Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Synthesis of tetrafluoroethylene- and tetrafluoroethylcontaining azides and their 1,3-dipolar cycloaddition as synthetic application

Svatava Voltrová, Mickael Muselli, Josef Filgas, Václav Matoušek, Blanka Klepetářová, and Petr Beier*

Contents	page
General experimental procedures	SI2
Synthesis of azides 2a-h	SI2
Synthesis of (2-azido-1,1,2,2-tetrafluoroethyl)(phenyl)sulfane (2i)	SI4
Synthesis of 1-(1,1,2,2-tetrafluoroalkyl)triazoles (4)	SI4
Synthesis of 1-(1,1,2,2-tetrafluoroethyl)-4- <i>p</i> -tolyl-1 <i>H</i> -1,2,3-triazole (5)	SI5
Synthesis of 5-iodo-1-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-4-(p-tolyl)-1H-1,2,3-triazol	e
(7aj)	SI12
Synthesis of 5-iodo-4-phenyl-1-(1,1,2,2-tetrafluoro-2-(4-methoxyphenoxy)ethyl)- 1H-2	1,2,3-
triazole (7dm)	SI12
Synthesis of 5-((4-fluorophenyl)ethynyl)-1-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-4-(p-t	olyl)-
1 <i>H</i> -1,2,3-triazole (8)	SI13
Synthesis of 4-(phenyl)-1-(1,1,2,2-tetrafluoro-2-(4-methoxyphenoxy)ethyl)-5-(p-tolyl)-	-1 <i>H</i> -
1,2,3-triazole (9)	SI13
NMR spectra collection	SI14
Crystallographic data collection	SI94
References	SI99

General experimental procedures. All solvents were dried by activated molecular sieves (3 Å) and stored under argon. The NMR chemical shift values (δ) are reported in ppm relative to internal Me₄Si (0 ppm for ¹H and ¹³C NMR) or residual solvents and internal CFCl₃ (0 ppm for ¹⁹F NMR). ¹³C NMR spectra were proton decoupled. *p*-Toluenesulfonyl azide (tosyl azide),¹ perfluorobutanesulfonyl azide (nonaflyl azide),² trimethyl-(1,1,2,2-tetrafluoro-2-phenylthio)ethyl)silane³ and 2-substituted 1-bromo-1,1,2,2-tetrafluoroethanes⁴ **1** were prepared according to literature reports. Other bromides **1** are commercially available from CF Plus Chemicals (www.cfplus.cz).

Synthesis of azides 2a–h. Bromide 1 (0.57 mmol) was dissolved in anhydrous THF (2 mL) and cooled to -78 °C. A solution of *i*-PrMgCl·LiCl in THF (1.3 M, 0.46 mL, 0.60 mmol), was added dropwise. After 45 min, a solution of *p*-toluenesulfonyl azide (225 mg, 1.14 mmol; General Procedure A) or perfluorobutanesulfonyl azide (370 mg, 1.14 mmol, General Procedure B) in THF (1 mL) was introduced dropwise at -78 °C, and the mixture was stirred for 3 h while warming up to rt. Saturated aqueous NH₄Cl (5 mL) was added, the product was extracted with Et₂O, dried (MgSO₄), and concentrated. The crude product was purified by flash column chromatography (hexane), affording a colorless liquid.

1-(2-Azido-1,1,2,2-tetrafluoroethoxy)benzene (**2a**).⁴ General Procedure A; yield: 92 %; colorless oil, ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.25 (m, 2H), 7.19-7.15 (m, 1H), 7.12-7.10 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.99, 129.90, 126.92, 121.76, 115.99 (tt, ¹*J*_{C-F} = 274.2 Hz, ²*J*_{C-F} = 32.3 Hz, CF₂), 113.85 (tt, ¹*J*_{C-F} = 313.1 Hz, ²*J*_{C-F} = 45.4 Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -87.00 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -94.24 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (EI⁺) *m*/*z* calcd for C₈H₅F₄N₃O [M]⁺: 235.0369, found 235.0367.

1-(2-Azido-1,1,2,2-tetrafluoroethoxy)-4-fluorobenzene (2b). General Procedure A; yield: 79 %; colorless oil, ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.19 (m, 2H), 7.11-7.06 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.10 (d, ¹*J*_{C-F} = 246.4 Hz), 144.64, 123.59 (d, ³*J*_{C-F} = 9.1 Hz), 116.63 (d, ²*J*_{C-F} = 23.2 Hz), 115.91 (tt, ¹*J*_{C-F} = 275.7 Hz, ²*J*_{C-F} = 32.3 Hz, CF₂), 113.68 (tt, ¹*J*_{C-F} = 313.1 Hz, ²*J*_{C-F} = 44.4 Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -68.08 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -86.30 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -115.12 (tt, ³*J*_{H-F} = 11.3 Hz, ⁴*J*_{H-F} = 3.8 Hz, 1F); HRMS (EI⁺) *m/z* calcd for C₈H₄F₅N₃O [M]⁺: 253.0275, found 253.0274.

1-(2-Azido-1,1,2,2-tetrafluoroethoxy)-4-bromobenzene (2c). General Procedure A; yield: 76%; general method B; yield: 72%; colorless oil, R_f (petroleum ether) = 0.77; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.51 (m, 2H), 7.13-7.11 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.93, 132.92,

123.53, 120.37, 115.84 (tt, ${}^{1}J_{C-F} = 276.7 \text{ Hz}$, ${}^{2}J_{C-F} = 32.3 \text{ Hz}$, CF₂), 113.57 (tt, ${}^{1}J_{C-F} = 313.1 \text{ Hz}$, ${}^{2}J_{C-F} = 44.4 \text{ Hz}$, CF₂); ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -87.39 (t, ${}^{3}J_{F-F} = 3.8 \text{ Hz}$, 2F), -93.95 (t, ${}^{3}J_{F-F} = 3.8 \text{ Hz}$, 2F); HRMS (EI⁺) *m*/*z* calcd for C₈H₄BrF₄N₃O [M]⁺: 312.9474, found 312.9476.

1-(2-Azido-1,1,2,2-tetrafluoroethoxy)-4-methoxybenzene (**2d**). General Procedure B; yield: 84%; colorless oil, R_f (petroleum ether/EtOAc, 95:5) = 0.64; ¹H NMR (400 MHz, CDCl₃) δ 7.15-7.12 (m, 2H), 6.90-6.88 (m, 2H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.27, 142.06, 123.06, 116.25 (tt, ¹*J*_{C-F} = 275.7 Hz, ²*J*_{C-F} = 38.3 Hz, CF₂), 114.76, 114.49 (tt, ¹*J*_{C-F} = 272.7 Hz, ²*J*_{C-F} = 41.4 Hz, CF₂), 55.67; ¹⁹F NMR (376 MHz, CDCl₃) δ -87.33 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -94.16 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (ESI) *m/z* calcd for C₉H₇N₃O₂F₄ [M + H]⁺: 265.0475, found 265.0474.

3-(2-Azido-1,1,2,2-tetrafluoroethoxy)-N,N-*dimethylaniline (2e)*. General Procedure B; yield: 87%; colorless oil, R_f (petroleum ether/EtOAc, 90:10) = 0.48; ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.19 (m, 1H), 6.63-6.62 (m, 1H), 6.61-6.60 (m, 1H), 6.49-6.48 (m, 1H), 2.96 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 151.83, 149.98, 129.96, 116.27 (tt, ¹*J*_{C-F} = 275.7 Hz, ²*J*_{C-F} = 38.3 Hz, CF₂), 114.48 (tt, ¹*J*_{C-F} = 231.7 Hz, ²*J*_{C-F} = 41.4 Hz, CF₂), 110.62, 108.92, 105.44, 40.50; ¹⁹F NMR (376 MHz, CDCl₃) δ -86.91 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -94.35 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (ESI) *m/z* calcd for C₁₀H₁₀N₃OF₄ [M + H]⁺: 278.0791, found 278.0792.

I-(2-Azido-1,1,2,2-tetrafluoroethoxy)-3-(trifluoromethyl)benzene (**2***f*). General Procedure B; yield: 73%; colorless oil, R_f (petroleum ether/EtOAc, 97:3) = 0.55; ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.52 (m, 2H), 7.48 (s, 1H), 7.43-7.41 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 148.99, 132.49 (q, ¹*J*_{C-F} = 124.1 Hz, CF₃), 130.66, 125.12, 124.76, 123.83, 119.04, 116.27 (tt, ¹*J*_{C-F} = 281.8 Hz, ²*J*_{C-F} = 37.4 Hz, CF₂), 114.41 (tt, ¹*J*_{C-F} = 274.7 Hz, ²*J*_{C-F} = 41.4 Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.36, -87.39, -93.87; HRMS (ESI) *m*/*z* calcd for C₉H₄N₃OF₇ [M + H]⁺: 303.0244, found 303.0243.

1-(2-Azido-1,1,2,2-tetrafluoroethoxy)-2,4-di-tert-*butylbenzene* (**2***g*). General Procedure B; yield: 71%; colorless oil, R_f (petroleum ether/EtOAc, 98:2) = 0.77; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.41 (m, 1H), 7.28-7.25 (m, 1H), 7.22-7.19 (m, 1H), 1.39 (s, 9H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 148.09, 146.52, 139.66, 125.03, 124.02, 118.68, 116.55 (tt, ¹*J*_{C-F} = 276.7 Hz, ²*J*_{C-F} = 39.4 Hz, CF₂), 114.77 (tt, ¹*J*_{C-F} = 271.7 Hz, ²*J*_{C-F} = 42.4 Hz, CF₂), 35.14, 34.75, 31.56, 30.23; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.82 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -92.91 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (ESI) *m/z* calcd for C₁₆H₂₁N₃OF₄ [M + H]⁺: 347.1616, found 347.1621.

1-(2-Azido-1,1,2,2-tetrafluoroethyl)-4-bromo-1H-pyrazole (2h). General Procedure B; yield: 44%; colorless oil, R_f (petroleum ether/EtOAc, 94:6) = 0.58; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.74 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.43, 129.08, 117.89 (tt, ¹*J*_{C-F} = 279.8 Hz, ²*J*_{C-F} = 42.4 Hz, CF₂), 115.12 (tt, ¹*J*_{C-F} = 287.8 Hz, ²*J*_{C-F} = 43.4 Hz, CF₂), 97.48; ¹⁹F NMR (376 MHz, CDCl₃) δ -91.12 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -99.52 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₅H₂N₅BrF₄ [M + H]⁺: 286.9429, found 286.9430.

Synthesis of (2-azido-1,1,2,2-tetrafluoroethyl)(phenyl)sulfane (2i). CsF (0.98 g, 6.4 mmol) was dried for 72 h at 135 °C under high vacuum in a screw-capped vial with silicon septum. The vial was cooled to rt, backfilled with argon, dry DMF (4 mL) was added and the mixture was cooled to -60 °C while being stirred. Cold solutions of PhSCF₂CF₂SiMe₃ (1.412 g, 5 mmol) in dry DMF (1 mL) and nonaflyl azide (1.625 g, 5 mmol, Method A) or tosyl azide (0.985 g, 5 mmol, Method B) in dry DMF (1 mL) were added dropwise over 20 min. The reaction mixture was stirred at -60 °C for 1 h and 3 h to warm up to rt. Saturated aqueous NH₄Cl (5 mL) was added, the product was extracted with Et₂O, the combined organic phase was washed with brine, dried (MgSO₄), and concentrated. The crude product was purified by flash column chromatography (hexane), affording a colorless liquid. Method A, yield: 89%; Method B, yield: 72%; colorless oil, R_f (petroleum ether/EtOAc, 98:2) = 0.64; ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (m, 2H), 7.52-7.48 (m, 1H), 7.44-7.40 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 137.32, 130.99, 129.49, 123.47, 122.65 (tt, ${}^{1}J_{C-F} = 290.9$ Hz, ${}^{2}J_{C-F} = 38.4$ Hz, CF₂), 116.57 (tt, ${}^{1}J_{C-F} = 275.7 \text{ Hz}, {}^{2}J_{C-F} = 34.3 \text{ Hz}, \text{ CF}_2$; ${}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{ CDCl}_3) \delta - 89.70 (t, {}^{3}J_{F-F} = 7.5 \text{ Hz},)$ 2F), -89.83 (t, ${}^{3}J_{F-F} = 7.6$ Hz, 2F); HRMS (EI) m/z calcd for C₈H₅N₃SF₄ [M]⁺: 251.0140, found 251.0141.

Synthesis of 1-(1,1,2,2-tetrafluoroalkyl)triazoles (4). Copper(I) 3-methylsalicylate (2.1 mg, 0.01 mmol) was added to a solution of 2 (1.0 mmol) in THF (2 mL) in a 10 mL screw-cap glass tube. Subsequently alkyne 3 (1.0 mmol) in THF (0.5 mL) was added, the flask was closed and stirred at rt for 18 h (UPLC-MS control). THF was removed under reduced pressure, Et₂O (20 mL) was added and the organic phase was washed with aqueous NaHCO₃ solution, water and brine, dried (MgSO₄), filtered, and concentrated. The crude product was purified by crystallization from hexane or by column chromatography on silica gel (hexane/EtOAc, 99:1).

*1-(1,1,2,2-Tetrafluoro-2-phenoxyethyl)-4-p-tolyl-1*H-*1,2,3-triazole* (*4aj*). Yield: 85%; white solid, mp 65–67 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.71-7.69 (m, 2H), 7.30-7.26 (m, 2H), 7.21-7.18 (m, 3H), 7.08-7.06 (m, 2H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

148.53, 148.50, 139.28, 129.93, 129.84, 127.16, 126.22, 126.14, 121.76, 118.00, 115.90 (tt, ${}^{1}J_{C-F} = 276.7 \text{ Hz}$, ${}^{2}J_{C-F} = 38.4 \text{ Hz}$, CF₂), 111.59 (tt, ${}^{1}J_{C-F} = 271.6 \text{ Hz}$, ${}^{2}J_{C-F} = 45.4 \text{ Hz}$, CF₂), 21.46; ¹⁹F NMR (376 MHz, CDCl₃) δ -86.24 (t, ${}^{3}J_{F-F} = 3.8 \text{ Hz}$, 2F), -99.35 (t, ${}^{3}J_{F-F} = 3.8 \text{ Hz}$, 2F); HRMS (ESI) *m*/*z* calcd for C₁₇H₁₄N₃OF₄ [M + H]⁺: 352.10675, found 352.10681.

4-(4-Nitrophenyl)-1-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-1H-1,2,3-triazole (**4ak**). Yield: 78%; white solid, mp 110–111 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.35-8.33 (m, 2H), 8.11-8.09 (m, 2H), 7.40-7.36 (m, 2H), 7.32-7.28 (m, 1H), 7.17-7.15 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.42, 148.14, 146.26, 135.18, 130.02, 127.33, 126.90, 124.57, 121.70, 120.07, 115.79 (tt, ¹*J*_{C-F} = 276.7 Hz, ²*J*_{C-F} = 37.3 Hz, CF₂), 111.58 (tt, ¹*J*_{C-F} = 273.7 Hz, ²*J*_{C-F} = 41.4 Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -85.65 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -98.80 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₁₆H₁₁N₄O₃F₄ [M + H]⁺: 383.07618, found 383.07629.

3-(1-(1,1,2,2-*Tetrafluoro-2-phenoxyethyl*)-1H-1,2,3-*triazol-4-yl*)*pyridine* (**4al**). Yield: 78%; white solid, mp 70–74 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.10 (br s, 1H), 8.65 (br s, 1H), 8.33 (s, 1H), 8.29-8.27 (m, 1H), 7.43 (br s, 1H), 7.38-7.35 (m, 2H), 7.30-7.26 (m, 1H), 7.16-7.14 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.09, 148.41, 147.25, 145.37, 133.71, 129.95, 129.72, 127.23, 124.08, 121.67, 119.02, 115.78 (tt, ¹*J*_{C-F} = 277.8 Hz, ²*J*_{C-F} = 36.4 Hz, CF₂), 111.55 (tt, ¹*J*_{C-F} = 272.7 Hz, ²*J*_{C-F} = 42.4 Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -86.16 (br t, 2F), -99.28 (br t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₁₅H₁₁N₄OF₄ [M + H]⁺: 339.08635, found 339.08642.

1-(1,1,2,2-Tetrafluoro-2-(4-fluorophenoxy)ethyl)-4-(p*-tolyl)-1*H-*1,2,3-triazole* (**4bj**). Yield: 72%; white solid, mp 83–88 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.82-7.80 (m, 2H), 7.31-7.29 (m, 2H), 7.10 (br s, 2H), 7.08-7.06 (m, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.15 (d, ¹*J*_{C-F} = 246.4 Hz), 148.53, 144.19, 139.34, 129.86, 128.80, 126.14, 123.64 (d, ³*J*_{C-F} = 9.1 Hz), 117.92, 116.68 (d, ²*J*_{C-F} = 24.2 Hz), 115.84 (tt, ¹*J*_{C-F} = 277.8 Hz, ²*J*_{C-F} = 38.4 Hz, CF₂), 111.52 (tt, ¹*J*_{C-F} = 271.7 Hz, ²*J*_{C-F} = 43.4 Hz, CF₂), 21.47; ¹⁹F NMR (376 MHz, CDCl₃) δ -86.51 (br t, 2F), -99.14 (br t, ³*J*_{F-F} = 3.8 Hz, 2F), -115.16 to -115.21 (br m, 1F); HRMS (ESI) m/z calcd for C₁₇H₁₃N₃OF₅ [M + H]⁺: 370.09733, found 370.09740.

4-(4-Nitrophenyl)-1-(1,1,2,2-tetrafluoro-2-(4-fluorophenoxy)ethyl)-1H-1,2,3-triazole (4bk). Yield: 69%; white solid, mp 116–123 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.34-8.42 (m, 2H), 8.11-8.08 (m, 2H), 7.16-7.13 (m, 2H), 7.08-7.04 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.21 (d, ¹*J*_{C-F} = 246.4 Hz), 148.15, 146.28, 144.03, 135.09, 126.90, 124.57, 123.58 (d, ³*J*_{C-F} = 9.1 Hz), 120.03, 116.77 (d, ²*J*_{C-F} = 24.2 Hz), 115.72 (tt, ¹*J*_{C-F} = 277.7 Hz, ²*J*_{C-F} = 38.4 Hz, CF₂), 111.50 (tt, ${}^{1}J_{C-F} = 272.7$ Hz, ${}^{2}J_{C-F} = 41.4$ Hz, CF₂); ${}^{19}F$ NMR (376 MHz, CDCl₃) δ - 85.93 (t, ${}^{3}J_{F-F} = 3.8$ Hz, 2F), -98.60 (t, ${}^{3}J_{F-F} = 3.8$ Hz, 2F), -114.31 to -114.37 (br m, 1F); HRMS (ESI) *m*/*z* calcd for C₁₆H₁₀N₄O₃F₅ [M + H]⁺: 401.06676, found 401.06668.

3-(1-(1,1,2,2-Tetrafluoro-2-(4-fluorophenoxy)ethyl)-1H-1,2,3-triazol-4-yl)pyridine (4bl). Yield: 41%; white solid, mp 61–67 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.19 (br s, 1H), 8.87 (br s, 1H), 8.32 (s, 1H), 8.28 (br s, 1H), 7.49 (br s, 1H), 7.14-7.10 (m, 2H), 7.05-7.01 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.12 (d, ¹J_{C-F} = 246.7 Hz), 149.97, 147.25, 145.67, 144.05, 144.02, 133.28, 125.29, 123.50 (d, ³J_{C-F} = 8.7 Hz), 118.97, 116.67 (d, ²J_{C-F} = 23.8 Hz), 115.71 (tt, ¹J_{C-F} = 276.7 Hz, ²J_{C-F} = 36.4 Hz, CF₂), 111.47 (tt, ¹J_{C-F} = 272.7 Hz, ²J_{C-F} = 41.4 Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -86.63 (t, ³J_{F-F} = 3.8 Hz, 2F), -99.05 (t, ³J_{F-F} = 3.8 Hz, 2F), -114.91 to -114.97 (br m, 1F); HRMS (ESI) *m*/z calcd for C₁₅H₁₀N₄OF₅ [M + H]⁺: 357.07693, found 357.07695.

1-(2-(4-Bromophenoxy)-1,1,2,2-tetrafluoroethyl)-4-phenyl-1H-1,2,3-triazole (4cm). Yield: 92%; white solid, mp 83–84 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.91-7.89 (m, 2H), 7.51-7.46 (m, 4H), 7.43-7.39 (m, 1H), 7.07-7.05 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.47, 133.08, 129.34, 129.20, 128.96, 126.25, 123.59, 120.65, 118.29, 115.79 (tt, ¹*J*_{C-F} = 277.8 Hz, ²*J*_{C-F} = 38.4 Hz, CF₂), 111.49 (tt, ¹*J*_{C-F} = 272.7 Hz, ²*J*_{C-F} = 38.4 Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -86.37 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -99.12 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (EI) m/z calcd for C₁₆H₁₁N₃OBrF₄ [M]⁺: 416.00161, found 416.00164.

*1-(2-(4-Bromophenoxy)-1,1,2,2-tetrafluoroethyl)-4-p-tolyl-1*H-*1,2,3-triazole* (*4cj*). Yield: 81%; white solid, mp 87–90 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.79-7.77 (m, 2H), 7.51-7.48 (m, 2H), 7.29-7.27 (m, 2H), 7.07-7.05 (m, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.55, 147.51, 139.36, 133.06, 129.87, 129.15, 126.15, 123.60, 120.62, 117.88, 115.80 (tt, ¹*J*_{C-F} = 277.8 Hz, ²*J*_{C-F} = 38.4 Hz, CF₂), 111.48 (tt, ¹*J*_{C-F} = 271.7 Hz, ²*J*_{C-F} = 38.4 Hz, CF₂), 21.50; ¹⁹F NMR (376 MHz, CDCl₃) δ -86.36 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -99.11 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (EI) *m/z* calcd for C₁₇H₁₃N₃OBrF₄ [M]⁺: 430.01726, found 430.01731.

*1-(2-(4-Bromophenoxy)-1,1,2,2-tetrafluoroethyl)-4-(4-nitrophenyl)-1*H-*1,2,3-triazole* (*4ck*). Yield: 48%; white solid, mp 137–144 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.35-8.33 (m, 2H), 8.11-8.08 (m, 2H), 7.52-7.50 (m, 2H), 7.07-7.05 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.19, 147.39, 146.30, 135.07, 133.15, 126.91, 124.60, 123.52, 120.80, 119.95, 115.69 (tt, ${}^{1}J_{C-F} = 277.8$ Hz, ${}^{2}J_{C-F} = 38.4$ Hz, CF₂), 111.47 (tt, ${}^{1}J_{C-F} = 272.7$ Hz, ${}^{2}J_{C-F} = 44.4$ Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -86.25 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -99.03 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (EI) *m*/*z* calcd for C₁₆H₁₀N₄O₃BrF₄ [M]⁺: 460.98669, found 460.98672.

3-(1-(2-(4-Bromophenoxy)-1,1,2,2-tetrafluoroethyl)-1H-1,2,3-triazol-4-yl)pyridine (4cl). Yield: 95%; white solid, mp 94–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.18 (br s, 1H), 8.76 (br s, 1H), 8.29 (s, 1H), 8.28-8.26 (m, 1H), 7.51-7.47 (m, 2H), 7.47 (br s, 1H), 7.06-7.04 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.26, 147.76, 147.39, 147.34, 145.60, 133.46, 133.08, 124.67, 123.51, 120.70, 118.87, 115.70 (tt, ¹*J*_{C-F} = 277.8 Hz, ²*J*_{C-F} = 35.3 Hz, CF₂), 111.45 (tt, ¹*J*_{C-F} = 272.7 Hz, ²*J*_{C-F} = 39.4 Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -86.27 (t, ³*J*_{F-F} = 3.8 Hz, 2F); -99.01 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (EI) *m*/*z* calcd for C₁₅H₁₀N₄OBrF₄ [M]⁺: 416.99686, found 416.99693.

4-Phenyl-1-(1,1,2,2-tetrafluoro-2-(4-methoxyphenoxy)ethyl)-1H-1,2,3-triazole (4dm). Yield: 82%; white solid, mp 71–72 °C; R_f (petroleum ether/EtOAc, 95:5) = 0.45; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.91-7.89 (m, 2H), 7.50-7.46 (m, 2H), 7.43-7.39 (m, 1H), 7.09-7.07 (m, 2H), 6.87-6.85 (m, 2H), 3.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.39, 148.39, 141.72, 129.25, 129.17, 129.07, 126.24, 123.05, 118.41, 115.88 (tt, ¹*J*_{C-F} = 277.8 Hz, ²*J*_{C-F} = 37.4 Hz, CF₂), 114.80, 111.62 (tt, ¹*J*_{C-F} = 270.7 Hz, ²*J*_{C-F} = 40.4 Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -86.57 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -99.31 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₁₇H₁₄O₂N₃F₄ [M + H]⁺: 368.1016, found 368.1017.

4-(4-Methoxyphenyl)-1-(1,1,2,2-tetrafluoro-2-(4-methoxyphenoxy)ethyl)-1H-1,2,3-triazole (4dn). Yield: 86%; white solid, mp 83–84 °C; R_f (petroleum ether/EtOAc, 9:1) = 0.61; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.83 (d, J = 8.8 Hz, 2H), 7.08 (d, J = 9.1 Hz, 2H), 6.99 (d, J= 8.8 Hz, 2H), 6.86 (d, J = 9.1 Hz, 2H), 3.86 (s, 3H), 3.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.43, 158.38, 148.27, 141.76, 127.62, 123.07, 121.71, 117.46, 115.94 (tt, CF₂), 114.79, 114.57, 111.60 (tt, CF₂), 55.73, 55.49; ¹⁹F NMR (376 MHz, CDCl₃) δ -86.54 (t, ³ $_{JF-F}$ = 3.8 Hz, 2F), -99.28 (t, ³ $_{JF-F}$ = 3.7 Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₁₈H₁₆O₃N₃F₄ [M + H]⁺: 398.1123, found 398.1122.

4-(4-Nitrophenyl)-1-(1,1,2,2-tetrafluoro-2-(4-methoxyphenoxy)ethyl)-1H-1,2,3-triazole (4dk). Yield: 77%; white solid, mp 121–123 °C; R_f (petroleum ether/EtOAc, 9:1) = 0.42; ¹H NMR (400 MHz, CDCl₃) δ 8.36-8.34 (m, 2H), 8.34 (s, 1H), 8.11-8.09 (m, 2H), 7.09-7.07 (m, 2H), 6.88-6.86 (m, 2H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.47, 148.12, 146.22, 141.59, 135.20, 126.88, 124.56, 122.98, 120.08, 115.77 (tt, ¹*J*_{C-F} = 276.7 Hz, ²*J*_{C-F} = 37.4 Hz, CF₂), 114.84, 111.60 (tt, ¹*J*_{C-F} = 271.7 Hz, ²*J*_{C-F} = 38.4 Hz, CF₂), 55.74; ¹⁹F NMR (376 MHz, CDCl₃) δ -86.48 (t, ${}^{3}J_{\text{F-F}} = 3.6$ Hz, 2F), -99.24 (t, ${}^{3}J_{\text{F-F}} = 3.6$ Hz, 2F); HRMS (ESI) *m/z* calcd for C₁₇H₁₃O₄N₄F₄ [M + H]⁺: 413.0867, found 413.0868.

N,N-*Dimethyl*-3-(1,1,2,2-*tetrafluoro*-2-(4-*phenyl*-1H-1,2,3-*triazol*-1-*yl*)*ethoxy*)*aniline* (4*em*). Yield: 79%; white solid, mp 80–82 °C; R_f (petroleum ether/EtOAc, 9:1) = 0.61; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.91-7.89 (m, 2H), 7.49 – 7.46 (m, 2H), 7.42 – 7.39 (m, 1H), 7.20-7.16 (m, 1H), 6.61-6.58 (m, 1H), 6.50-6.48 (m, 1H), 6.42-6.40 (m, 1H), 2.93 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 151.82, 149.71, 148.38, 130.00, 129.23, 129.18, 129.15, 126.26, 118.49, 115.63 (tt, CF₂), 110.81, 110.62 (tt, CF₂), 108.82, 105.33, 40.48; ¹⁹F NMR (376 MHz, CDCl₃) δ -86.19 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -99.49 (t, ³*J*_{F-F} = 3.7 Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₁₈H₁₇ON₄F₄ [M + H]⁺: 381.1334, found 381.1333.

N,N-Dimethyl-3-(1,1,2,2-tetrafluoro-2-(4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl)-

ethoxy)*aniline* (*4en*). Yield: 81%; white solid, mp 64–66 °C. *R_f* (petroleum ether/EtOAc, 9:1) = 0.51; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.84-7.81 (m, 2H), 7.20-7.16 (m, 1H), 7.01-6.98 (m, 2H), 6.61-6.59 (m, 1H), 6.50 – 6.47 (m, 1H), 6.42-6.41 (m, 1H), 3.86 (s, 3H), 2.93 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 160.40, 151.80, 149.71, 148.24, 129.98, 127.61, 121.76, 117.55, 115.93 (tt, ¹*J*_{C-F} = 275.7 Hz, ²*J*_{C-F} = 43.4 Hz, CF₂), 114.56, 111.65 (tt, ¹*J*_{C-F} = 278.7 Hz, ²*J*_{C-F} = 46.4 Hz, CF₂), 110.79, 108.84, 105.34, 55.50, 40.47; ¹⁹F NMR (376 MHz, CDCl₃) δ - 86.16 (t, ³*J*_{F-F} = 3.7 Hz, 2F), -99.47 (t, ³*J*_{F-F} = 3.6 Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₁₉H₁₉O₂N₄F₄ [M + H]⁺: 411.1440, found 411.1439.

N,N-Dimethyl-3-(1,1,2,2-tetrafluoro-2-(4-(4-nitrophenyl)-1H-1,2,3-triazol-1-yl)ethoxy)-

aniline (4ek). Yield: 84%; white solid, mp 122–123 °C; R_f (petroleum ether/EtOAc, 9:1) = 0.37; ¹H NMR (400 MHz, CDCl₃) 8.36-8.34 (m, 2H), 8.34 (s, 1H), 8.11-8.08 (m, 2H), 7.21-7.16 (m, 1H), 6.62-6.59 (m, 1H), 6.49 – 6.46 (m, 1H), 6.42-6.41 (m, 1H), 2.93 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 151.81, 149.59, 148.10, 146.20, 135.25, 130.03, 126.87, 124.54, 120.16, 115.80 (tt, ¹*J*_{C-F} = 277.8 Hz, ²*J*_{C-F} = 36.4 Hz, CF₂), 111.64 (tt, ¹*J*_{C-F} = 2745.7 Hz, ²*J*_{C-F} = 43.4 Hz, CF₂), 110.86, 108.63, 105.13, 40.42; ¹⁹F NMR (376 MHz, CDCl₃) δ -86.10 (t, ³*J*_{F-F} = 3.7 Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₁₈H₁₆O₃N₅F₄ [M + H]⁺: 426.1184, found 426.1184.

4-(4-Nitrophenyl)-1-(1,1,2,2-tetrafluoro-2-(3-(trifluoromethyl)phenoxy)ethyl)-1H-1,2,3-

triazole (*4fk*). Yield: 70%; white solid, mp 102–103 °C; R_f (petroleum ether/EtOAc, 9:1) = 0.44; ¹H NMR (400 MHz, CDCl₃) δ 8.37-8.35 (m, 2H), 8.34 (s, 1H), 8.11-8.09 (m, 2H), 7.61-7.59 (m, 1H), 7.57-7.53 (m, 1H), 7.45 (br s, 1H), 7.41 – 7.39 (m, 1H); ¹³C NMR (101 MHz,

CDCl₃) δ 148.47, 148.21, 146.36, 135.04, 132.75 (q, ${}^{1}J_{C-F} = 33.3$ Hz, CF₃), 130.84, 126.93, 125.16, 124.60, 124.28 (q, ${}^{3}J_{C-F} = 4.0$ Hz), 121.86, 119.96, 119.02 (q, ${}^{2}J_{C-F} = 4.0$ Hz), 119.00, 115.81 (tt, ${}^{1}J_{C-F} = 281.8$ Hz, ${}^{2}J_{C-F} = 37.4$ Hz, CF₂), 111.43 (tt, ${}^{1}J_{C-F} = 272.7$ Hz, ${}^{2}J_{C-F} = 40.4$ Hz, CF₂); ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -63.36 (s, 3F), -86.17 (t, ${}^{3}J_{F-F} = 3.7$ Hz, 2F), -98.96 (t, ${}^{3}J_{F-F} = 3.7$ Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₁₇H₁₀O₃N₄F₇ [M + H]⁺: 451.0636, found 451.0636.

*1-(1,1,2,2-Tetrafluoro-2-(3-(trifluoromethyl)phenoxy)ethyl)-4-(4-(trifluoromethyl)-phenyl)-I*H-*1,2,3-triazole* (*4fo*). Yield: 48%; white solid, mp 81–82 °C; *R*_f (petroleum ether/EtOAc, 9:1) = 0.47; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.05-8.03 (m, 2H), 7.76-7.74 (m, 2H), 7.61-7.59 (m, 1H), 7.56-7.52 (m, 1H), 7.45 (br s, 1H), 7.41 – 7.38 (m, 1H);¹³C NMR (101 MHz, CDCl₃) δ 148.53, 147.17, 132.76 (q, ¹*J*_{C-F} = 33.3 Hz, CF₃), 132.37, 132.36, 131.26 (q, ¹*J*_{C-F} = 33.3 Hz, CF₃), 130.80, 126.52, 126.25 (q, ²*J*_{C-F} = 4.0 Hz), 125.20, 124.24 (q, ³*J*_{C-F} = 4.0 Hz), 121.89, 119.07 (q, ²*J*_{C-F} = 4.0 Hz), 115.87 (tt, ¹*J*_{C-F} = 279.8 Hz, ²*J*_{C-F} = 38.4 Hz, CF₂), 111.45 (tt, ¹*J*_{C-F} = 273.7 Hz, ²*J*_{C-F} = 42.4 Hz, CF₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.30 (s, 3F), -63.35 (s, 3F), -86.21 (t, ³*J*_{F-F} = 3.3 Hz, 2F), -98.98 (t, ³*J*_{F-F} = 3.3 Hz, 2F).; HRMS (ESI) *m/z* calcd for C₁₈H₁₀ON₃F₁₀ [M + H]⁺: 474.0659, found 474.0658.

Ethyl 1-(1,1,2,2-*tetrafluoro*-2-(3-(*trifluoromethyl*)*phenoxy*)*ethyl*)-1H-1,2,3-*triazole*-4*carboxylate* (*4fp*). Yield: 73%; colorless oil; *R_f* (petroleum ether/EtOAc, 9:1) = 0.32; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.61-7.59 (m, 1H), 56-7.52 (m, 1H), 7.42 (br s, 1H), 7.38-7.35 (m, 1H), 4.48 (q, ${}^{3}J_{\text{H-H}} = 7.2$ Hz, 2H), 1.44 (t, ${}^{3}J_{\text{H-H}} = 7.1$ Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 159.55, 148.33, 140.97, 132.69 (q, ${}^{1}J_{\text{C-F}} = 33.3$ Hz, CF₃), 130.83, 126.91, 125.10, 124.28 (q, ${}^{3}J_{\text{C-F}} = 4.0$ Hz), 118.94 (q, ${}^{2}J_{\text{C-F}} = 4.0$ Hz), 115.62 (tt, ${}^{1}J_{\text{C-F}} = 278.8$ Hz, ${}^{2}J_{\text{C-F}} = 37.4$ Hz, CF₂), 111.31 (tt, ${}^{1}J_{\text{C-F}} = 272.8$ Hz, ${}^{2}J_{\text{C-F}} = 46.4$ Hz, CF₂), 62.11, 14.28.; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.37 (s, 3F), -86.35 (t, ${}^{3}J_{\text{F-F}} = 3.3$ Hz, 2F), -99.23 (t, ${}^{3}J_{\text{F-F}} = 3.3$ Hz, 2F).; HRMS (ESI) *m*/*z* calcd for C₁₄H₁₁N₃O₃F₇ [M + H]⁺: 402.0683, found 402.0683.

4-Butyl-1-(2-(2,4-di-tert-butylphenoxy)-1,1,2,2-tetrafluoroethyl)-1H-1,2,3-triazole (4fq). Yield: 81%; colorless oil; R_f (petroleum ether) = 0.87; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.59-7.57 (m, 1H), 7.55-7.53 (m, 1H), 7.42 (br s, 1H), 7.38-7.36 (m, 1H), 2.81 (t, ³J_{H-H} = 7.4 Hz, 2H), 1.76-1.68 (m, 2H), 1.46-1.38 (m, 2H), 0.95 (t, ³J_{H-H} = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 149.26, 148.64, 132.66 (q, ¹J_{C-F} = 33.3 Hz, CF₃), 130.71, 125.19, 124.06 (q, ³J_{C-F} = 4.0 Hz), 121.91, 119.58, 119.05 (q, ²J_{C-F} = 4.0 Hz), 115.92 (tt, ¹J_{C-F} = 278.8 Hz, ²J_{C-F} = 38.4 Hz, CF₂), 111.37 (tt, ¹J_{C-F} = 271.7 Hz, ²J_{C-F} = 41.4 Hz, CF₂), 31.22, 25.18, 22.36, 13.87; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.37 (s, 3F), -86.38 (t, ³*J*_{F-F} = 3.4 Hz, 2F), -98.99 (t, ³*J*_{F-F} = 3.3 Hz, 2F).; HRMS (EI) *m*/*z* calcd for C₁₅H₁₄ON₃F₇ [M]⁺: 385.1025, found 385.1029.

1-(2-(2,4-Di-tert-*butylphenoxy)-1,1,2,2-tetrafluoroethyl)-4-phenyl-1*H-*1,2,3-triazole* (*4gm*). Yield: 90%;white solid, mp 102–103 °C; *R_f* (petroleum ether) = 0.78; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.89-7.87 (m, 2H), 7.49 – 7.45 (m, 2H), 7.41-7.39 (m, 2H), 7.25-7.24 (m, 1H), 7.21-7.18 (m, 1H), 1.31 (s, 9H), 1.30 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 148.50, 148.48, 146.39, 139.70, 129.25, 129.18, 129.09, 126.27, 125.13, 124.13, 118.88, 118.42, 116.43 (tt, ¹*J*_{C-F} = 280.6 Hz, ²*J*_{C-F} = 38.3 Hz, CF₂), 111.72 (tt, ¹*J*_{C-F} = 272.8 Hz, ²*J*_{C-F} = 42.3 Hz, CF₂), 35.06, 34.74, 31.51, 30.19; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.47 (t, ³*J*_{F-F} = 3.4 Hz, 2F), -98.60 (t, ³*J*_{F-F} = 3.4 Hz, 2F); HRMS (ESI) *m/z* calcd for C₂₄H₂₈ON₃F₄ [M + H]⁺: 450.2163, found 450.2163.

1-(2-(2,4-*Di*-tert-*butylphenoxy*)-*1*,*1*,2,2-*tetrafluoroethyl*)-*4*-(4-*methoxyphenyl*)-*1*H-*1*,2,3 *triazole* (*4gn*). Yield: 85%; white solid, mp 85–86 °C; *R_f* (petroleum ether/EtOAc, 96:4) = 0.57; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.82-7.80 (m, 2H), 7.41-7.40 (m, 1H), 7.27-7.24 (m, 1H), 7.21-7.18 (m, 1H), 7.01-6.98 (m, 2H), 3.86 (s, 3H), 1.31 (s, 9H), 1.30 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 160.43, 148.47, 148.35, 146.40, 139.70, 127.63, 125.12, 124.12, 121.72, 118.88, 117.48, 116.44 (tt, ¹*J*_{C-F} = 279.8 Hz, ²*J*_{C-F} = 38.4 Hz, CF₂), 114.59, 111.70 (tt, ¹*J*_{C-F} = 303.0 Hz, ²*J*_{C-F} = 43.2 Hz, CF₂), 55.51, 35.06, 34.75, 31.51, 30.19; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.49 (t, ³*J*_{F-F} = 3.4 Hz, 2F), -98.61 (t, ³*J*_{F-F} = 3.4 Hz, 2F); HRMS (ESI) *m/z* calcd for C₂₅H₃₀O₂N₃F₄ [M + H]⁺: 480.2269, found 480.2268.

1-(2-(2,4-Di-tert-*butylphenoxy)-1,1,2,2-tetrafluoroethyl)-4-(4-nitrophenyl)-1*H-*1,2,3-triazole* (*4gk*). Yield: 83%; white solid, mp 116117 °C; *R*_f (petroleum ether/EtOAc, 95:5) = 0.64; ¹H NMR (400 MHz, CDCl₃) δ 8.36-8.34 (m, 2H), 8.34 (s, 1H), 8.09-8.07 (m, 2H), 7.41-7.40 (m, 1H), 7.26-7.23 (m, 1H), 7.21-7.18 (m, 1H), 1.31 (s, 9H), 1.30 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 148.70, 148.18, 146.31, 139.65, 135.18, 126.90, 125.21, 124.61, 124.20, 120.04, 118.87, 118.84, 116.32 (tt, ¹*J*_{C-F} = 274.7 Hz, ²*J*_{C-F} = 36.4 Hz, CF₂), 111.71 (tt, ¹*J*_{C-F} = 276.7 Hz, ²*J*_{C-F} = 44.4 Hz, CF₂), 35.06, 34.76, 31.50, 30.21; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.31 (t, ³*J*_{F-F} = 2.5 Hz, 2F), -98.61 (t, ³*J*_{F-F} = 2.5 Hz, 2F); HRMS (ESI) *m/z* calcd for C₂₄H₂₇O₃N₄F₄ [M + H]⁺: 495.2014, found 495.2014.

Ethyl 1-(2-(2,4-di-tert-*butylphenoxy*)-1,1,2,2-*tetrafluoroethyl*)-1H-1,2,3-*triazole*-4*carboxylate* (**4gp**). Yield: 85%; colorless oil; R_f (petroleum ether/EtOAc, 9:1) = 0.27; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.41-7.40 (m, 1H), 7.21-7.19 (m, 2H), 4.47 (q, ³J_{H-H} = 7.2 Hz, 2H), 1.43 (t, ${}^{3}J_{\text{H-H}} = 7.1$ Hz, 3H), 1.31 (s, 9H), 1.30 (s, 9H); 13 C NMR (101 MHz, CDCl₃) δ 159.63, 148.68, 146.23, 140.92, 139.68, 126.97, 125.18, 124.16, 118.85, 116.14 (tt, ${}^{1}J_{\text{C-F}} = 279.9$ Hz, ${}^{2}J_{\text{C-F}} = 37.4$ Hz, CF₂), 111.60 (tt, ${}^{1}J_{\text{C-F}} = 274.7$ Hz, ${}^{2}J_{\text{C-F}} = 43.4$ Hz, CF₂), 62.07, 35.02, 34.72, 31.46, 30.19, 14.35; 19 F NMR (376 MHz, CDCl₃) δ -83.78 (t, ${}^{3}J_{\text{F-F}} = 3.3$ Hz); HRMS (ESI) *m*/*z* calcd for C₂₁H₂₈O₃N₃F₄ [M + H]⁺: 446.2061, found 446.2062.

1-(2-(4-Bromo-1H-pyrazol-1-yl)-1,1,2,2-tetrafluoroethyl)-4-phenyl-1H-1,2,3-triazole (4hm). Yield: 64%; white solid, mp 102–105 °C; R_f (petroleum ether/EtOAc, 8:2) = 0.54; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.87 – 7.81 (m, 3H), 7.67 (d, J = 1.4 Hz, 1H), 7.51 – 7.38 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.56, 144.87, 129.41, 129.25, 129.20, 128.75, 126.27, 118.27, 112.11 (tt, ¹ $J_{C-F} = 273.7$ Hz, ² $J_{C-F} = 42.4$ Hz), 111.71(tt, ¹ $J_{C-F} = 270.7$ Hz, ² $J_{C-F} = 42.4$ Hz), 97.91; ¹⁹F NMR (376 MHz, CDCl₃) δ -97.05 (t, ³ $J_{F-F} = 4.8$ Hz, 2F), -98.40 (t, ³ $J_{F-F} = 4.8$ Hz, 2F).; HRMS (ESI) *m*/*z* calcd for C₁₃H₉N₅BrF₄ [M + H]⁺: 389.9972, found 389.9973.

1-(1,1,2,2-Tetrafluoro-2-(phenylthio)ethyl)-4-p-*tolyl-1*H-*1,2,3-triazole* (*4ij*). Yield: 59%; white solid, mp 68–71 °C; *R_f* (petroleum ether/EtOAc, 9:1) = 0.60; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.67-7.65 (m, 2H), 7.56-7.54 (m, 2H), 7.41-7.37 (m, 1H), 7.33-7.29 (m, 2H), 7.20-7.18 (m, 2H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.55, 139.24, 137.31, 131.18, 129.82, 129.55, 126.21, 126.13, 122.86, 122.14 (tt, ¹*J*_{C-F} = 300.9 Hz, ²*J*_{C-F} = 37.4 Hz, CF₂), 117.96, 113.68 (tt, ¹*J*_{C-F} = 274.7 Hz, ²*J*_{C-F} = 41.4 Hz, CF₂), 21.49; ¹⁹F NMR (376 MHz, CDCl₃) δ -89.63 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -95.58 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (ESI) *m/z* calcd for C₁₇H₁₄N₃F₄S [M + H]⁺: 368.08397, found 368.08391.

Synthesis of 1-(1,1,2,2-tetrafluoroethyl)-4-*p*-tolyl-1*H*-1,2,3-triazole (5). 4ij (40 mg, 0.11 mmol) was dissolved in dry xylene (1 mL) and heated to 120 °C in a 10 mL screw-cap tube equipped with magnetic stirrer and septum. AIBN (3 mg, 0.02 mmol) and *n*-Bu₃SnH (55 mg, 0.19 mmol) in dry xylene (1 mL) were added dropwise over 20 min. After 10 min of further heating, the reaction mixture was cooled to rt, evaporated and purified by flash column chromatography (pentane/EtOAc, 9:1). Alternatively **5** was prepared from **2i**. **2i** (0.338 g, 1.349 mmol) was dissolved in dry xylene (5 mL) and heated to 100 °C in a 20 mL round-bottomed flask equipped with magnetic stirrer, septum and connected to cold-trap receiver filled with dry THF (2 mL) cooled to -78 °C. AIBN (33 mg, 0.202 mmol) and *n*-Bu₃SnH (0.687 g, 2.361 mmol) in dry xylene (2 mL) were added dropwise over 40 min. Stirring at 100 °C together with cold-trap distillation (-78 °C) was continued for 5 h. THF solution of the product containing 2-azido-1,1,2,2-tetrafluoroethane (13% GC yield) was directly used for click reaction. To the cold

colution of the azide, **3j** (20 mg, 0.17 mmol) and copper(I) 3-methylsalicylate (1 mg, 0.005 mmol) were added, and the reaction mixture was stirred at rt for 18 h (UPLC-MS control). After evaporation of the solvent and crystallization from hexane, pure **5** was obtained. Yield: 73% from **4ij**, 6% (21 mg) from **2i**; white solid, mp 68–71 °C; R_f (pentane/EtOAc, 9:1) = 0.55; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.77-7.75 (m, 2H), 7.29-7.27 (m, 2H), 6.66 (tt, ²*J*_{H-F} = 52.4 Hz, ³*J*_{H-F} = 4.0 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.82, 139.48, 129.89, 126.18, 125.99, 117.10, 112.30 (tt, ¹*J*_{C-F} = 266.6 Hz, ²*J*_{C-F} = 29.3 Hz, CF₂), 107.82 (tt, ¹*J*_{C-F} = 253.5 Hz, ²*J*_{C-F} = 35.3 Hz, CF₂), 21.49; ¹⁹F NMR (376 MHz, CDCl₃) δ -99.44 (td, ³*J*_{F-F} = 7.6 Hz, ³*J*_{F-H} = 3.8 Hz, 2F), -137.85 (dt, ²*J*_{F-H} = 52.6 Hz, ³*J*_{F-F} = 7.6 Hz, 2F); HRMS (EI) *m*/*z* calcd for C₁₁H₉N₃F₄ [M]⁺: 259.0733, found 259.0735.

Synthesis of 5-iodo-1-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-4-(*p*-tolyl)-1*H*-1,2,3-triazole (7aj). To a 10 mL screw-cap glass tube cooled to 0 °C, containing copper(I) *p*-tolylacetylide 6j (0.196 g, 1.1 mmol) and azide 2a (0.235 g, 1 mmol) in THF (4 mL), a solution of I₂ (0.254 g, 1 mmol) and Et₃N (0.202 g, 2 mmol) in THF (1 mL) was slowly added. After slow warming to rt and stirring under Ar for 16 h, the reaction mixture was poured into water and extracted with Et₂O. The organic phase was dried (MgSO₄), concentrated and the residue chromatographed on silica gel (hexane/EtOAc, 99:1) to obtain white crystalline compound (0.252 g, 62% yield), mp 90–91 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.72 (m, 2H), 7.30–7.28 (m, 2H), 7.23–7.20 (m, 3H), 7.17-7.15 (m, 2H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.32, 148.74, 139.56, 129.91, 129.46, 128.49, 127.03, 126.08, 121.77, 115.95 (tt, ¹*J*_{C-F} = 278.8 Hz, ²*J*_{C-F} = 36.4 Hz), 112.41 (tt, ¹*J*_{C-F} = 273.7 Hz, ²*J*_{C-F} = 39.4 Hz), 71.54, 21.53; ¹⁹F NMR (376 MHz, CDCl₃) δ - 83.63 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -94.01 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₁₇H₁₃N₃F₄IO [M + H]⁺: 478.00339, found 478.00325.

Synthesis of 5-iodo-4-phenyl-1-(1,1,2,2-tetrafluoro-2-(4-methoxyphenoxy)ethyl)- 1*H*-1,2,3-triazole (7dm). To a 10 mL screw-cap glass tube cooled to 0 °C, containing copper(I) phenylacetylide (6m) (0.181 g, 1.1 mmol) and azide 2d (0.265 g, 1 mmol) in THF (4 mL), a solution of I₂ (0.254 g, 1 mmol) and Et₃N (0.202 g, 2 mmol) in THF (1 mL) was slowly added. After slow warming to rt and stirring under Ar for 16 h, the reaction mixture was poured into water (10 mL) and extracted with Et₂O. The organic phase was dried (MgSO₄), concentrated and the residue chromatographed on silica gel (hexane/EtOAc, 99:1) to obtain white crystalline compound (0.438 g, 89% yield), mp 96–97 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94–7.92 (m, 2H), 7.51–7.47 (m, 3H), 7.18–7.16 (m, 2H), 6.90-6.87 (m, 2H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.32, 152.24, 141.95, 129.51, 129.01, 128.77, 128.64, 123.09, 115.95 (tt, ¹*J*_C-

 $_{\rm F}$ = 276.7 Hz, $^{2}J_{\rm C-F}$ = 38.4 Hz), 114.80, 112.46 (tt, $^{1}J_{\rm C-F}$ = 272.7 Hz, $^{2}J_{\rm C-F}$ = 42.4 Hz), 71.82, 55.76; 19 F NMR (376 MHz, CDCl₃) δ -83.87 (t, $^{3}J_{\rm F-F}$ = 3.8 Hz, 2F), -94.94 (t, $^{3}J_{\rm F-F}$ = 3.8 Hz, 2F); HRMS (ESI) *m*/*z* calcd for C₁₇H₁₃N₃F₄IO₂ [M + H]⁺: 493.99833, found 493.99831.

of 5-((4-fluorophenyl)ethynyl)-1-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-4-(p-**Synthesis** tolyl)-1H-1,2,3-triazole (8). Iodotriazole 7aj (0.145 g, 0.3 mmol), 1-ethynyl-4-fluorobenzene (37 mg, 0.3 mmol), and K₂CO₃ (0.138 g, 1 mmol) were suspended in dry DMF (1 mL) and degassed. Pd(OAc)₂ (2 mg, 0.009 mmol, 0.03 equiv.) and copper(I) 3-methylsalicylate (2 mg, 0.009 mmol, 0.03 equiv.) were added and the reaction mixture was stirred at 50 °C for 24 h under UPLC-MS control. Water (5 mL) was added, the product was extracted with Et₂O, the combined organic phase was washed with brine, dried (MgSO₄), and concentrated. The crude product was purified by flash column chromatography (hexane). Yield: 43%; yellow solid, mp 89–93 °C; ¹H NMR (500.0 MHz, CDCl₃): δ 8.13-8.11 (m, 2H), 7.58-7.54 (m, 2H), 7.37-7.35 (m, 2H), 7.33-7.31 (m, 2H), 7.29-7.27 (m, 1H), 7.21-7.19 (m, 2H), 7.14-7.10 (m, 2H), 2.43 (s, 3H); ¹³C NMR (125.7 MHz, CDCl₃): δ 163.46 (d, ¹J_{C-F} = 252.6), 148.86, 148.61, 139.58, 133.76 $(d, {}^{3}J_{C-F} = 8.7), 129.75, 129.52, 126.82, 126.65, 126.07, 123.37, 121.51, 117.33 (d, {}^{4}J_{C-F} = 3.6),$ 116.17 (d, ${}^{2}J_{C-F} = 22.3$), 115.97 (tt, ${}^{1}J_{C-F} = 277.6$, ${}^{2}J_{C-F} = 37.1$, CF₂), 112.07 (tt, ${}^{1}J_{C-F} = 273.1$, $^{2}J_{C-F} = 42.2, CF_{2}$, 102.14, 73.94, 21.45; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.90 (t, $^{3}J_{F-F} = 3.8$ Hz, 2F), -97.71 (t, ${}^{3}J_{F-F} = 3.8$ Hz, 2F), -108.14 (tt, ${}^{3}J_{H-F} = 8.3$ Hz, ${}^{4}J_{H-F} = 5.3$ Hz, 1F); HRMS (ESI) m/z calcd for C₂₅H₁₇F₅N₃O [M + H]⁺: 470.12863, found 470.12864.

Synthesis of 4-(phenyl)-1-(1,1,2,2-tetrafluoro-2-(4-methoxyphenoxy)ethyl)-5-(*p***-tolyl)-1***H***-1,2,3-triazole (9).** To a 5 mL screw-cap glass tube containing **7dm** (88 mg, 0.18 mmol, 1.0 equiv.), *p*-tolylboronic acid (36.7 mg, 0.27 mmol, 1.5 equiv.), and K₂CO₃ (69 mg, 0.5 mmol, 2.8 equiv.), dry DMF (2.0 mL) and Pd(OAc)₂ (1.2 mg, 0.01 mmol, 2.8 mol%) were added. The reaction mixture was stirred at rt in the closed vial for 16 h (UPLC-MS control), then poured into 5% HCl (10 mL) and extracted with Et₂O. The organic phase was dried (MgSO₄), concentrated, chromatographed on silica gel (hexane/EtOAc, 99:1), and triturated with cold hexane to obtain white crystalline product **9** (43 mg). Yield: 52%; white solid, mp 105–107 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.50 (m, 2H), 7.26–7.24 (m, 7H), 7.11–7.08 (m, 2H), 6.86-6.84 (m, 2H), 3.78 (s, 3H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.26, 145.58, 141.99, 140.38, 134.62, 130.34, 129.69, 129.19, 128.65, 128.50, 127.28, 123.38, 123.21, 115.99 (tt, ¹*J*_C-F = 276.7 Hz, ²*J*_{C-F} = 37.4 Hz), 114.73, 112.55 (tt, ¹*J*_{C-F} = 271.7 Hz, ²*J*_{C-F} = 41.4 Hz), 55.75, 21.66; ¹⁹F NMR (376 MHz, CDCl₃) δ -83.53 (t, ³*J*_{F-F} = 3.8 Hz, 2F), -93.96 (t, ³*J*_{F-F} = 3.8 Hz, 2F); HRMS (ESI) *m*/_z calcd for C₂₄H₂₀F₄N₃O₂ [M + H]⁺: 458.14862, found 458.14862.

NMR spectra collection

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Crystallographic data collection

The crytal data were collected on an Xcalibur PX system equipped with Onyx CCD detector and a Cu K α sealed tube ($\lambda = 1.54178$ Å) with an enhanced monochromator using combined φ and ω scans at 180 K. CrysAlisProCCD⁵ was used for data collection, cell refinement and data reduction. All structures were solved by direct methods with SIR92⁶ and refined by full-matrix least-squares on F with CRYSTALS.⁷ The positional and anisotropical thermal parameters of all non-hydrogen atoms were refined. All hydrogen atoms were found from a Fourier difference map and then recalculated into idealized positions and refined with riding constraints.

Crystal data for **4dm** (0.15 × 0.30 × 0.62 mm): C₁₇H₁₃F₄N₃O₂, monoclinic, space group *P*2₁/*c*, a = 18.5871(12) Å, b = 5.6567(4) Å, c = 15.3181(11) Å, $\beta = 95.884(6)^{\circ}$, V = 1602.08(19) Å³, Z = 4, M = 367.30, 6578 reflections measured, 3165 independent reflections. Final R = 0.048, wR = 0.048, GoF = 1.145 for 2402 reflections with $I > 2\sigma(I)$ and 236 parameters. CCDC 1545038.

Crystal data for **4hm** (0.07 × 0.08 × 0.31 mm): C₁₃H₈Br₁F₄N₅, orthorhombic, space group $Pna2_1$, a = 18.6519(9) Å, b = 5.6223(3) Å, c = 27.0706(13) Å, V = 2838.8(2) Å³, Z = 8, M = 780.27, 19763 reflections measured, 4630 independent reflections. Final R = 0.028, wR = 0.029, GoF = 1.111 for 4020 reflections with $I > 2\sigma(I)$ and 416 parameters. Flack parameter x = 0.058(15). The asymmetric unit contains two crystallographically independent molecules of **4hm.** CCDC 1545040.

Crystal data for **4***ij* (0.06 × 0.36 × 0.63 mm): C₁₇H₁₃F₄N₃S₁, orthorhombic, space group $P2_12_12_1$, a = 5.3006(6) Å, b = 8.6660(10) Å, c = 35.753(4) Å, V = 1642.3(3) Å³, Z = 4, M = 367.37, 19043 reflections measured, 3016 independent reflections. Final R = 0.062, wR = 0.059, GoF = 0.969 for 2465 reflections with $I > 2\sigma(I)$ and 227 parameters. Flack parameter x = 0.14(3). CCDC 1545041.

Crystal data for **5** (0.05 × 0.10 × 0.81 mm): C₁₁H₉F₄N₃, monoclinic, space group P2₁, a = 7.1098(10) Å, b = 5.6455(8) Å, c = 14.581(2) Å, $\beta = 90.522(7)^\circ$, V = 585.25(14) Å³, Z = 2, M = 259.20, 7865 reflections measured, 2147 independent reflections. Final R = 0.082, wR = 0.092, GoF = 1.040 for 1878 reflections with $I > 2\sigma(I)$ and 165 parameters. Flack parameter x = -0.1(5). The data collection was considerably affected by the poor crystal quality, which resulted in a slightly lower precision of the structure determination. Nevertheless, all the main structural features of this compound are still described reasonably well. The investigated crystal was found to be a twin with the twin law (1 0 0, 0 -1 0, 0 0 -1), as determined by ROTAX⁸ and a refined component ratio of 0.937(3):0.063(3) Several restraints were used to regularize the geometry and the thermal motion of the tetrafluoroethyl chain. CCDC 1545042.

Crystal data for 7*dm* (0.14 × 0.16 × 0.37 *mm*): C₁₇H₁₂F₄I₁N₃O₂, monoclinic, space group *C*2/*c*, *a* = 16.0915(14) Å, *b* = 7.1728(6) Å, *c* = 31.911(3) Å, β = 104.303(3)°, *V* = 3569.0(5) Å³, *Z* = 8, *M* = 493.20, 27846 reflections measured, 3282 independent reflections. Final *R* = 0.089, *wR* = 0.092, *GoF* = 1.010 for 2184 reflections with *I* > 2 σ (*I*) and 244 parameters. CCDC 1545039.

Figure SI1 An ORTEP⁹ view of 4dm, displacement ellipsoids shown with 50 % probability.

Figure SI2 An ORTEP⁹ view of **4hm**, displacement ellipsoids shown with 50 % probability. Only one of the molecules contained in the asymmetric unit is depicted.

Figure SI3 An ORTEP⁹ view of 4ij, displacement ellipsoids shown with 50 % probability.

Figure SI4 An ORTEP⁹ view of 5, displacement ellipsoids shown with 40 % probability.

Figure SI5 An ORTEP⁹ view of 7dm, displacement ellipsoids shown with 50 % probability.

References

- 1 F. Nanteuil and J. Waser, Angew. Chem., Int. Ed., 2011, 50, 12075–12079.
- 2 S.-Z. Zhu, J. Chem. Soc., Perkin Trans. 1, 1994, 2077–2081.
- 3 Y. Chernykh, K. Hlat-Glembová, B. Klepetářová and P. Beier, *Eur. J. Org. Chem.*, 2011, 4528–4531.
- 4 A. Budinská, J. Václavík, V. Matoušek and P. Beier, Org. Lett., 2016, 18, 5844–5847.
- 5 CrysAlisPro, Oxford Diffraction, 2002.
- A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, *J. Appl. Cryst.*, 1994, 27, 435.

- 7 P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, *J. Appl. Cryst.*, 2003, **36**, 1487.
- 8 R. I. Cooper, R. O. Gould, S. Parsons and D. J. Watkin, J. Appl. Cryst. 2002, 35, 168-174.
- 9 L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.