Visible-Light mediated directed perfluoroalkylation of hydrazones

Heng Ji,^{‡ a, b} Hui-qiong Ni,^{‡ a} Peng Zhi,^b Zi-wei Xi,^b Wei Wang,^c Jian-jun

Shi^{*a} and Yong-miao Shen^{*b}

^a School of Chemical Engineering, Anhui University of Science and Technology, Huainan, P. R. China

^b Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing

312000, China. E-mail: shenyongmiao@usx.edu.cn

^c School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng, P. R. China

Supporting Information

1.	General information	S2
2.	Photoreaction setup	S2
3.	Determination of the geometry of the C=N double bond	S3
4.	Stern-Volmer Fluorescence Quenching Studies	S3
5.	The Radical Trapping Experiment	S5
6.	EPR spin trapping experiment with DMPO	S5
7.	Synthetic Utility of Methodology	S5
8.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR of compounds 3-9	S6-59

1. General information

All reagents were commercially available and used without further purification. All solvents were dried according to standard procedures. Melting points were measured on a Taike X-4 microscopic melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were measured on a Bruker ACF-400 spectrometer and recorded at 400 and 100 MHz, respectively, using CDCl₃ or DMSO as solvent. IR spectra were taken with a Nicolet FT-IR 5DX spectrometer. HRMS were taken with a AB Triple TOF 5600 plus System (AB SCIEX, Framingham,USA). The exact mass calibration was performed automatically before each analysis employing the Automated Calibration Delivery System. EPR spectra were measured on a Bruker A300 spectrometer.

2. Photoreaction setup

Fig. 1s Reaction apparatus for the small test reactions (left) and gram-scale reaction (right).

3. Determination of the geometry of the C=N double bond

NOESY experiment

4. Stern-Volmer Fluorescence Quenching Studies

Fluorescence quenching experiments were performed on a JASCO FP-6500Spectrofluorometer. In a typical experiment, a 0.15mM solution of Ir(ppy)₃ in CH₃CN was added to the appropriate amount of quencher in a screw-top 1.0 cm quartz cuvette. All solutions were excited at $\lambda = 367$ nm (absorption maximum of the photocatalyst) and the emission intensity at 526 nm was recorded (emission maximum)

Ir(ppy)₃Emission Quenched by 1b

Ir(ppy)₃Emission Quenched by 2a

5. The Radical Trapping Experiment:

6. EPR spin trapping experiment with DMPO

Typical spectrometer parameters are shown as follows: Center-Field: 3508 G; Width: 100 G; Receiver Gain: 5.02×10^3 ; Scans: 1; Modulation Amplitude: 1 G; Modulation Frequency: 9.845957 GHz; Microwave Power: 2.41mW; Time constant: 0.08192 s. Simulated EPR spectrum (b and c) based on hyperfine coupling constants of $a_N = 13.52$ Gs and $a_F = 1.96$ Gs (g=2.00948).

7. Synthetic Utility of Methodology

(1) Hydrolysis reaction of hydrazone

3b (0.1085 g, 0.2569 mmol) was added to a 7.5mL 1/1 mixture of HCl (0.3N)/THF. The resulting solution was stirred at room temperature and monitored by TLC. After 24h, the solution was extracted by DCM and washed with aq NaHCO₃. The organic layer was dried over MgSO₄ and concentrated. The residue was purified by flash chromatography to afford **9** (41 mg, 47 %).

(2) Photoredox three-component couping reaction

In a vial $Ir(ppy)_3$ (2.6 mg, 0.004 mmol, 1 mol%), p-tolualdehyde(0.4 mmol), morpholin-4-amine (0.44 mmol), Na₂HPO₄ (113.6mg, 0.8 mmol) and perfluoroalkyliodide 2 (0.8 mmol) were dissolved in 8mL DMF. The reaction mixture was stirred under irradiation with a 3 W blue LED lamp for 24 hours. After the reaction was completed, the reaction mixture was poured into 60mL water and extracted with EtOAc (8 mL×3). The combined organic layers were dried with anhydrous MgSO₄. The solvent was removed under reduced pressure, and the crude mixture was directly charged on silica gel and purified by column chromatography with petroleum ether/ethyl acetate as eluents.

8. Spectral data of products 3-9

14 / 59

000.0

38 / 59

44 / 59

47 / 59

55 / 59

