3.33 (*dd*, *J* = 13.8, 8.5Hz, 1H, CH₂O), 3.41 (*dd*, *J* = 13.8, 8.5Hz, 1H, CH₂O), 3.41

J = 15.0, 6.1Hz, 1H, CH₂N), 3.66 (*dd*, J = 15.2, 2.3Hz, 1H, CH₂N), 3.77-3.82 (m, 1H, CH-cyclohexyl), 3.88-3.97 (m, 1H, CHC=N), 4.50 (*d*, J = 8.5, 10.5Hz, 1H, CH₂O), 6.12 (*d*, J = 7.7Hz, 1H, NH), 6.34 (s, 1H, CH), 7.22-7.40 (m, 4H, H-Ar), 7.51-7.54 (m, 2H, H-Ar), 7.91-7.95 (m, 1H, H-Ar), 7.99-8.02 (m, 1H, H-Ar); ¹³C NMR (75MHz, CDCl₃): δ (ppm) = 24.7, 25.3, 32.8, 42.9, 48.7, 52.4, 61.1, 72.1, 126.1, 126.8, 129.4, 130.4, 130.6, 131.7, 132.5, 133.4, 133.7, 135.0; Mass: HR-MS (ESI-POS) = Cal. for C₂₅H₂₇N₃O₃Cl [M+H]⁺ 452.17363, Found 452.17355. Calc. C₂₅H₂₆N₃NaO₃Cl [M+Na]⁺ 474.15556, Found 474.15549.

N-cyclohexyl-2-(4-isopropylphenyl)-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (6j):

cyclohexyl), 2.87-2.94 (m, 1H, CH-iso), 3.12 (*dd*, *J* = 13.5, 8.4Hz, 1H, CH₂O), 3.44 (*dd*, *J* = 15.2, 4.8Hz, 1H, CH₂N), 3.69 (*d*, *J* = 13.0Hz, 1H, CH₂N), 3.80-3.97 (m, 2H, CHCN, CH-cyclohexyl), 4.32 (*t*, *J* = 9.5Hz, 1H, CH₂N), 5.89 (*d*, *J* = 7.2Hz, 1H, NH), 6.31 (s, 1H, CHCO), 7.25-7.27 (m, 4H, H-Ar), 7.48-7.51 (m, 2H, H-Ar), 7.81-7.83 (m, 1H, H-Ar), 8.01-8.03 (m, 1H, H-Ar); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 23.8, 23.9, 24.7, 24.8, 25.4, 32.8, 32.9, 33.8, 42.5, 48.8, 52.8, 61.9, 71.7, 126.2, 126.7, 127.2, 129.6, 130.3, 131.5, 132.4, 132.5, 133.8, 150.0, 159.2, 168.8, 170.6. Mass: HR-MS (ESI-POS) = Calc. for C₂₈H₃₃N₃NaO₃ [M+Na] + 482.2410, Found 482.2414. Calc. for C₂₈H₃₃KN₃O₃ [M+K] + 498.2153, Found 498.2154.

2-([1,1'-biphenyl]-4-yl)-N-cyclohexyl-2-(6-oxo-3a,4-dihydro-3H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl)acetamide (6k):

Colourless powder, isolated yield 86%; m.p.: 187-190 °C; IR (KBr, cm⁻¹): υ =1649,2926, 3288; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.11-1.14 (m, 3H, H-cyclohexyl), 1.34-1.38 (m, 2H, H-cyclohexyl), 1.58-1.68 (m, 3H, H-cyclohexyl), 1.94-1.96 (m, 2H, H-cyclohexyl), 3.30 (*dd*, *J* = 12.6, 9.0Hz, 1H, CH₂O), 3.48 (*dd*, *J* = 14.8, 4.6Hz, 1H, CH₂N), 3.73 (*d*, *J* = 14.8Hz, 1H, CH₂N), 3.86 (brs, 1H, CH-cyclohexyl), 4.00 (brs, 1H, CHC=N), 4.44 (*t*, *J* = 9.0Hz, 1H, CH₂N), 3.86 (brs, 1H, CH-cyclohexyl), 4.00 (brs, 1H, CHC=N), 4.44 (*t*, *J* = 9.0Hz, 1H, CH₂N), 4.00 (brs, 1H, CHC=N), 4.44 (*t*, *J* = 9.0Hz, 1H, CH₂N), 4.00 (brs, 1H, CHC=N), 4.44 (*t*, *J* = 9.0Hz, 1H, CHC=N), 4.44 (*t*, *J* =

CH₂O), 6.03 (*d*, *J* = 6.5Hz, 1H, NH), 6.40 (s, 1H, CHCON), 7.38-7.46 (m, 5H, H-Ar), 7.53 (brs,

2H, Ar), 7.58-7.65 (m, 4H, H-Ar), 7.89 (brs, 1H, H-Ar), 8.05 (brs, 1H, H-Ar); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 24.8, 25.4, 32.8, 32.9, 42.9, 48.8, 52.6, 61.8, 72.0,126.2, 126.7, 127.0, 127.8, 128.9, 129.9, 130.4, 131.6, 132.5, 133.6, 134.1, 139.9, 141.8, 159.2, 168.5, 170.5. Mass: HR-MS (ESI-POS) = Calc. for C₃₁H₃₁N₃NaO₃ [M+Na] ⁺ 516.2266, Found 516.2258. Calc. for C₃₁H₃₁KN₃O₃ [M+K] ⁺ 532.1997, Found 532.1997.

General procedure B: Synthesis of isoxazolo benzazepinones (9a-i) via a post-Ugi heteroannulation involving intramolecular 1,3-dipolar cycloaddition reaction of nitrile oxides with alkynes

To a solution of aldehyde (1 mmol) in MeOH (5 ml) was added propargylamine as a primary amine (1 mmol), and the reaction was stirred at room temperature (25°C) for 30 min. Then 2-((hydroxyimino) methyl) benzoic acid (1 mmol) was added and stirring was continued for 5 min, followed by addition of isocyanide (1 mmol). The mixture was stirred for 24 h. after completion of reaction, the solvent was removed under vacuum. Without any isolation or purification, DCM (5 ml) was added to the residue. Then NaOCl (10%, 1.8 ml) was added to the mixture at 0°C within 15 min. Then, the reaction was stirred at room temperature for 4 h. The progress of the reaction was monitored using TLC (n-hexane/ EtOAc 3:1). Next the reaction was quenched by H₂O (30 ml), the resultant mixture was extracted by CH₂Cl₂ (2 × 30 ml), the combined organic layers were washed with brine (30 ml) and dried over MgSO₄. Removal of the solvent followed by recrystallization in MeOH gave the desired product as a solid precipitate.

N-cyclohexyl-2-(4-fluorophenyl)-2-(6-oxo-4H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (9a):

Colourless powder, isolated yield 83%; m.p.: 216-218 °C; IR (KBr, cm⁻¹): υ = 1641, 2934, 3283; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.11-1.21 (m, 3H, H-cyclohexyl), 1.30-1.38 (m, 2H, H-cyclohexyl), 1.59-1.73 (m, 3H, H-cyclohexyl), 1.94-2.04 (m, 2H, H-cyclohexyl), 3.80-3.91 (m, 1H, CH-cyclohexyl), 3.79-3.94

(m, 2H, CH-cyclohexyl, CH₂N), 4.05-4.12 (m, 1H, CH₂N), 6.07-16 (m, 2H, NH, CHCON), 7.09 (t, J = 8.6Hz, 2H, H-Ar), 7.51-7.60 (m, 5H, H-Ar,=CH), 7.64-7.70 (m, 1H, H-Ar), ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) = 24.2, 24.9, 31.9,47,8, 114.8, 115.1, 116.2, 126.5, 129.4, 130.9, 132.3,

132.7, 139.0, 160.3, 163.6, 167.1; Mass: HR-MS (ESI-POS) = Calc. for C₂₅H₂₄FN₃NaO₃ [M+Na]⁺ 456.14689, Found 456.14915.

N-cyclohexyl-2-(6-oxo-4H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl)-2-phenylacetamide (9b):

Colourless powder, isolated yield 68%; m.p.: 190-192 °C; IR (KBr, cm⁻¹): v = 1641, 2931, 3272; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.14-1.21(m, 3H, H-cyclohexyl), 1.30-1.42 (m, 2H, H-cyclohexyl), 1.60-1.73 (m, 3H, H-cyclohexyl), 1.94-1.98 (m, 2H, H-cyclohexyl), 3.81-3.93 (m, 2H, CH-

cyclohexyl, CH₂N), 4.02-4.1 (m, 1H, CH₂), 6.04-6.16 (m, 2H, NH, CHCON), 7.37-7.43 (m, 4H, =CH, H-Ar), 7.51-7.56 (m, 3H, H-Ar), 7.61-7.68 (m, 2H, H-Ar), 7.74 (d, J = 7.6Hz, 1H, H-Ar); ¹³C NMR (75MHz, CDCl₃): δ (ppm) = 24.8, 24.9, 5.4, 32.7, 48.9, 62.0, 72.7, 107.5, 110.5, 116.8, 127.3, 129.0, 129.7, 130.0, 132.8, 133.2, 133.9, 139.3, 167.5, 168.8; Mass: HR-MS (ESI-POS) = Calc. for C₂₅H₂₅N₃NaO₃ [M+Na]⁺ 438.15849, Found 438.15841.

N-cyclohexyl-2-(6-oxo-4H benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl)-2-(p-tolyl)acetamide (9c):

Colourless powder isolated yield 76%; m.p.: 205-207 °C; IR (KBr, cm⁻¹): v = 1640, 2933, 3308; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 1.06-1.11 (m, 3H, H-cyclohexyl), 1.34-1.42 (m, 2H, H-cyclohexyl), 1.57-1.69 (m, 3H, H-cyclohexyl), 1.81-1.95 (m, 2H, H-cyclohexyl), 2.38 (s, 3H, CH₃), 3.80-3.83

(m, 1H, CH-cyclohexyl), 4.31 (brs, 2H, CH₂N), 6.02 (*d*, J = 7.4Hz, 1H, NH), 6.44 (s, 1H, CHCON), 7.16 (*d*, J = 7.7Hz, 2H, H-Ar), 7.22 (*d*, J = 7.8Hz, 2H, H-Ar), 7.57-7.60 (m, 3H, =CH, H-Ar), 7.85-7.88 (m, 1H, H-Ar), 8.05-8.08 (m, 1H, H-Ar); ¹³C NMR (75MHz, CDCl₃): δ (ppm) = 21.1, 24.7, 25.4, 32.6, 32.6, 32.8, 36.7, 48.6, 60.4, 117.7, 125.3, 127.3, 129.0, 129.4, 130.3, 131.5, 132.2, 132.6, 134.6, 138.6, 153.0, 161.1, 168.2, 169.0; Mass: HR-MS (ESI-POS) = Calc. for C₂₆H₂₈N₃O₃ [M+H]⁺ 430.21260, Found 430.21252. Calc. C₂₆H₂₇N₃NaO₃ [M+Na] ⁺ 452.19453, Found 452.19446.

N-cyclohexyl-2-(4-methoxyphenyl)-2-(6-oxo-4H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)yl)acetamide (9d):

Colourless powder, isolated yield 70% m.p.: 196-199 °C; IR (KBr, cm⁻¹): v = 1636, 2931, 3274 ¹H NMR (300MHz, CDCl₃): δ (ppm) = 1.05-1.12 (m, 3H, H-cyclohexyl), 1.30-1.36 (m, 2H, H-cyclohexyl), 1.56-1.68 (m, 3H, H-cyclohexyl), 1.83-1.93 (m, 2H, H-cyclohexyl), 3.79-3.85 (m, 1H, CH-

cyclohexyl), 3.83 (s, 3H, OCH₃), 4.25-4.35 (m, 2H, CH₂N), 6.08 (d, J = 7.9Hz, 1H, NH), 6.42 (s, 1H, CHCON), 6.87 (d, J = 8.7Hz, 2H, H-Ar), 7.25 (d, J = 5.0Hz, 2H, H-Ar), 7.55-7.65 (m, 3H, =CH, H-Ar), 7.83-7.87 (m, 1H, H-Ar), 8.03-8.07 (m, 1H, H-Ar); ¹³C NMR (75MHz, CDCl₃): δ (ppm) = 24.7, 25.4, 32.6, 32.8, 36.5, 48.5, 55.4, 60.1, 114.0, 117.8, 125.3, 127.1, 127.3, 130.3,

130.4, 131.6, 132.6, 134.6, 152.9, 159.7, 161.1, 168.3, 168.9; Mass: HR-MS (ESI-POS) = Calc. for $C_{26}H_{28}N_3O_4$ [M+H]⁺ 446.20751, Found 446.20743. Calc. $C_{26}H_{27}N_3NaO_4$ 468.18944, Found 468.18938.

N-cyclohexyl-2-(3-nitrophenyl)-2-(6-oxo-4Hbenzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl)acetamide (9e):

Colourless powder, Isolated yield 67%; m.p.: 194-196 °C; IR (KBr, cm⁻¹): $v = 1638, 2933, 3264; {}^{1}H$ NMR (300 MHz, CDCl₃): δ (ppm) = 0.93-1.13 (m, 3H, H-cyclohexyl), 1.09-1.40 (m, 2H, H-cyclohexyl), 1.55-1.67 (m, 4H, H-cyclohexyl), 1.9-1.93 (m, 1H, H-cyclohexyl), 3.72-3.78 (m, 1H, CH-

cyclohexyl), 4.28 (d, J = 15.1Hz, 1H, CH₂N), 4.48 (d, J = 15.4Hz, 1H, CH₂N), 6.51 (d, J = 7.7Hz, 1H, NH), 6.60 (s, 1H, CHCON), 7.49-7.58 (m, 1H, H-Ar), 7.60-7.63 (m, 3H, =CH, H-Ar), 7.88-7.91 (m, 1H, H-Ar), 8.03-8.06 (m, 2H, H-Ar), 8.21 (d, J = 8.1Hz, 1H, H-Ar), 8.26 (s, 1H, H-Ar); ¹³C NMR (75 Mz, CDCl₃): δ (ppm) = 24.6, 25.3, 32.3, 32.7, 36.8, 48.7, 59.2, 117.1, 123.2, 123.4, 125.3, 127.6, 129.8, 130.5, 132.1, 132.5, 133.9, 134.6, 137.5, 148.4, 153.8, 160.9, 166.6, 169.6; Mass: HR-MS (ESI-POS) = Calc. for C₂₅H₂₅N₄O₅ [M+1]⁺ 461.1833, Found 461.1819. Calc. C₂₅H₂₄N₄NaO₅ [M+Na]⁺ 483.1651, Found 483.1639.

2-(4-bromophenyl)-N-cyclohexyl-2-(6-oxo-4H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (9f):

Colourless powder, isolated yield 90%; m.p.: 213-216 °C; IR (KBr, cm⁻¹): $\upsilon = 1648, 2931, 3270; {}^{1}H$ NMR (300 MHz, CDCl₃): δ (ppm) = 0.98-1.11 (m, 3H, H-cyclohexyl), 1.28-1.1.36 (m, 2H, H-cyclohexyl), 1.55-1.67 (m, 3H, H-cyclohexyl), 1.73-1.78 (m, 1H, H-cyclohexyl), 1.87-1.90 (m, 1H, H-cyclohexyl),

3.72-3.82 (m, 1H, CH-cyclohexyl), 4.33 (brs, 2H, CH₂N), 6.28 (*d*, *J* = 7.9Hz, 1H, NH), 6.46 (s, 1H, CHCON), 7.21 (*d*, *J* = 8.4, 2H, H-Ar), 7.48 (*d*, *J* = 8.4, 2H, H-Ar), 7.54-7.63 (m, 2H, H-Ar), 7.8 (brs, 1H, =CH), 7.86-7.89 (m, 1H, H-Ar), 8.01-8.04 (m, 1H, H-Ar); ¹³C NMR (75Mz, CDCl₃): δ (ppm) = 24.7, 25.3, 32.5, 32.8, 36.7, 48.6, 59.7, 117.5, 122.7, 125.3, 127.4, 130.3, 130.5, 131.8, 131.9, 132.5, 134.3, 153.2, 161.0, 167.5, 169.2; Mass: HR-MS (ESI-POS) = Calc. for C₂₅H₂₅N₃O₃Br [M+H]⁺ 494.10749, Found 494.10738. Cal. C₂₅H₂₄N₃NaO₃Br [M+Na] ⁺ 516.08940, Found 516.08933.

2-(4-chlorophenyl)-N-cyclohexyl-2-(6-oxo-4H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (9g):

Colourless powder, isolated yield 92%; m.p.: 227-230 °C; IR (KBr, cm⁻¹): v = ¹H NMR (300MHz, CDCl₃): δ (ppm) = 0.98-1.1 (m, 3H, H-cyclohexyl), 1.27-1.35 (m, 2H, H-cyclohexyl), 1.54-1.66 (m, 3H, H-cyclohexyl), 1.73-1.80 (m, 1H, H-cyclohexyl), 1.86-1.90 (m, 1H, H-cyclohexyl), 3.72-3.82 (m, 1H, CH-

cyclohexyl), 4.33 (brs, 2H, CH₂N), 6.30-6.33 (d, J = 7.9Hz, 1H, NH), 6.49 (s, 1H, CHCON), 7.26 (d, J = 8.4Hz, 2H, H-Ar), 7.32 (d, J = 8.5Hz, 2H, H-Ar), 7.56-7.63 (m, 2H, H-Ar), 7.75-7.89 (m, 2H, =CH, H-Ar), 7.99-8.03 (m, 1H, H-Ar); ¹³C NMR (75MHz, CDCl₃): δ (ppm) = 24.7, 25.3, 32.5, 32.8, 36.7, 48.6, 59.6, 117.5, 125.3, 127.4, 128.9, 130.3, 131.8, 132.5, 133.8, 134.3, 134.6, 153.2, 161.0, 167.6, 169.2; Mass: HR-MS (ESI-POS) = Calc. for C₂₅H₂₅N₃O₃Cl [M+H]⁺ 450.15799, Found 450.15790. Calc. C₂₅H₂₄N₃NaO₃Cl [M+Na] ⁺ 472.13991, Found 472.13984.

N-(tert-butyl)-2-(4-isopropylphenyl)-2-(6-oxo-4H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (9h):

Colourless powder, isolated yield 64%; m.p.: 227-230 °C; IR (KBr, cm⁻¹): $\upsilon =$ 1611, 1688, 2959, 3298; ¹H NMR (300MHz, CDCl₃): δ (ppm) = 1.14 (d, J = 6.7Hz, 1H, CH₃-iso), 1.27 (d, J = 6.7Hz, 5H, CH₃-iso), 1.35 (s, 9H, t-Bu), 2.93 (sep, J = 6.7Hz, 1H, CH-iso), 4.12-4.52 (m, 2H, CH₂N), 5.77 (s, 1H, NH), 6.37 (s,

 κ_{0} (m, 112, 111, C11 iso), 4.12 4.52 (m, 211, C1124), 5.77 (s, 111, 111), 0.57 (s, 111, CHCO), 7.13-7.32 (m, 4H, H-Ar), 7.39-7.45 (m, 1H, H-Ar), 7.52-7.59 (m, 2H, H-Ar), 7.81-7.86 (m, 1H, H-Ar), 8.06-8.10 (m, 1H, H-Ar); ¹³C NMR (75MHz, CDCl₃): δ (ppm) = 24.0, 28.6, 33.9, 36.7, 51.9, 60.6, 117.8, 125.2, 126.8, 127.3, 129.1, 130.3, 131.5, 132.6, 132.8, 134.7, 149.7, 161.0, 168.2, 168.6, 168.9; Mass: HR-MS (ESI-POS) = Calc. for C₂₆H₂₉N₃NaO₃ [M+Na]⁺ 454.2101, Found 454.2101. Calc. for C₂₆H₂₉KN₃O₃ [M+K]⁺470.1844, Found 4701840.

2-([1,1'-biphenyl]-4-yl)-N-cyclohexyl-2-(6-oxo-4H-benzo[c]isoxazolo[3,4-e] azepin-5(6H)-yl) acetamide (9i):

Colourless powder, isolated yield 80%; m.p.: 229-233 °C; IR (KBr, cm⁻¹): $v = 1638, 2926, 3282; {}^{1}H NMR (300MHz, CDCl_3): \delta(ppm) = 1.08-1.15 (m, 3H, H-cyclohexyl), 1.26-1.38 (m, 2H, H-cyclohexyl), 1.58-1.69 (m, 3H, H-cyclohexyl), 1.82-1.99 (m, 2H, H-cyclohexyl), 3.82-3.85 (m, 1H, CH-cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 ($ *d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (*d*,*J*= 7.3Hz, 1H, NH), 6.55 (s, 1H, cyclohexyl), 4.37 (brs, 2H, CH₂N), 6.17 (brs, 2H, CH₂N), 6.

CHCON), 7.38-7.41 (m, 3H, H-Ar), 7.44-7.49 (m, 2H, H-Ar), (brs, 7H, H-Ar), 7.86-7.88 (m, 1H, H-Ar), 8.06-8.08 (m, 1H, H-Ar); ¹³C NMR (75MHz, CDCl₃): δ (ppm) = 24.7, 25.4, 32.6, 32.8, 32.8, 48.6, 60.3, 117.7, 125.3, 127.0, 127.3, 127.8, 128.9, 129.4, 130.3, 131.6, 132.6, 134.2, 134.5, 140.0, 141.5, 161.0, 168.0, 169.1; Mass: HR-MS (ESI-POS) = Calc. for C₃₁H₂₉N₃NaO₃ [M+Na]⁺ 514.2123, Found 514.2101. Calc. for C₃₁H₂₉KN₃O₃ [M+K]⁺ 530.1868, Found 530.1840.

Copies of Spectra

IR (KBr) (6a)

¹³CNMR (75MHz, CDCl₃) (6a)

IR (KBr) (6b)

¹HNMR (300MHz, CDCl₃) (6b)

¹³CNMR (75MHz, CDCl₃) (6b)

ESI-HRMS (6b)

IR (KBr) (6c)

¹HNMR (300MHz, CDCl₃) (6c)

¹³CNMR (75MHz, CDCl₃) (6c)

ESI-HRMS (6c)

IR (**KBr**) (6d)

¹HNMR (300MHz, CDCl₃) (6d)

¹³CNMR (75MHz, CDCl₃) (6d)

ESI-HRMS (6d)

IR (KBr) (6e)

¹HNMR (300MHz, CDCl₃) (6e)

M.S.t4

¹³CNMR (75MHz, CDCl₃) (6e)

IR (**KBr**) (6f)

ESI-HRMS (6f)

IR (**KBr**) (6g)

¹HNMR (300MHz, CDCl₃) (6g)

IR (KBr) (6h)

¹³CNMR (75MHz, CDCl₃) (6h)

IR (KBr) (6i)

¹HNMR (300MHz, CDCl₃) (6i)

¹³CNMR (75MHz, CDCl₃) (6i)

ESI-HRMS (6i)

¹HNMR (300MHz, CDCl₃) (6j)

¹³CNMR (75MHz, CDCl₃) (6j)

IR (KBr) (6k)

¹HNMR (300MHz, CDCl₃) (6k)

ESI-HRMS (6k)

IR (**KBr**) (9a)

¹HNMR (300MHz, CDCl₃) (9a)

ESI-HRMS (9a)

IR (KBr) (9b)

¹³CNMR (75MHz, CDCl₃) (9b)

ESI-HRMS (9b)

IR (KBr) (9c)

¹HNMR (300MHz, CDCl₃) (9c)

¹³CNMR (75MHz, CDCl₃) (9c)

ESI-HRMS (9c)

IR (**KBr**) (9d)

¹HNMR (300MHz, CDCl₃) (9d)

¹³CNMR (75MHz, CDCl₃) (9d)

ESI-HRMS (9d)

IR (KBr) (9e)

¹HNMR (300MHz, CDCl₃) (9e)

¹³CNMR (75MHz, CDCl₃) (9e)

ESI-HRMS (9e)

IR (KBr) (9f)

¹HNMR (300MHz, CDCl₃) (9f)

¹³CNMR (75MHz, CDCl₃) (9f)

ESI-HRMS (9f)

IR (**KBr**) (9g)

¹HNMR (300MHz, CDCl₃) (9g)

¹³CNMR (75MHz, CDCl₃) (9g)

IR (KBr) (9h)

¹HNMR (300MHz, CDCl₃) (9h)

Crystallographic data for compound 9e

Strukturkennzeichen	sba138	
Summenformel	$C_{25}H_{24}N_4O_5$	
Molmasse	460.48	
Temperatur	200(2) K	
Wellenlänge	0.71073 A	
Kristallsystem	monoklin	
Raumgruppe	P21/c	
Z	4	
Gitterkonstanten	a = 15.0879(14) Å	α = 90 °
	b = 17.9838(17) Å	$\beta = 103.191(3)$ °
	c = 8.8566(9) Å	$\gamma = 90^{\circ}$
Zellvolumen	2339.7(4) Å ³ ´	
Dichte (berechnet)	1.307 g/cm ³	
Absorptionskoeffizient µ	0.093 mm ⁻¹	
Kristallform	needle	
Kristallgröße	0.610 x 0.060 x 0.03	0 mm ³
Kristallfarbe	colourless	
Gemessener Theta-Bereich	1.386 bis 25.060 °	
Indexgrenzen	-17≤h≤16, -21≤k≤21,	, -10≤l≤10
Gemessene Reflexe	14592	
Unabhängige Reflexe	4147 (R(int) = 0.0400	6)
Beobachtete Reflexe	2754 (I > $2\sigma(I)$)	
Absorptionskorrektur	Semi-empirical from	equivalents
Max/min Transmission	0.96 and 0.85	•
Strukturverfeinerung	Full-matrix least-squ	ares an F ²
Daten/Restraints/Parameter	4147 / 316 / 335	
Goodness-of-fit an F ²	1.09	
R-Werte (I>2sigma(I))	R1 = 0.055, wR2 = 0	0.146
Extinktionskoeffizient	n/a	
Max/min Restelektronendichte	0.18 und -0.21 eÅ ⁻³	

Tabelle 1: Kristalldaten und Strukturverfeinerung für sba138

Table 2:Crystal data and structure refinement for sba138.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	sba138 C ₂₅ H ₂₄ N ₄ O ₅ 460.48 200(2) K 0.71073 Å monoclinic P2 ₁ /c 4	
Unit cell dimensions	a = 15.0879(14) Å	α = 90 deg.
	b = 17.9838(17) _. A	$\beta = 103.191(3) \text{ deg.}$
	c = 8.8566(9) A	γ = 90 deg.
Volume	2339.7(4) A ³	
Density (calculated)	1.31 g/cm ³	
Absorption coefficient	0.09 mm ⁻¹	
Crystal shape	needle	
Crystal size	0.610 x 0.060 x 0.030) mm ³
Crystal colour	colourless	
Theta range for data collection	1.4 to 25.1 deg.	
Index ranges	-17≤h≤16, -21≤k≤21,	-10≤l≤10
Reflections collected	14592	
Independent reflections	4147 (R(int) = 0.0406	5)
Observed reflections	2754 (I > 2σ(I))	

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.96 and 0.85
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	4147 / 316 / 335
Goodness-of-fit on F ²	1.09
Final R indices (I>2sigma(I))	R1 = 0.055, wR2 = 0.146
Largest diff. peak and hole	0.18 and -0.21 $e^{A^{-3}}$

Tabelle 3: Atomkoordinaten und äquivalente isotrope
Auslenkungsparameter (Å²) für sba138. U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.
(Atomic coordinates and equivalent isotropic displacement parameters (Å²) for sba138. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.)

Atom	x	у	Z	U _{eq}
C1	0.4403(2)	0.7390(2)	0.6218(3)	0.0388(6)
O1	0.4271(1)	0.7981(1)	0.6829(2)	0.0517(5)
N2	0.3752(1)	0.6858(1)	0.5902(2)	0.0361(5)
C3	0.3857(2)	0.6176(1)	0.5042(3)	0.0385(6)
H3A	0.4054	0.6302	0.4081	0.046
H3B	0.3268	0.5909	0.4752	0.046
C4	0.4552(2)	0.5696(2)	0.6054(3)	0.0412(6)
C5	0.5473(2)	0.5933(2)	0.6499(3)	0.0439(7)
N6	0.5989(2)	0.5450(2)	0.7406(3)	0.0588(7)
C6	0.2912(2)	0.6973(1)	0.6447(3)	0.0337(6)
H6	0.3041	0.7357	0.7286	0.040
07	0.2152(2)	0.7270(1)	0.5140(3)	0.0333(6)
07	0.2087(1)	0.7054(1)	0.3797(2)	0.0440(5)
IN8	0.1592(1)	0.7748(1)	0.5574(2)	0.0369(5)
	0.1714	0.7885	0.6553	0.044
	0.4548(2)	0.5039(2)	0.6761(4)	0.0540(8)
	0.4023	0.4730	0.0090	0.000
09	0.5394(2)	0.4671(1) 0.7277(2)	0.7576(3)	0.0000(0)
C12	0.5304(2)	0.7277(2)	0.5775(3)	0.0420(0)
C12	0.3620(2)	0.0021(2)	0.5975(3)	0.0440(7)
U13 H13	0.0007(2)	0.0022(2)	0.5040(5)	0.0394(0)
C14	0.7043	0.0103	0.5001	0.071
H14	0.7605	0.7250(2)	0.3100(4)	0.0000(10)
C15	0.7000	0.7899(2)	0.4004	0.005
H15	0.6759	0.8334	0.4541	0.0007(0)
C16	0.5676(2)	0 7916(2)	0.5271(3)	0.0543(8)
H16	0.5344	0.8369	0.5171	0.065
C21	0.2619(2)	0.6264(1)	0.7136(3)	0.0356(6)
C22	0.1998(2)	0.5775(2)	0.6276(3)	0.0486(7)
H22	0.1716	0.5881	0.5225	0.058
C24	0.2173(3)	0.4961(2)	0.8500(4)	0.0687(9)
H24	0.2017	0.4516	0.8955	0.082
C25	0.2778(2)	0.5450(2)	0.9340(4)	0.0631(9)
H25	0.3045	0.5347	1.0398	0.076
C26	0.3007(2)	0.6092(2)	0.8677(3)	0.0470(7)
H26	0.3436	0.6423	0.9280	0.056
C23	0.1795(2)	0.5128(2)	0.6974(4)	0.0655(9)
N27	0.1136(11)	0.4632(8)	0.5941(17)	0.151(9)
O28	0.1072(15)	0.3992(8)	0.652(3)	0.137(7)
O29	0.0674(16)	0.4854(12)	0.4644(11)	0.103(5)
N27B	0.1200(8)	0.4570(6)	0.6099(11)	0.109(5)
O28B	0.0730(18)	0.4186(12)	0.6827(17)	0.149(7)
O29B	0.1164(18)	0.4563(10)	0.4666(10)	0.104(5)
C31	0.0783(2)	0.8065(1)	0.4536(3)	0.0372(6)

H31	0.0944	0.8215	0.3545	0.045
C32	0.0017(2)	0.7506(2)	0.4172(3)	0.0465(7)
H32A	-0.0101	0.7312	0.5153	0.056
H32B	0.0203	0.7082	0.3600	0.056
C33	-0.0853(2)	0.7844(2)	0.3206(4)	0.0575(8)
H33A	-0.0756	0.7987	0.2177	0.069
H33B	-0.1346	0.7469	0.3046	0.069
C34	-0.1135(2)	0.8520(2)	0.3997(4)	0.0542(8)
H34A	-0.1682	0.8745	0.3320	0.065
H34B	-0.1293	0.8367	0.4977	0.065
C35	-0.0379(2)	0.9089(2)	0.4342(4)	0.0579(8)
H35A	-0.0567	0.9511	0.4913	0.069
H35B	-0.0268	0.9282	0.3354	0.069
C36	0.0497(2)	0.8755(2)	0.5301(4)	0.0476(7)
H36A	0.0407	0.8622	0.6341	0.057
H36B	0.0988	0.9130	0.5438	0.057

Tabelle 4: H-Atomkoordinaten und isotrope Auslenkungsparameter (Å²) für sba138. (Hydrogen coordinates and isotropic displacement parameters

(Hydrogen coordinates and	a isotropic	displacement	paramei
(′Ų) for sba138)			
1				

\tom	x	у	Z	U _{eq}
-13A	0.4054	0.6302	0.4081	0.046
H3B	0.3268	0.5909	0.4752	0.046
-16	0.3041	0.7357	0.7286	0.040
-18	0.1714	0.7885	0.6553	0.044
-18A	0.4025	0.4736	0.6698	0.065
113	0.7045	0.6183	0.5801	0.071
-114	0.7605	0.7250	0.4864	0.083
H15	0.6759	0.8334	0.4541	0.079
116	0.5344	0.8369	0.5171	0.065
122	0.1716	0.5881	0.5225	0.058
124	0.2017	0.4516	0.8955	0.082
125	0.3045	0.5347	1.0398	0.076
126	0.3436	0.6423	0.9280	0.056
1 31	0.0944	0.8215	0.3545	0.045
132A	-0.0101	0.7312	0.5153	0.056
132B	0.0203	0.7082	0.3600	0.056
133A	-0.0756	0.7987	0.2177	0.069
133B	-0.1346	0.7469	0.3046	0.069
134A	-0.1682	0.8745	0.3320	0.065
-134B	-0.1293	0.8367	0.4977	0.065
135A	-0.0567	0.9511	0.4913	0.069
135B	-0.0268	0.9282	0.3354	0.069
136A	0.0407	0.8622	0.6341	0.057
136B	0 0988	0 9130	0 5438	0.057

Tabelle 5: Anisotrope Auslenkungsparameter (Å²) für sba138. Der Exponent für den anisotropen Auslenkungsparameter hat die Form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂) (Anisotropic displacement parameters (Å²) for sba138. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂))

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0370(14)	0.0413(15)	0.0354(14)	0.0042(12)	0.0028(11)	-0.0015(12)

O1	0.0565(12)	0.0379(11)	0.0598(13)	-0.0057(10)	0.0116(10)	-0.0030(9)
N2	0.0326(11)	0.0379(12)	0.0375(12)	-0.0048(9)	0.0074(9)	-0.0002(9)
C3	0.0377(14)	0.0405(15)	0.0377(14)	-0.0055(11)	0.0093(11)	0.0023(11)
C4	0.0467(15)	0.0411(15)	0.0374(14)	-0.0041(12)	0.0131(12)	0.0067(12)
C5	0.0422(15)	0.0501(16)	0.0381(15)	-0.0010(12)	0.0066(12)	0.0108(12)
N6	0.0592(15)	0.0543(15)	0.0579(16)	0.0043(13)	0.0030(13)	0.0134(13)
C6	0.0348(13)	0.0360(14)	0.0287(12)	-0.0022(10)	0.0038(10)	0.0038(11)
C7	0.0359(13)	0.0339(13)	0.0304(13)	0.0048(11)	0.0083(10)	0.0001(11)
07	0.0479(11)	0.0578(12)	0.0263(9)	0.0029(8)	0.0083(8)	0.0086(9)
N8	0.0385(11)	0.0401(12)	0.0300(11)	-0.0001(9)	0.0039(9)	0.0060(10)
C8	0.0617(19)	0.0471(17)	0.0529(18)	-0.0041(14)	0.0124(15)	0.0078(14)
O9	0.0805(16)	0.0502(13)	0.0630(14)	0.0098(11)	0.0082(12)	0.0166(12)
C11	0.0357(14)	0.0519(16)	0.0346(14)	0.0025(12)	0.0001(11)	-0.0049(12)
C12	0.0373(14)	0.0600(18)	0.0339(14)	-0.0006(12)	0.0027(11)	-0.0004(13)
C13	0.0371(16)	0.090(2)	0.0487(18)	-0.0010(17)	0.0051(13)	0.0031(16)
C14	0.0416(18)	0.107(3)	0.057(2)	0.0009(19)	0.0101(15)	-0.0170(18)
C15	0.0480(18)	0.089(3)	0.055(2)	0.0145(18)	0.0019(15)	-0.0224(17)
C16	0.0454(16)	0.064(2)	0.0491(17)	0.0091(15)	0.0013(13)	-0.0149(14)
C21	0.0380(14)	0.0367(14)	0.0316(13)	0.0037(10)	0.0071(11)	0.0076(11)
C22	0.0590(18)	0.0490(17)	0.0382(15)	0.0020(12)	0.0118(13)	-0.0108(14)
C24	0.090(3)	0.054(2)	0.071(2)	0.0246(17)	0.0341(19)	0.0072(18)
C25	0.065(2)	0.074(2)	0.0507(18)	0.0279(16)	0.0147(15)	0.0179(17)
C26	0.0443(16)	0.0597(18)	0.0350(14)	0.0073(13)	0.0052(12)	0.0091(13)
C23	0.084(2)	0.0489(18)	0.067(2)	0.0003(15)	0.0243(17)	-0.0201(17)
N27	0.209(15)	0.092(8)	0.127(8)	0.015(6)	-0.015(9)	-0.095(9)
O28	0.164(12)	0.080(6)	0.165(12)	0.016(7)	0.031(8)	-0.065(7)
O29	0.114(9)	0.092(8)	0.099(5)	-0.021(4)	0.018(5)	-0.048(7)
N27B	0.165(10)	0.083(7)	0.086(5)	-0.011(4)	0.040(5)	-0.074(7)
O28B	0.228(15)	0.113(10)	0.123(6)	-0.016(6)	0.073(7)	-0.116(11)
O29B	0.137(12)	0.090(7)	0.082(4)	-0.030(4)	0.022(5)	-0.049(8)
C31	0.0348(13)	0.0450(15)	0.0318(13)	0.0071(11)	0.0075(10)	0.0039(11)
C32	0.0411(15)	0.0494(17)	0.0500(17)	-0.0102(13)	0.0127(12)	-0.0032(13)
C33	0.0385(16)	0.077(2)	0.0554(18)	-0.0172(16)	0.0067(13)	0.0025(15)
C34	0.0374(15)	0.068(2)	0.0561(18)	-0.0038(15)	0.0080(13)	0.0066(14)
C35	0.0467(17)	0.0494(18)	0.076(2)	0.0132(16)	0.0101(15)	0.0113(14)
C36	0.0413(15)	0.0373(15)	0.0617(18)	0.0021(13)	0.0064(13)	0.0020(12)
	. ,	. ,	. ,	. ,	. ,	. ,

Tabelle 6: Bindungslängen (Å) und -winkel (°) für sba138. (Bond lengths (Å) and angles (deg) for sba138.)

C1-O1	1.229(3)	C11-C16	1.396(4)
C1-N2	1.354(3)	C11-C12	1.403(4)
C1-C11	1.512(4)	C12-C13	1.403(4)
N2-C6	1.469(3)	C13-C14	1.380(5)
N2-C3	1.472(3)	C13-H13	0.9500
C3-C4	1.489(4)	C14-C15	1.366(5)
C3-H3A	0.9900	C14-H14	0.9500
C3-H3B	0.9900	C15-C16	1.385(5)
C4-C8	1.338(4)	C15-H15	0.9500
C4-C5	1.421(4)	C16-H16	0.9500
C5-N6	1.312(4)	C21-C22	1.380(4)
C5-C12	1.459(4)	C21-C26	1.391(3)
N6-O9	1.406(3)	C22-C23	1.386(4)
C6-C21	1.523(3)	C22-H22	0.9500
C6-C7	1.528(3)	C24-C25	1.360(5)
C6-H6	1.0000	C24-C23	1.375(5)
C7-O7	1.234(3)	C24-H24	0.9500
C7-N8	1.322(3)	C25-C26	1.374(4)
N8-C31	1.466(3)	C25-H25	0.9500
N8-H8	0.8800	C26-H26	0.9500
C8-O9	1.351(4)	C23-N27B	1.447(9)
C8-H8A	0.9500	C23-N27	1.484(12)

N27-029	1 264(11)	C15 - C14 - C13	120 3(3)
1127 020	1.204(11)		120.0(0)
N27-028	1.273(12)	C15-C14-H14	119.8
N27B-029B	1,258(10)	C13-C14-H14	119.8
	4.007(40)		400.0(0)
N27 D-020D	1.207(10)	014-015-016	120.2(3)
C31-C32	1.509(4)	C14-C15-H15	119.9
C31-C36	1 523(1)	C16-C15-H15	110.0
001-000	1.020(4)		113.3
C31-H31	1.0000	C15-C16-C11	120.9(3)
C32-C33	1 520(4)	C15-C16-H16	119.6
	0,0000		110.0
C32-H32A	0.9900	C11-C16-H16	119.6
C32-H32B	0.9900	C22-C21-C26	118.7(3)
033-034	1 513(4)	C22-C21-C6	122 3(2)
	0,0000	022 021 00	122.0(2)
C33-H33A	0.9900	026-021-06	118.9(2)
C33-H33B	0.9900	C21-C22-C23	118.7(3)
C34 - C35	1.510(A)	C21_C22_H22	120 6
	1.010(4)		120.0
C34-H34A	0.9900	C23-C22-H22	120.6
C34-H34B	0.9900	C25-C24-C23	118.2(3)
C25 C26	1 500(4)		120.0
035-036	1.522(4)	025-024-1124	120.9
C35-H35A	0.9900	C23-C24-H24	120.9
C35-H35B	0 9900	C24-C25-C26	120 8(3)
	0.0000		120.0(0)
C30-H30A	0.9900	C24-C25-H25	119.6
C36-H36B	0.9900	C26-C25-H25	119.6
01-C1-N2	121 3(2)	C25-C26-C21	121 0(3)
			121.0(0)
01-C1-C11	118.5(2)	C25-C26-H26	119.5
N2-C1-C11	120.3(2)	C21-C26-H26	119.5
C1-N12-C6	118 2(2)	$C_{24}C_{23}C_{22}$	122 5(3)
	110.2(2)	024-023-022	122.3(3)
C1-N2-C3	122.5(2)	C24-C23-N27B	116.3(5)
C6-N2-C3	119.3(2)	C22-C23-N27B	121 1(5)
	100(2)	C24 C22 N27	100 0(7)
NZ-03-04	106.4(2)	C24-C23-N27	123.0(7)
N2-C3-H3A	110.0	C22-C23-N27	114.5(7)
C4-C3-H3A	110.0	029-N27-028	124 9(13)
	110.0	020 1127 020	121.0(10)
NZ-C3-H3D	110.0	029-1127-023	121.0(10)
C4-C3-H3B	110.0	O28-N27-C23	113.4(11)
H3A-C3-H3B	108.4	029B-N27B-028B	127 4(11)
	100.4		127.4(11)
68-64-65	104.1(3)	029B-N27B-C23	115.3(8)
C8-C4-C3	135.7(3)	O28B-N27B-C23	117.1(9)
C5 - C4 - C3	120 2(2)	N8-C31-C32	111 3(2)
00 04 00		No 001 002	111.5(2)
N6-C5-C4	112.2(3)	N8-C31-C36	108.5(2)
N6-C5-C12	123.4(3)	C32-C31-C36	110.9(2)
$C_{1}C_{5}C_{12}$	124 1(2)	N8-C31-H31	108 7
04-03-012	124.4(2)		100.7
C5-N6-O9	104.6(2)	C32-C31-H31	108.7
N2-C6-C21	111.46(19)	C36-C31-H31	108.7
N2-C6-C7	110.77(10)	C31_C32_C33	112 0(2)
		031-032-033	112.0(2)
C21-C6-C7	111.1(2)	C31-C32-H32A	109.2
N2-C6-H6	107.8	C33-C32-H32A	109.2
	107.9	C21 C22 U22B	100.2
021-00-110	107.0	C31-C32-H32B	109.2
C7-C6-H6	107.8	C33-C32-H32B	109.2
07-C7-N8	124.7(2)	H32A-C32-H32B	107.9
07 07 06	120.0(2)	C34 C33 C33	111 0(2)
07-07-00	120.0(2)	034-033-032	111.0(2)
N8-C7-C6	115.2(2)	C34-C33-H33A	109.4
C7-N8-C31	124 5(2)	C32-C33-H33A	109 4
	1177		100.1
	117.7	C34-C33-H33D	109.4
C31-N8-H8	117.7	C32-C33-H33B	109.4
C4-C8-O9	110 1(3)	H33A-C33-H33B	108.0
	101.0		144.0(0)
C4-C8-H8A	124.9	035-034-033	111.0(2)
O9-C8-H8A	124.9	C35-C34-H34A	109.4
C8-09-N6	109 0(2)	C33-C34-H34A	109.4
			100.4
010-011-012	110.7(3)	C32-C34-H34B	109.4
C16-C11-C1	115.0(3)	C33-C34-H34B	109.4
C12-C11-C1	125 9(2)	H34A-C34-H34B	108.0
			111 1/0
013-012-011	110 2/2)		111.4(2)
C13-C12-C5	119.3(3)	034-033-030	· · ·
	119.3(3) 119.1(3)	C34-C35-H35A	109.3
C11-C12-C5	119.3(3) 119.1(3) 121.6(2)	C34-C35-C35 C34-C35-H35A C36-C35-H35A	109.3
C11-C12-C5	119.3(3) 119.1(3) 121.6(2)	C34-C35-H35A C36-C35-H35A	109.3 109.3
C11-C12-C5 C14-C13-C12	119.3(3) 119.1(3) 121.6(2) 120.5(3)	C34-C35-C36 C34-C35-H35A C36-C35-H35A C34-C35-H35B	109.3 109.3 109.3
C11-C12-C5 C14-C13-C12 C14-C13-H13	119.3(3) 119.1(3) 121.6(2) 120.5(3) 119.8	C34-C35-C36 C34-C35-H35A C36-C35-H35A C34-C35-H35B C36-C35-H35B	109.3 109.3 109.3 109.3
C11-C12-C5 C14-C13-C12 C14-C13-H13 C12-C13-H13	119.3(3) 119.1(3) 121.6(2) 120.5(3) 119.8 119.8	C34-C35-C30 C34-C35-H35A C36-C35-H35A C34-C35-H35B C36-C35-H35B H35A-C35-H35B	109.3 109.3 109.3 109.3 109.3

C35-C36-C31	111.8(2)
C35-C36-H36A	109.3
C31-C36-H36A	109.3
C35-C36-H36B	109.3
C31-C36-H36B	109.3
H36A-C36-H36B	107.9

Vorschlag für eine stichwortartige Experimentbeschreibung (suggestion for a short experimental part):

sba138: colourless crystal (needle), dimensions 0.610 x 0.060 x 0.030 mm³, crystal system monoclinic, space group P2₁/c, Z=4, a=15.0879(14) Å, b=17.9838(17) Å, c=8.8566(9) Å, alpha=90 deg, beta=103.191(3) deg, gamma=90 deg, V=2339.7(4) Å³, rho=1.307 g/cm³, T=200(2) K, Theta_{max}= 25.060 deg, radiation Mo Kalpha, lambda=0.71073 Å, 0.5 deg omega-scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 3.47and a completeness of 99.9% to a resolution of 0.84 Å, 14592 reflections measured, 4147 unique (R(int)=0.0406), 2754 observed (I > 2σ (I)), intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using SADABS¹ based on the Laue symmetry of the reciprocal space, mu=0.09mm⁻¹, T_{min}=0.85, T_{max}=0.96, structure refined against F² with a Full-matrix least-squares algorithm using the SHELXL-2014/7 (Sheldrick, 2014) software ², 335 parameters refined, hydrogen atoms were treated using appropriate riding models, goodness of fit 1.09 for observed reflections, final residual values R1(F)=0.055, wR(F²)=0.146 for observed reflections, residual electron density -0.21 to 0.18 eÅ⁻³. CCDC contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Lit. 1: (program SADABS 2014/5 for absorption correction) G. M. Sheldrick, Bruker Analytical X-ray-Division, Madison, Wisconsin 2014

Lit. 2: (program SHELXL-2014/7 (Sheldrick, 2014) for structure refinement) Acta Cryst. (2015). C71, 3-8

Lit. APEX, APEX2, SMART, SAINT, SAINT-Plus: Bruker (2007). "Program name(s)". Bruker AXS Inc., Madison, Wisconsin, USA.

Crystallographic data for compound 9e

Strukturkennzeichen	sba139	
Summenformel	$C_{25}H_{24}N_4O_5$	
Molmasse	460.48	
Temperatur	100(2) K	
Wellenlänge	1.54178 A	
Kristallsystem	triklin	
Raumgruppe	ΡĪ	
Z	2	
Gitterkonstanten	a = 8.6689(3) Å	$\alpha = 77.844(3)^{\circ}$
	b = 10.6916(4) Å	$\beta = 81.090(3)^{\circ}$
	c = 13.0284(4) Å	$\gamma = 71.413(3)^{\circ}$
Zellvolumen	1113.85(7) Å ^{3´}	,
Dichte (berechnet)	1.373 g/cm ³	
Absorptionskoeffizient µ	0.804 mm ⁻¹	
Kristallform	polyhedron	
Kristallgröße	0.070 x 0.070 x 0.06	60 mm ³
Kristallfarbe	colourless	
Gemessener Theta-Bereich	3.486 bis 72.124 °	
Indexgrenzen	-8≤h≤10, -13≤k≤13,	-13≤l≤16
Gemessene Reflexe	13869	
Unabhängige Reflexe	4256 (R(int) = 0.037	6)
Beobachtete Reflexe	2864 (I > 2σ(I))	
Absorptionskorrektur	Semi-empirical from	equivalents
Max/min Transmission	1.39 and 0.70	
Strukturverfeinerung	Full-matrix least-squ	ares an F ²
Daten/Restraints/Parameter	4256 / 0 / 307	
Goodness-of-fit an F ²	0.85	
R-Werte (I>2sigma(I))	R1 = 0.035, wR2 = 0).078
Extinktionskoeffizient	n/a	
Max/min Restelektronendichte	0.15 und -0.24 eÅ ⁻³	

Tabelle 1: Kristalldaten und Strukturverfeinerung für sba139

Table 2:Crystal data and structure refinement for sba139.

Identification code	sba139	
Empirical formula	C ₂₅ H ₂₄ N ₄ O ₅	
Formula weight	460.48	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	triclinic	
Space group	PĪ	
Z	2	
Unit cell dimensions	a = 8.6689(3) Å	α = 77.844(3) deg.
	b = 10.6916(4) Å	$\beta = 81.090(3) \text{ deg.}$
	c = 13.0284(4) Å	$\gamma = 71.413(3) \text{ deg.}$
Volume	1113.85(7) Å ³	
Density (calculated)	1.37 g/cm ³	
Absorption coefficient	0.80 mm ⁻¹	
Crystal shape	polyhedron	
Crystal size	0.070 x 0.070 x 0.060) mm ³
Crystal colour	colourless	
Theta range for data collection	3.5 to 72.1 deg.	
Index ranges	-8≤h≤10, -13≤k≤13, -′	13≤l≤16
Reflections collected	13869	
Independent reflections	4256 (R(int) = 0.0376)

Observed reflections Absorption correction Max. and min. transmission Refinement method Data/restraints/parameters	2864 (I > 2σ (I)) Semi-empirical from equivalents 1.39 and 0.70 Full-matrix least-squares on F ² 4256 / 0 / 307
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	4256/0/307 0.85
Final R indices (I>2sigma(I))	R1 = 0.035, wR2 = 0.078 0 15 and -0.24 eÅ ⁻³
Largest diff. peak and hole	0.15 and -0.24 eA-3

Tabelle 3: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²) für sba139. U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors. (Atomic coordinates and equivalent isotropic displacement parameters (Å²) for sba139. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.)

Atom	x	у	Z	U_{eq}
C1	0.7785(2)	0.5073(1)	0.3869(1)	0.0238(3)
O1	0.7179(1)	0.4676(1)	0.4755(1)	0.0262(2)
N2	0.6944(2)	0.6194(1)	0.3254(1)	0.0234(3)
C3	0.7719(2)	0.6788(2)	0.2270(1)	0.0266(3)
H3A	0.8800	0.6831	0.2390	0.032
H3B	0.7030	0.7711	0.2030	0.032
C4	0.7917(2)	0.5950(2)	0.1455(1)	0.0275(3)
C5	0.8908(2)	0.4592(2)	0.1585(1)	0.0271(3)
N6	0.8867(2)	0.4000(1)	0.0808(1)	0.0339(3)
C6	0.5177(2)	0.6729(1)	0.3572(1)	0.0228(3)
H6	0.4820	0.5976	0.4032	0.027
C7	0.4877(2)	0.7825(1)	0.4241(1)	0.0224(3)
07	0.5518(1)	0.8733(1)	0.3956(1)	0.0291(2)
N8	0.3878(2)	0.7683(1)	0.5110(1)	0.0254(3)
H8	0.3495	0.6991	0.5227	0.030
C8	0.7264(2)	0.6133(2)	0.0545(1)	0.0337(4)
H8A	0.6527	0.6945	0.0237	0.040
09	0.7803(2)	0.4993(1)	0.0131(1)	0.0376(3)
C11	0.9452(2)	0.4226(1)	0.3487(1)	0.0246(3)
C12	0.9909(2)	0.3905(1)	0.2467(1)	0.0267(3)
C13	1.1353(2)	0.2880(2)	0.2286(1)	0.0310(4)
H13	1.1661	0.2653	0.1601	0.037
C14	1.2329(2)	0.2199(2)	0.3084(1)	0.0340(4)
H14	1.3291	0.1494	0.2950	0.041
C15	1.1917(2)	0.2535(2)	0.4084(1)	0.0332(4)
H15	1.2616	0.2091	0.4627	0.040
C16	1.0474(2)	0.3525(2)	0.4281(1)	0.0290(4)
H16	1.0173	0.3731	0.4973	0.035
C21	0.4152(2)	0.7220(1)	0.2645(1)	0.0243(3)
622	0.3956(2)	0.8484(2)	0.2038(1)	0.0257(3)
H22	0.4455	0.9081	0.2203	0.031
023	0.3027(2)	0.8865(2)	0.1191(1)	0.0293(3)
624	0.2233(2)	0.8051(2)	0.0936(1)	0.0337(4)
H24	0.1592	0.8340	0.0353	0.040
625	0.2403(2)	0.6805(2)	0.1555(1)	0.0345(4)
H25	0.1805	0.6228	0.1402	0.041
626	0.3353(2)	0.6388(2)	0.2400(1)	0.0295(4)
	0.3461		0.2817	0.035
NZ7	0.2909(2)	1.0187(1)	0.0540(1)	0.0338(3)
028	0.3753(2)	1.0832(1)	0.0727(1)	0.0371(3)
029	0.1989(2)		-0.0103(1)	0.0012(4)
U31	0.3358(2)		0.5092(1)	0.0247(3)
	0.4049	0.9199	0.5750	0.030
632	0.1573(2)	0.9402(2)	0.5813(1)	0.0286(3)

H32A H32B C33	0.0895 0.1454 0.0956(2)	0.8792 0.9971 1.0293(2)	0.5893 0.5107 0.6661(1)	0.034 0.034 0.0326(4)
H33A	0.1543	1.0235(2)	0.6530	0.039
H33B	-0.0223	1.0765	0.6617	0.039
C34	0.1217(2)	0.9474(2)	0.7758(1)	0.0347(4)
H34A	0.0515	0.8873	0.7925	0.042
H34B	0.0890	1.0083	0.8282	0.042
C35	0.2997(2)	0.8642(2)	0.7837(1)	0.0334(4)
H35A	0.3115	0.8075	0.8544	0.040
H35B	0.3684	0.9246	0.7753	0.040
C36	0.3591(2)	0.7750(2)	0.6992(1)	0.0274(3)
H36A	0.4764	0.7255	0.7042	0.033
H36B	0.2976	0.7086	0.7118	0.033

Tabelle 4: H-Atomkoordinaten und isotrope Auslenkungsparameter (Å²) für sba139. (Hydrogen coordinates and isotropic displacement parameters (Å²) for sba139.)

Atom	x	У	Z	U _{eq}
HЗA	0.8800	0.6831	0.2390	0.032
H3B	0.7030	0.7711	0.2030	0.032
H6	0.4820	0.5976	0.4032	0.027
H8	0.3495	0.6991	0.5227	0.030
H8A	0.6527	0.6945	0.0237	0.040
H13	1.1661	0.2653	0.1601	0.037
H14	1.3291	0.1494	0.2950	0.041
H15	1.2616	0.2091	0.4627	0.040
H16	1.0173	0.3731	0.4973	0.035
H22	0.4455	0.9081	0.2203	0.031
H24	0.1592	0.8340	0.0353	0.040
H25	0.1865	0.6228	0.1402	0.041
H26	0.3461	0.5526	0.2817	0.035
H31	0.4049	0.9199	0.5750	0.030
H32A	0.0895	0.8792	0.5893	0.034
H32B	0.1454	0.9971	0.5107	0.034
H33A	0.1543	1.0976	0.6530	0.039
H33B	-0.0223	1.0765	0.6617	0.039
H34A	0.0515	0.8873	0.7925	0.042
H34B	0.0890	1.0083	0.8282	0.042
H35A	0.3115	0.8075	0.8544	0.040
H35B	0.3684	0.9246	0.7753	0.040
H36A	0.4764	0.7255	0.7042	0.033
H36B	0.2976	0.7086	0.7118	0.033

Tabelle 5: Anisotrope Auslenkungsparameter (Å²) für sba139. Der Exponent für den anisotropen Auslenkungsparameter hat die Form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂) (Anisotropic displacement parameters (Å²) for sba139. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*}

U₁₂))

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0281(8)	0.0201(7)	0.0252(8)	-0.0078(6)	-0.0007(7)	-0.0081(6)
O1	0.0284(6)	0.0236(5)	0.0257(6)	-0.0049(4)	0.0008(5)	-0.0074(4)
N2	0.0232(6)	0.0197(6)	0.0248(6)	-0.0053(5)	0.0030(5)	-0.0045(5)

C3	0.0279(8)	0.0201(7)	0.0288(8)	-0.0040(6)	0.0047(7)	-0.0068(6)
C4	0.0303(8)	0.0240(8)	0.0258(8)	-0.0051(6)	0.0055(7)	-0.0081(7)
C5	0.0292(8)	0.0238(8)	0.0273(8)	-0.0070(6)	0.0049(7)	-0.0083(6)
N6	0.0418(8)	0.0278(7)	0.0297(7)	-0.0076(6)	0.0010(6)	-0.0075(6)
C6	0.0226(8)	0.0205(7)	0.0238(7)	-0.0067(6)	0.0017(6)	-0.0044(6)
C7	0.0234(8)	0.0195(7)	0.0230(7)	-0.0050(6)	-0.0025(6)	-0.0033(6)
07	0.0360(6)	0.0264(6)	0.0288(5)	-0.0091(4)	0.0034(5)	-0.0147(5)
N8	0.0307(7)	0.0212(6)	0.0258(7)	-0.0100(5)	0.0049(6)	-0.0096(5)
C8	0.0404(10)	0.0270(8)	0.0288(9)	-0.0062(7)	0.0046(7)	-0.0062(7)
O9	0.0506(7)	0.0329(6)	0.0269(6)	-0.0089(5)	-0.0010(5)	-0.0081(5)
C11	0.0252(8)	0.0189(7)	0.0307(8)	-0.0062(6)	0.0003(7)	-0.0077(6)
C12	0.0263(8)	0.0210(7)	0.0330(8)	-0.0075(6)	0.0038(7)	-0.0088(6)
C13	0.0279(9)	0.0263(8)	0.0383(9)	-0.0117(7)	0.0060(7)	-0.0075(7)
C14	0.0230(8)	0.0246(8)	0.0524(11)	-0.0120(7)	0.0010(8)	-0.0031(7)
C15	0.0267(9)	0.0269(8)	0.0462(10)	-0.0068(7)	-0.0067(8)	-0.0065(7)
C16	0.0295(9)	0.0244(8)	0.0354(9)	-0.0086(7)	-0.0034(7)	-0.0085(7)
C21	0.0232(8)	0.0238(8)	0.0257(8)	-0.0116(6)	0.0022(6)	-0.0040(6)
C22	0.0254(8)	0.0244(8)	0.0256(8)	-0.0107(6)	0.0012(6)	-0.0027(6)
C23	0.0292(8)	0.0284(8)	0.0258(8)	-0.0095(6)	-0.0005(7)	-0.0002(7)
C24	0.0285(9)	0.0445(10)	0.0278(8)	-0.0153(7)	-0.0029(7)	-0.0042(7)
C25	0.0322(9)	0.0424(10)	0.0343(9)	-0.0186(8)	0.0008(7)	-0.0129(8)
C26	0.0315(9)	0.0285(8)	0.0301(8)	-0.0137(7)	0.0030(7)	-0.0085(7)
N27	0.0369(8)	0.0317(7)	0.0248(7)	-0.0081(6)	-0.0023(6)	0.0026(6)
O28	0.0453(7)	0.0258(6)	0.0358(6)	-0.0067(5)	-0.0032(5)	-0.0039(5)
O29	0.0606(9)	0.0493(8)	0.0357(7)	-0.0014(6)	-0.0205(7)	-0.0017(6)
C31	0.0275(8)	0.0225(7)	0.0265(8)	-0.0119(6)	0.0021(6)	-0.0079(6)
C32	0.0288(8)	0.0255(8)	0.0328(8)	-0.0094(6)	-0.0033(7)	-0.0067(7)
C33	0.0260(8)	0.0291(8)	0.0427(10)	-0.0168(7)	0.0015(7)	-0.0037(7)
C34	0.0318(9)	0.0405(10)	0.0354(9)	-0.0211(7)	0.0079(7)	-0.0118(7)
C35	0.0352(9)	0.0395(9)	0.0274(8)	-0.0113(7)	-0.0004(7)	-0.0113(8)
C36	0.0257(8)	0.0274(8)	0.0297(8)	-0.0081(6)	-0.0006(7)	-0.0074(7)

Tabelle 6: Bindungslängen (Å) und -winkel (°) für sba139. (Bond lengths (Å) and angles (deg) for sba139.)

C1-O1	1.2400(18)	C14-C15	1.387(2)
C1-N2	1.3522(19)	C14-H14	0.9500
C1-C11	1.513(2)	C15-C16	1.387(2)
N2-C3	1.4700(19)	C15-H15	0.9500
N2-C6	1.4803(19)	C16-H16	0.9500
C3-C4	1.485(2)	C21-C22	1.388(2)
C3-H3A	0.9900	C21-C26	1.398(2)
C3-H3B	0.9900	C22-C23	1.383(2)
C4-C8	1.342(2)	C22-H22	0.9500
C4-C5	1.422(2)	C23-C24	1.384(2)
C5-N6	1.313(2)	C23-N27	1.469(2)
C5-C12	1.469(2)	C24-C25	1.381(3)
N6-O9	1.4104(18)	C24-H24	0.9500
C6-C21	1.514(2)	C25-C26	1.389(2)
C6-C7	1.5375(19)	C25-H25	0.9500
C6-H6	1.0000	C26-H26	0.9500
C7-O7	1.2324(17)	N27-O29	1.2256(18)
C7-N8	1.3273(19)	N27-O28	1.2319(18)
N8-C31	1.4667(18)	C31-C36	1.524(2)
N8-H8	0.8800	C31-C32	1.524(2)
C8-O9	1.3532(19)	C31-H31	1.0000
C8-H8A	0.9500	C32-C33	1.532(2)
C11-C16	1.396(2)	C32-H32A	0.9900
C11-C12	1.409(2)	C32-H32B	0.9900
C12-C13	1.402(2)	C33-C34	1.519(2)
C13-C14	1.374(2)	C33-H33A	0.9900
C13-H13	0.9500	C33-H33B	0.9900

C34-C35	1.523(2)
C34-H34A	0.9900
C34-H34B	0.9900
C35-C36	1.529(2)
C35-H35A	0.9900
C35-H35B	0.9900
C36-H36A	0.9900
C36-H36B	0.9900
01-C1-N2	120 67(13)
01-01-011	117 61(13)
	101 66(12)
	121.00(13)
C1-N2-C3	121.52(12)
C1-N2-C6	116.82(12)
C3-N2-C6	121.48(12)
N2-C3-C4	108.88(12)
N2-C3-H3A	109.9
C4-C3-H3A	109.9
N2-C3-H3B	109.9
C4-C3-H3B	109.9
H3A-C3-H3B	108.3
C8-C4-C5	103.00(13)
$C_{0} C_{4} C_{2}$	124 60(15)
	134.00(13)
05-04-03	121.37(14)
N6-C5-C4	112.40(14)
N6-C5-C12	122.46(13)
C4-C5-C12	125.12(13)
C5-N6-O9	104.66(12)
N2-C6-C21	112.91(11)
N2-C6-C7	110.41(11)
C21-C6-C7	111 53(11)
N2-C6-H6	107.2
C21-C6-H6	107.2
	107.2
	107.2
07-07-108	125.65(13)
07-07-06	120.91(13)
N8-C7-C6	113.44(12)
C7-N8-C31	125.71(12)
C7-N8-H8	117.1
C31-N8-H8	117.1
C4-C8-O9	110.29(14)
C4-C8-H8A	124.9 `´
O9-C8-H8A	124.9
C8-09-N6	108 75(11)
C16-C11-C12	118 62(14)
C16-C11-C1	11/ 88(13)
	174.00(10)
	120.00(10)
	119.12(14)
013-012-05	118.61(14)
C11-C12-C5	122.26(13)
C14-C13-C12	121.03(15)
C14-C13-H13	119.5
C12-C13-H13	119.5
C13-C14-C15	120.30(14)
C13-C14-H14	119.9 `́
C15-C14-H14	119.9
C16-C15-C14	119 34(15)
C16-C15-H15	120.3
	120.0
	120.3
	121.54(15)
U15-U16-H16	119.2
C11-C16-H16	119.2
C22-C21-C26	118.68(14)
C22-C21-C6	122.04(13)
C26-C21-C6	119.27(13)
C23-C22-C21	119.24(14)

C23-C22-H22	120.4
C21-C22-H22	120.4
C22-C23-C24	122.72(15)
C22-C23-N27	117.53(14)
C24-C23-N27	119.74(14)
C25-C24-C23	117.85(15)
C25-C24-H24	121.1
C23-C24-H24	121.1
C24-C25-C26	120.61(15)
C24-C25-U20	110.7
C26-C25-H25	110.7
C25 C26 C21	120.96(15)
C25-C20-C21	120.00(13)
	119.0
C21-C20-H20	119.6
029-N27-028	123.52(14)
029-N27-C23	118.42(14)
O28-N27-C23	118.05(13)
N8-C31-C36	109.39(12)
N8-C31-C32	110.15(12)
C36-C31-C32	110.35(13)
N8-C31-H31	109.0
C36-C31-H31	109.0
C32-C31-H31	109.0
C31-C32-C33	111.67(12)
C31-C32-H32A	109.3 `́
C33-C32-H32A	109.3
C31-C32-H32B	109.3
C33-C32-H32B	109.3
H32A-C32-H32B	107.9
C34-C33-C32	111 28(13)
C34-C33-H33A	109 /
C22 C22 U22A	109.4
C34 C33 H33A	109.4
C22 C22 U22D	109.4
	109.4
H33A-C33-H33B	108.0
033-034-035	111.24(13)
C33-C34-H34A	109.4
C35-C34-H34A	109.4
C33-C34-H34B	109.4
C35-C34-H34B	109.4
H34A-C34-H34B	108.0
C34-C35-C36	111.29(13)
C34-C35-H35A	109.4
C36-C35-H35A	109.4
C34-C35-H35B	109.4
C36-C35-H35B	109.4
H35A-C35-H35B	108.0
C31-C36-C35	111.10(13)
C31-C36-H36A	109.4 `´
C35-C36-H36A	109.4
C31-C36-H36B	109.4
C35-C36-H36B	109.4
H36A-C36-H36B	108.0
	100.0

Vorschlag für eine stichwortartige Experimentbeschreibung (suggestion for a short experimental part):

sba139: colourless crystal (polyhedron), dimensions 0.070 x 0.070 x 0.060 mm³, crystal system triclinic, space group P¹, Z=2, a=8.6689(3) Å, b=10.6916(4) Å, c=13.0284(4) Å, alpha=77.844(3) deg, beta=81.090(3) deg, gamma=71.413(3) deg, V=1113.85(7) Å³, rho=1.373 g/cm³, T=100(2) K, Theta_{max}= 72.124 deg, radiation Mo Kalpha, lambda=1.54178 Å, 0.5 deg omega-scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 3.15and a completeness of 96.8% to a resolution of 0.81 Å, 13869 reflections measured, 4256 unique (R(int)=0.0376), 2864 observed

 $(I > 2\sigma(I))$, intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using STOE X-AREA Laue Analyzer based on the Laue symmetry of the mu=0.80mm⁻¹, T_{min}=0.70, T_{max}=1.39, structure refined against F² with a Full-matrix least-squares algorithm using the SHELXL-2014/7 (Sheldrick, 2014) software ², 307 parameters refined, hydrogen atoms were treated using appropriate riding models, goodness of fit 0.85 for observed reflections, final residual values R1(F)=0.035, wR(F²)=0.078 for observed reflections, residual electron density -0.24 to 0.15 eÅ⁻³. CCDC contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Lit. 1: (program SADABS 2014/5 for absorption correction) G. M. Sheldrick, Bruker Analytical X-ray-Division, Madison, Wisconsin 2014

Lit. 2: (program SHELXL-2014/7 (Sheldrick, 2014) for structure refinement) Acta Cryst. (2015). C71, 3-8

Lit. APEX, APEX2, SMART, SAINT, SAINT-Plus: Bruker (2007). "Program name(s)". Bruker AXS Inc., Madison, Wisconsin, USA.