Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Sulfinyl Isobutyramide as an Auxiliary for Palladium(II)-Catalyzed

C-H Arylation and Iodination of Benzylamine Derivatives

Rui Wang,^{‡a,b} Yongzheng Ding^{‡a,b} and Gang Li*^a

^a Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China. E-mail: gangli@fjirsm.ac.cn.

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Table of Contents

1. General Information	S2
2. Experimental Section	S2
2.1 Preparation and characterization of substrates	S2
2.2 Reaction conditions optimization for <i>ortho</i> -C-H bond arylation	S8
2.3 ortho-Arylation of benzylamine	S9
2.3.1 General procedure for ortho-arylation of benzylamine	derivatives with
<i>p</i> -iodotoluene	S9
2.3.2 General procedure for <i>ortho</i> -arylation of 3d with aryl iodide	esS16
2.4 Reaction conditions optimization for <i>ortho</i> -C-H bond iodination.	S20
2.5 General procedure for <i>ortho</i> -iodination of benzylamine	S21
2.6 Arylation at a lower temperature	S27
2.7 Removal of the directing group	
2.8 Control experiment	
2.8.1 Procedures for preparing substrate <i>N</i> -benzyl-pivalamide S3	
2.8.2 Control arylation reaction	
2.9 References	
3. NMR Spectra of New Compounds	

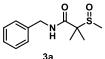
1. General Information

Unless otherwise noted, the commercial available reagents were purchased from commercial suppliers (such as Strem, J&K Chemical Co., Energy Chemical and Sinopharm,), and used as received. Solvents were dried over 4 Å molecular sieves. Hexafluoroisopropanol (HFIP) was distilled before use. Unless otherwise noted, all reactions were run under air and the indicated reaction temperature was that of the oil bath. The reaction vessels used for C-H functionalization were 38 mL sealed tube (Synthware). Purification of products was performed by flash chromatography (FC) using silica gel or preparative thin layer chromatography. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III spectrometer (400 MHz and 101 MHz, respectively). Chemical shifts are reported parts per million (ppm) referenced to CDCl₃ (δ 7.26 ppm) for ¹H NMR, CDCl₃ (δ 77.16 ppm) for ¹³C NMR or tetramethylsilane (TMS, δ 0.00 ppm for 1H NMR), MeOD (δ 49.00 ppm) for ¹³C NMR. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = doublettriplet, q = quartet, m = multiplet and br = broad. High-resolution mass spectra (HRMS) were obtained on Impact II UHR-TOF from Bruker with an ESI source at Fujian Institute of Research on the Structure of Matter.

2. Experimental Section

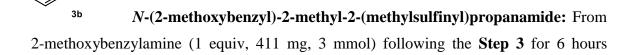
$Br \xrightarrow{0}_{1. \text{ NaSCH}_{3}(20\% \text{ aq.}), \text{ EtOH, rt}} \xrightarrow{0}_{2. \text{ LiOH} + \text{H}_{2}\text{O}, \text{ THF, H}_{2}\text{O}, \text{ reflux}} \xrightarrow{1}_{3} \xrightarrow{0}_{4} \xrightarrow{0}_{4} \xrightarrow{1}_{4} \xrightarrow{1}_{2} \xrightarrow{1}_{2} \xrightarrow{1}_{4} \xrightarrow{1}_{4$

2.1 Preparation and characterization of substrates.

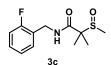

Scheme S1. General procedure for preparing substrates

Step 1: A round-bottom flask was charged with ethyl 2-bromo-2-methylpropanoate **1** (9.75 g, 50 mmol) and NaSCH₃ (20% aq., 31 mL, 100 mmol). Then ethanol (50 mL) was added, the mixture was stirred for 12 hours at room temperature. Then THF (50 mL), H₂O (15 mL) and LiOH·H₂O (6.30 g, 150 mmol) were added, the mixture were stirred at 90 °C under reflux for 4 hours. Then the reaction mixture was cooled to 0 °C, and an aqueous

solution of hydrochloric acid was added dropwise till the pH was adjusted to 2. The solvent was removed under reduced pressure, and the residue was washed with brine and extracted with EtOAc (70 mL × 5). The combined organic phase was dried on Na₂SO₄, filtered and concentrated *in vacuo* to afford compound 2-methyl-2-methylthiopropanoic acid **S1** (6.28 g, 94%) as a light yellow oil. **S1**: ¹H NMR (400 MHz, CDCl₃) δ 10.77 (brs, 1H), 2.17 (s, 3H), 1.52 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 46.1, 24.8, 13.2.

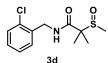

Step 2: To a solution of product **S1** (without purification, 47 mmol) from Step 1 stirred in EtOH (12 mL) was added H₂O₂ (30% aq., 5.11 mL, 50 mmol) dropwise at 0 °C. The mixture was stirred for another 3 hours at room temperature and quenched with Pd/C (10%, 35 mg) for 0.5 h.^[S1] Then the mixture was filtered with Celite pad and the filtrate concentrated *in vacuo*. The residue could be easily purified by silica gel chromatography with EtOAc to afford compound 2-methyl-2-(methylsulfinyl) propanoic acid **2** (6.46 g, 92%) as a white solid. **2**: ¹H NMR (400 MHz, CDCl₃) δ 9.17 (brs, 1H), 2.64 (s, 3H), 1.61 (s, 3H), 1.47 (s, 3H); ¹³C NMR (101 MHz, MeOD) δ 173.7, 63.5, 33.5, 20.6, 16.6; HRMS (m/z, ESI-TOF): Calcd for C₅H₁₀NaO₃S⁺ [M+Na⁺] 173.0243, found 173.0243.

Step 3: To a solution of **2** (1.55 g, 10.3 mmol) and benzylamine (1.1 mL, 10.1 mmol) in CH_2Cl_2 (15 mL) at room temperature was added 1-Hydroxybenzotriazole (1.46 g, 10.8 mmol), *N*,*N*-Diisopropylethylamine (1.9 mL, 10.8 mmol) and EDCI (2.07 g, 10.8 mmol). The mixture was stirred for 5 hours at room temperature. Then the mixture was washed with diluted solution of sodium bicarbonate and extracted with CH_2Cl_2 (60 mL × 3). The combined organic phase was dried on Na₂SO₄, filtered and concentrated *in vacuo*. The residue can be purified by silica gel chromatography with petroleum ether/EtOAc (4:1) to afford compound *N*-benzyl-2-methyl-2-(methylsulfinyl)propanamide **3a** (2.11 g, 86%).

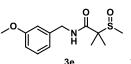


N-benzyl-2-methyl-2-(methylsulfinyl)propanamide: ¹H NMR (400

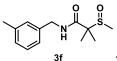
MHz, CDCl₃) δ 7.52 (s, 1H), 7.35-7.24 (m, 5H), 4.55-4.45 (ABm, J_{AB} = 14.8 Hz, 2H), 2.41 (s, 3H), 1.64 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 138.3, 128.8, 128.0, 127.6, 59.3, 43.7, 33.0, 23.0, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₈NO₂S⁺ [M+H⁺] 240.1053, found 240.1056.



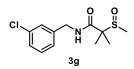
yielded the title compound (702.3 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.30-7.26 (m, 2H), 6.92-6.85 (m, 2H), 4.48 (ABqd, $J_{AB} = 14.3$ Hz, $J_d = 5.7$ Hz, 2H), 3.85 (s, 3H), 2.33 (s, 3H), 1.59 (s, 3H), 1.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 157.6, 129.9, 129.0, 126.2, 120.6, 110.3, 59.4, 55.4, 39.6, 32.8, 22.6, 18.8. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₂₀NO₃S⁺ [M+H⁺] 270.1158, found 270.1160.


N-(2-fluorobenzyl)-2-methyl-2-(methylsulfinyl)propanamide: From

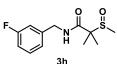
2-fluorobenzylamine (1 equiv, 375 mg, 3 mmol) following the **Step 3** for 7 hours yielded the title compound (647.9 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.38-7.35 (m, 1H), 7.28-7.24 (m, 1H), 7.12-7.08 (m, 1H), 7.07-7.03 (m, 1H), 4.60-4.50 (ABm, J_{AB} = 16.0 Hz, 2H), 2.41 (s, 3H), 1.63 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 161.0 (d, J_{C-F} = 247.7 Hz), 130.4 (d, J_{C-F} = 4.2 Hz), 129.5 (d, J_{C-F} = 8.1 Hz), 125.2 (d, J_{C-F} = 14.9 Hz), 124.4 (d, J_{C-F} = 3.7 Hz), 115.6 (d, J_{C-F} = 21.3 Hz), 59.3, 37.7 (d, J_{C-F} = 4.0 Hz), 33.0, 22.9, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₇FNO₂S⁺ [M+H⁺] 258.0959, found 258.0960.


N-(2-chlorobenzyl)-2-methyl-2-(methylsulfinyl)propanamide: From

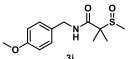
2-chlorobenzylamine (1 equiv, 708 mg, 5 mmol) following the **Step 3** for 6 hours yielded the title compound (1.22 g, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.43-7.41 (m, 1H), 7.38-7.36 (m, 1H), 7.26-7.20 (m, 2H), 4.59 (ABqd, $J_{AB} = 14.8$ Hz, $J_d = 5.6$ Hz, 2H), 2.41 (s, 3H), 1.64 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 135.6, 133.8, 130.4, 129.7, 129.1, 127.1, 59.4, 41.7, 33.0, 22.9, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₆CINNaO₂S⁺ [M+Na⁺] 296.0482, found 296.0487.


N-(3-methoxybenzyl)-2-methyl-2-(methylsulfinyl) propanamide:

From 3-methoxybenzylamine (1 equiv, 343 mg, 2.5 mmol) following the **Step 3** for 7 hours yielded the title compound (639 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.25-7.21 (m, 1H), 6.89 (d, *J* = 7.1 Hz, 1H), 6.85 (s, 1H), 6.79 (d, *J* = 7.8 Hz, 1H), 4.52-4.42 (ABm, 2H), 3.79 (s, 3H), 2.43 (s, 3H), 1.64 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 159.9, 139.8, 129.8, 120.1, 113.3, 113.0, 59.3, 55.3, 43.5, 33.0, 22.8, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₉NNaO₃S⁺ [M+Na⁺] 292.0978, found 292.0982.

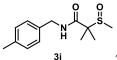

2-methyl-N-(3-methylbenzyl)-2-(methylsulfinyl)propanamide: From

3- methylbenzylamine (1 equiv, 424 mg, 3.5 mmol) following the **Step 3** for 7 hours yielded the title compound (769 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.23-7.19 (m, 1H), 7.15-7.02 (m, 3H), 4.46 (ABqd, $J_{AB} = 14.7$ Hz, $J_d = 5.8$ Hz, 2H), 2.42 (s, 3H), 2.33 (s, 3H), 1.63 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 138.4, 138.2, 128.7, 128.7, 128.3, 124.9, 59.3, 43.6, 33.0, 22.9, 21.5, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₉NNaO₂S⁺ [M+Na⁺] 276.1029, found 276.1029.

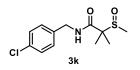

N-(3-chlorobenzyl)-2-methyl-2-(methylsulfinyl)propanamide:

From 3- chlorobenzylamine (1 equiv, 427 mg, 3 mmol) following the **Step 3** for 7 hours yielded the title compound (698 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.31 (s, 1H), 7.28-7.17 (m, 3H), 4.47 (ABqd, $J_{AB} = 15.0$ Hz, $J_d = 6.0$ Hz, 2H), 2.43 (s, 3H), 1.65 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 140.4, 134.6, 130.1, 128.1, 127.7, 126.0, 59.3, 43.1, 33.0, 23.0, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₆ClNNaO₂S⁺ [M+Na⁺] 296.0482, found 296.0480.

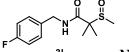
N-(3-fluorobenzyl)-2-methyl-2-(methylsulfinyl)propanamide: From


3- fluorobenzylamine (1 equiv, 440 mg, 3.5 mmol) following the **Step 3** for 6 hours yielded the title compound (790.2 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.33-7.27 (m, 1H), 7.09 (d, *J* = 7.5 Hz, 1H), 7.02 (d, *J* = 9.6 Hz, 1H), 6.96 (t, *J* = 8.4 Hz, 1H), 4.49 (ABqd, *J*_{AB} = 15.0 Hz, *J*_d = 5.9 Hz, 2H), 2.43 (s, 3H), 1.65 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 163.0 (d, *J*_{C-F} = 247.5 Hz), 140.9 (d, *J*_{C-F} = 7.1 Hz), 130.3 (d, *J*_{C-F} = 8.3 Hz), 123.5 (d, *J*_{C-F} = 2.9 Hz), 114.8 (d, *J*_{C-F} = 21.8 Hz), 114.5 (d, *J*_{C-F} = 21.1 Hz), 59.3, 43.1 (d, *J* = 1.7 Hz), 33.0, 23.1, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₇FNO₂S⁺ [M+H⁺] 258.0959, found 258.0957.

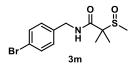
N-(4-methoxybenzyl)-2-methyl-2-(methylsulfinyl) propanamide:


From 4- methoxybenzylamine (1 equiv, 412 mg, 3 mmol) following the Step 3 for 7

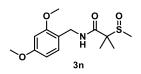
hours yielded the title compound (653 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 4.49-4.38 (ABm, 2H), 3.79 (s, 3H), 2.40 (s, 3H), 1.62 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 159.0, 130.5, 129.4, 114.1, 59.3, 55.4, 43.2, 33.0, 22.9, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₂₀NO₃S⁺ [M+H⁺] 270.1158, found 270.1156.


2-methyl-N-(4-methylbenzyl)-2-(methylsulfinyl)propanamide: From

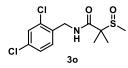
4- methylbenzylamine (1 equiv, 316 mg, 2.6 mmol) following the **Step 3** for 7 hours yielded the title compound (546 mg, 83%).¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 4.45(ABqd, *J*_{AB} = 14.8 Hz, *J*_d = 5.8 Hz, 2H), 2.41 (s, 3H), 2.32 (s, 3H), 1.62 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 137.2, 135.3, 129.5, 128.0, 59.3, 43.5, 33.1, 22.9, 21.2, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₉NNaO₂S⁺ [M+Na⁺] 276.1029, found 276.1029.


N-(4-chlorobenzyl)-2-methyl-2-(methylsulfinyl)propanamide:

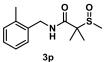
From 4- chlorobenzylamine (1 equiv, 354 mg, 2.5 mmol) following the **Step 3** for 7 hours yielded the title compound (560 mg, 82%).¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.31-7.24 (m, 4H), 4.50-4.40 (ABm, $J_{AB} = 15.2$ Hz, 2H), 2.40 (s, 3H), 1.63 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 136.9, 133.4, 129.4, 128.9, 59.3, 43.0, 33.0, 23.1, 18.6. Calcd for C₁₂H₁₇ClNO₂S⁺ [M+H⁺] 274.0663, found 274.0662.


N-(4-fluorobenzyl)-2-methyl-2-(methylsulfinyl)propanamide: From

4- fluorobenzylamine (1 equiv, 313 mg, 2.5 mmol) following the **Step 3** for 7 hours yielded the title compound (553 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.32-7.27 (m, 2H), 7.07-6.94 (m, 2H), 4.50-4.41 (ABm, 2H), 2.39 (s, 3H), 1.63 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 162.3 (d, *J* = 246.5 Hz), 134.2 (d, *J* = 3.3 Hz), 129.8 (d, *J* = 8.2 Hz), 115.6 (d, *J* = 21.6 Hz), 59.3, 43.0, 33.0, 23.1, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₇FNO₂S⁺ [M+H⁺] 258.0959, found 258.0961.


N-(4-bromobenzyl)-2-methyl-2-(methylsulfinyl)propanamide

From 4- bromobenzylamine (1 equiv, 518 mg, 2.8 mmol) following the **Step 3** for 7 hours yielded the title compound (719.3 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.45 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 4.50-4.38 (ABm, *J*_{AB} = 15.2 Hz, 2H), 2.40 (s, 3H), 1.63 (s, 3H), 1.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 137.5, 131.9, 129.7, 121.4, 59.3, 43.1, 33.0, 23.1, 18.5. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₆BrNNaO₂S⁺ [M+Na⁺] 339.9977, found 339.9979.


N-(2,4-dimethoxybenzyl)-2-methyl-2-(methylsulfinyl)

propanamide: From 2,4-dimethoxybenzylamine (1 equiv, 518 mg, 3.1 mmol) following the **Step 3** for 7 hours yielded the title compound (778 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.20 (d, *J* = 8.1 Hz, 1H), 6.44-6.40 (m, 2H), 4.45 (ABqd, *J*_{AB} = 14.2 Hz, *J*_d = 6.0 Hz, 1H), 4.35 (ABqd, *J*_{AB} = 14.2 Hz, *J*_d = 5.4 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 2.32 (s, 3H), 1.58 (s, 3H), 1.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 160.6, 158.6, 130.6, 118.9, 103.9, 98.6, 59.4, 55.5, 55.4, 39.2, 32.9, 22.5, 18.8. HRMS (m/z, ESI-TOF): Calcd for C₁₄H₂₁NNaO₄S⁺ [M+Na⁺] 322.1083, found 322.1086.

N-(2,4-dichlorobenzyl)-2-methyl-2-(methylsulfinyl) propanamide:

From 2,4-dichlorobenzylamine (1 equiv, 440 mg, 2.5 mmol) following the **Step 3** for 7 hours yielded the title compound (675.5 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.38-7.36 (m, 2H), 7.23-7.21 (m, 1H), 4.58-4.49 (ABm, 2H), 2.41 (s, 3H), 1.63 (s, 3H), 1.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 134.4, 134.3, 134.1, 131.2, 129.5, 127.4, 59.3, 41.2, 33.0, 23.0, 18.5. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₆Cl₂NO₂S⁺ [M+H⁺] 308.0273, found 308.0275.

2-methyl-N-(2-methylbenzyl)-2-(methylsulfinyl)propanamide: From

2- methylbenzylamine (1 equiv, 605 mg, 5 mmol) following the **Step 3** for 7 hours yielded the title compound (1.16 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 7.33-7.27 (m, 1H), 7.22-7.11 (m, 3H), 4.54 (ABqd, $J_{AB} = 14.8$ Hz, $J_d = 5.9$ Hz, 1H), 4.45

(ABqd, $J_{AB} = 14.8$ Hz, $J_d = 5.4$ Hz, 1H), 2.40 (s, 3H), 2.36 (s, 3H), 1.63 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 136.2, 135.8, 130.5, 128.7, 127.7, 126.2, 59.3, 41.7, 32.9, 22.8, 19.2, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₉NNaO₂S⁺ [M+Na⁺] 276.1029, found 276.1029.

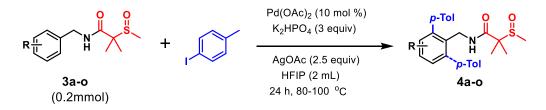
2-methyl-2-(methylsulfinyl)-N-(2-(trifluoromethyl)benzyl)

propanamide: From (2-(trifluoromethyl)phenyl)methanamine (1 equiv, 525 mg, 3 mmol) following the **Step 3** for 7 hours yielded the title compound (819 mg, 90%).¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.8 Hz, 1H), 7.61-7.46 (m, 3H), 7.38 (t, *J* = 7.3 Hz, 1H), 4.75 (ABqd, *J*_{AB} = 15.3 Hz, *J*_d = 5.3 Hz, 1H), 4.64 (ABqd, *J*_{AB} = 15.4, *J*_d = 5.2 Hz, 1H), 2.43 (s, 3H), 1.63 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 136.5, 132.3, 130.3, 128.3 (q, *J*_{C-F} = 31.3 Hz), 127.7, 126.2 (q, *J*_{C-F} = 5.6 Hz), 124.4 (q, *J*_{C-F} = 274.8 Hz), 59.3, 40.2, 33.0, 22.7, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₇F₃NO₂S⁺ [M+H⁺] 308.0927, found 308.0927.

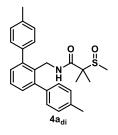
2.2 Reaction conditions optimization for *ortho*-C-H bond arylation.

General optimization procedure: A 38 mL Schlenk sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with amide **3a** (23.9 mg, 0.10 mmol, 1.0 equiv), *p-iodotoluene* (65.5mg, 0.30 mmol, 3.0 equiv), Pd(OAc)₂ (2.3 mg, 0.01 mmol, 10 mol %), AgOAc (41.8 mg, 0.25 mmol, 2.5 equiv), K₂HPO₄ (52.2 mg, 0.30 mmol, 3.0 equiv) and Additives (20 mol %). Then HFIP (1 mL) was added along the inside wall of the tube. The tube was then capped and submerged into a preheated set temperature oil bath. The reaction was stirred for 24 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 30 mL of EtOAc. The filtrate was concentrated *in vacuo*, crude ¹H NMR spectrum was taken using CH₂Br₂ as internal standard.

	$ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ $ } \\ \end{array} \\ } \\	$\begin{array}{c} Pd(OAc)_2 \ (10 \ mol \ \%) \\ K_2HPO_4 \ (3 \ equiv) \\ \hline \\ AgOAc \ (2.5 \ equiv) \\ HFIP \ (1 \ mL) \\ 12 \ h, \ 100 \ ^\circC \\ \mathbf{Additve} \end{array}$
Entry	Additive (20 mol %)	Yield[%] ^[b] (product)
1	PivOH	5(4a _{mono}), 71(4a _{di})
2	TsOH [·] H ₂ O	$2(4a_{mono}), 88(4a_{di})$
3	TFA	$5(4a_{mono}), 67(4a_{di})$

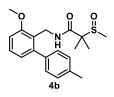

Table S1. Screening of the ligands or other additives effecting arylation process.^[a]

4	2,4,6-Trimethylbenzoic acid	$7(4a_{mono}), 69(4a_{di})$
5	(BnO) ₂ PO ₂	5(4a _{mono}), 71(4a _{di})
6	DMF	3(4a _{mono}), 80(4a _{di})
7	DMSO	$3(4a_{mono}), 74(4a_{di})$
8	2	6(4a mono), 43(4a di)
9	Ac-Phe-OH	$5(4a_{mono}), 87(4a_{di})$
10	Ac-Leu-OH	4(4a _{mono}), 86(4a _{di})
11	Ac-Gly-OH	4(4a _{mono}), 85(4a _{di})
12	Formyl-Gly-OH	$7(4a_{mono}), 69(4a_{di})$
13 ^[c]	Formyl-Gly-OH	$4(4a_{mono}), 40(4a_{di})$
14 ^[c]	CH ₃ CN	$4(4a_{mono}), 12(4a_{di})$
15	2-Chloropyridine	$trace(4a_{mono}), 17(4a_{di})$
16	2-(Trifluoromethyl)pyridine	$5(4a_{mono}), 71(4a_{di})$
17	2,6-Dichloropyridine	$3(4a_{mono}), 66(4a_{di})$

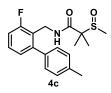

^{a)}Reaction conditions: amide **3a** (0.10 mmol), *p-iodotoluene* (0.30 mmol, 3 equiv), Pd(OAc)₂ (0.01 mmol, 10 mol %), K₂HPO₄ (0.30 mmol, 3 equiv), AgOAc (0.25 mmol, 2.5 equiv) and additives (0.02 mmol, 20 mol %) in HFIP (1.0 mL), 100 °C, 12 h. ^{b)}Yield was determined by ¹H NMR with CH₂Br₂ as internal standard. ^{c)} Additive (0.06 mmol, 60 mol %) was used.

2.3 ortho-Arylation of benzylamine.

2.3.1 General procedure for *ortho*-arylation of benzylamine derivatives with *p*-iodotoluene.

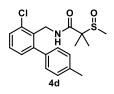


A 38 mL Schlenk sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with amide **3** (0.20 mmol, 1.0 equiv), *p*-iodotoluene (130.8 mg, 0.60 mmol, 3.0 equiv), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol %), AgOAc (83.5 mg, 0.50 mmol, 2.5 equiv) and K₂HPO₄ (104.4 mg, 0.6 mmol, 3.0 equiv). Then HFIP (2 mL) was added along the inside wall of the tube. The tube was then capped and submerged into a preheated set temperature oil bath. The reaction was stirred for 12 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 50 mL of EtOAc. The filtrate was concentrated *in vacuo*, crude ¹H NMR spectrum was taken using CH₂Br₂ as internal standard. The resulting residue was purified by preparative thin layer chromatography or flash chromatography using petroleum ether/EtOAc as the eluent.

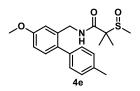

N-((4,4"-dimethyl-[1,1':3',1"-terphenyl]-2'-yl)methyl)-2-methyl-2-

(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 68.9 mg, 82%. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, *J* = 7.6 Hz, 1H), 7.27-7.17 (m, 10H), 6.82 (s, 1H), 4.35 (dd, *J* = 13.8, 5.4 Hz, 1H), 4.20 (dd, *J* = 13.8, 2.3 Hz, 1H), 2.38 (s, 6H), 2.22 (s, 3H), 1.34 (s, 3H), 1.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 143.9, 138.4, 137.0, 131.6, 129.8, 129.1, 128.9, 127.7, 59.2, 40.0, 32.8, 21.9, 21.3, 18.8. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₃₀NO₂S⁺ [M+H⁺] 420.1992, found 420.1996.

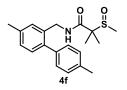
N-((3-methoxy-4'-methyl-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-2-


(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 44.5 mg, 62%. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (brs, 1H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.24-7.18 (m, 4H), 6.91-6.88 (m, 1H), 6.88-6.85 (m, 1H), 4.42 (d, *J* = 4.8 Hz, 2H), 3.89 (s, 3H), 2.41 (s, 3H), 2.38 (s, 3H), 1.53 (s, 3H), 1.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 158.5, 144.1, 137.7, 137.0, 129.2, 129.0, 128.5, 123.2, 122.7, 109.3, 59.5, 55.7, 37.2, 32.9, 22.2, 21.3, 18.9. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₆NO₃S⁺ [M+H⁺] 360.1628, found 360.1630.

N-((3-fluoro-4'-methyl-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-2-

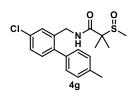

(**methylsulfinyl**)**propanamide:** The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 55.1 mg, 79%. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (td, J = 8.0, 5.8 Hz, 1H), 7.23-7.20 (m, 5H), 7.10-7.02 (m, 2H), 4.52-4.40 (ABm, 2H), 2.41 (s, 3H), 2.40 (s, 3H), 1.52 (s, 3H), 1.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 161.9 (d, $J_{C-F} = 248.5$ Hz), 144.8 (d, $J_{C-F} = 3.7$ Hz), 137.5, 136.6 (d, $J_{C-F} = 2.6$ Hz), 129.1, 129.1 (d, $J_{C-F} = 9.8$ Hz), 129.0, 126.1 (d, $J_{C-F} = 3.0$ Hz), 122.3 (d, $J_{C-F} = 14.6$ Hz), 114.4

(d, $J_{C-F} = 22.4$ Hz), 59.3, 35.9 (d, $J_{C-F} = 4.1$ Hz), 32.9, 22.5, 21.3, 18.7. HRMS (m/z, ESI-TOF): Calcd for $C_{19}H_{22}FNNaO_2S^+$ [M+Na⁺] 370.1247, found 370.1248.

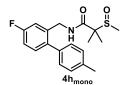

N-((3-chloro-4'-methyl-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-2-

(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 63.4 mg, 87%; 1.12 g, 77% in a 4 mmol (1.10 gram) scale. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.9 Hz, 1H), 7.31-7.15 (m, 7H), 4.50 (ABqd, *J*_{AB} = 13.7 Hz, *J*_d = 5.4 Hz, 1H), 4.40 (ABqd, *J*_{AB} = 13.7 Hz, *J*_d = 3.5 Hz, 1H), 2.46 (s, 3H), 2.39 (s, 3H), 1.57 (s, 3H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 145.5, 137.5, 137.3, 135.7, 132.4, 129.1, 129.1, 129.0, 128.9, 59.3, 40.1, 33.1, 22.7, 21.3, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₂ClNNaO₂S⁺ [M+Na⁺] 386.0952, found 386.0948.

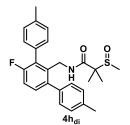
N-((4-methoxy-4'-methyl-[1,1'-biphenyl]-2-yl)methyl)-2-


methyl-2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 61.0 mg, 85%. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.18 (m, 5H), 7.16 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 2.7 Hz, 1H), 6.85 (dd, J = 8.4, 2.7 Hz, 1H), 4.49 (ABqd, $J_{AB} = 15.0$ Hz, $J_d = 5.9$ Hz, 1H), 4.37 (ABqd, $J_{AB} = 15.0$ Hz, $J_d = 5.3$ Hz, 1H), 3.82 (s, 3H), 2.39 (s, 3H), 2.38 (s, 3H), 1.54 (s, 3H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 159.1, 137.6, 136.7, 136.6, 134.3, 131.5, 129.3, 129.1, 113.9, 113.0, 59.4, 55.4, 41.9, 33.0, 22.4, 21.2, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅NNaO₃S⁺ [M+Na⁺] 382.1447, found 382.1449.

N-((4,4'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-2-

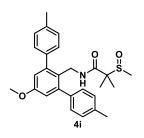

(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 62.3 mg, 91%; 61 mg, 89% at 80 °C for 48 h. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (s, 1H), 7.23-7.18 (m, 4H), 7.18-7.07 (m, 3H), 4.49 (ABqd, $J_{AB} = 14.8$ Hz, $J_d = 5.9$ Hz, 1H), 4.35 (ABqd, $J_{AB} = 14.8$ Hz, $J_d = 5.1$ Hz, 1H), 2.38 (s, 3H), 2.37 (s, 3H), 2.37 (s, 3H), 1.52 (s, 3H), 1.26 (s, 3H); ¹³C NMR (101 MHz,

CDCl₃) δ 169.9, 139.0, 137.9, 137.3, 136.8, 135.0, 130.4, 129.6, 129.2, 129.1, 128.3, 59.4, 41.8, 33.0, 22.3, 21.3, 21.2, 18.8. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅NNaO₂S⁺ [M+Na⁺] 366.1498, found 366.1498.

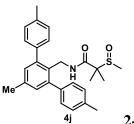

N-((4-chloro-4'-methyl-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-2-

(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 64.1 mg, 88%. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 2.1 Hz, 1H), 7.36-7.29 (m, 1H), 7.26 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.25-7.17 (m, 4H), 7.16 (d, *J* = 8.2 Hz, 1H), 4.47 (ABqd, *J*_{AB} = 15.2 Hz, *J*_d = 6.0 Hz, 1H), 4.34 (ABqd, *J*_{AB} = 15.2 Hz, *J*_d = 5.5 Hz, 1H), 2.40 (s, 3H), 2.39 (s, 3H), 1.56 (s, 3H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 140.2, 137.5, 137.4, 136.7, 133.4, 131.6, 129.2, 129.0, 128.5, 127.5, 59.3, 41.3, 33.0, 22.6, 21.2, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₂ClNNaO₂S⁺ [M+Na⁺] 386.0952, found 386.0949.

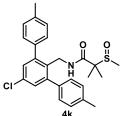
N-((4-fluoro-4'-methyl-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-


2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 40.3 mg, 58%. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 1H), 7.25-7.17 (m, 5H), 7.14 (dd, J = 9.7, 2.7 Hz, 1H), 6.99 (td, J = 8.3, 2.7 Hz, 1H), 4.49 (ABqd, $J_{AB} = 15.2$ Hz, $J_d = 6.0$ Hz, 1H), 4.33 (ABqd, $J_{AB} = 15.2$ Hz, $J_d = 5.5$ Hz, 1H), 2.40 (s, 3H), 2.39 (s, 3H), 1.57 (s, 3H), 1.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 162.2 (d, $J_{C-F} = 247.1$ Hz), 137.9 (d, $J_{C-F} = 7.2$ Hz), 137.7 (d, $J_{C-F} = 3.2$ Hz), 137.2, 136.9, 131.9 (d, $J_{C-F} = 8.1$ Hz), 129.2, 129.2, 115.1 (d, $J_{C-F} = 22.2$ Hz), 114.3 (d, $J_{C-F} = 21.1$ Hz), 59.4, 41.5, 33.0, 22.7, 21.3, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₃FNO₂S⁺ [M+H⁺] 348.1428, found 348.1431.

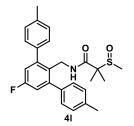
N-((4'-fluoro-4,4''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl)methyl)-


2-methyl-2-(methylsulfinyl)propanamide: The corresponding reaction was run with

standard conditions for 24 h in 0.2 mmol scale; 19.2 mg, 22%. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.16 (m, 9H), 7.13 (t, *J* = 8.6 Hz, 1H), 6.87 (s, 1H), 4.24 (dd, *J* = 13.6, 5.5 Hz, 1H), 4.08 (dd, *J* = 13.6, 2.6 Hz, 1H), 2.38 (s, 3H), 2.37 (s, 3H), 2.23 (s, 3H), 1.37 (s, 3H), 1.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 159.4 (d, *J*_{C-F} = 245.6 Hz), 139.7 (d, *J*_{C-F} = 3.7 Hz), 137.8, 137.6, 137.2, 134.5 (d, *J*_{C-F} = 2.4 Hz), 131.0 (d, *J*_{C-F} = 8.4 Hz), 131.0 (d, *J*_{C-F} = 17.0 Hz), 130.9 (d, *J*_{C-F} = 0.6 Hz), 129.9, 129.2, 129.2, 129.0, 115.1 (d, *J*_{C-F} = 23.1 Hz), 59.2, 40.0 (d, *J*_{C-F} = 2.6 Hz), 32.9, 22.3, 21.4, 21.2, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₂₉FNO₂S⁺ [M+H⁺] 438.1898, found 438.1899.

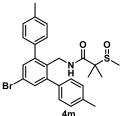

N-((5'-methoxy-4,4''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl)

methyl)-2-methyl-2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 74.6 mg, 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.0 Hz, 4H), 7.18 (d, *J* = 7.9 Hz, 4H), 6.79 (s, 2H), 6.77 (brs, 1H), 4.24 (ABqd, *J*_{AB} = 13.9 Hz, *J*_d = 5.3 Hz, 1H), 4.11 (ABqd, *J*_{AB} = 13.9 Hz, *J*_d = 2.8 Hz, 1H), 3.80 (s, 3H), 2.37 (s, 6H), 2.21 (s, 3H), 1.35 (s, 3H), 1.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 158.4, 145.3, 138.4, 137.1, 129.0, 128.9, 124.1, 115.2, 59.2, 55.4, 39.5, 32.8, 21.9, 21.2, 18.8. HRMS (m/z, ESI-TOF): Calcd for C₂₇H₃₁NNaO₃S⁺ [M+Na⁺] 472.1917, found 472.1911.

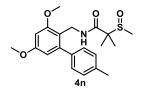


2-methyl-2-(methylsulfinyl)-*N*-((4,4'',5'-trimethyl-[1,1':3',1''-

terphenyl]-2'-yl)methyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 68.0 mg, 78%. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 7.9 Hz, 4H), 7.17 (d, *J* = 7.9 Hz, 4H), 7.06 (s, 2H), 6.74 (brs, 1H), 4.30 (ABqd, *J*_{AB} = 13.8 Hz, *J*_d = 5.3 Hz, 1H), 4.17 (ABqd, *J*_{AB} = 13.8 Hz, *J*_d = 2.8 Hz, 1H), 2.37 (s, 9H), 2.20 (s, 3H), 1.33 (s, 3H), 1.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 143.8, 138.5, 137.4, 136.9, 130.6, 129.1, 128.9, 128.7, 59.3, 39.8, 32.9, 21.8, 21.3, 21.1, 18.8. HRMS (m/z, ESI-TOF): Calcd for C₂₇H₃₂NO₂S⁺ [M+H⁺] 434.2148, found 434.2147.

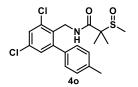


^{4k} *N*-((5'-chloro-4,4''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl) methyl)-2-methyl-2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 83.0 mg, 92%. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.18 (m, 10H), 6.84 (s, 1H), 4.30 (dd, *J* = 13.8, 5.5 Hz, 1H), 4.14 (dd, *J* = 13.8, 2.8 Hz, 1H), 2.38 (s, 6H), 2.21 (s, 3H), 1.34 (s, 3H), 1.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 145.6, 137.6, 137.2, 133.2, 130.5, 129.6, 129.1, 128.9, 59.2, 39.5, 32.8, 22.1, 21.3, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₂₉ClNO₂S⁺ [M+H⁺] 454.1602, found 454.1604.



N-((5'-fluoro-4,4''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl)methyl)-

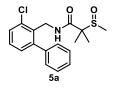
2-methyl-2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 76.3 mg, 87%. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.2 Hz, 4H), 7.19 (d, *J* = 8.0 Hz, 4H), 6.96 (d, *J* = 9.0 Hz, 2H), 6.85 (brs, 1H), 4.28 (dd, *J* = 13.9, 5.5 Hz, 1H), 4.13 (dd, *J* = 13.9, 2.7 Hz, 1H), 2.38 (s, 6H), 2.22 (s, 3H), 1.36 (s, 3H), 1.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 161.3 (d, *J*_{C-F} = 249.5 Hz), 146.1 (d, *J*_{C-F} = 8.3 Hz), 137.5, 137.4 (d, *J*_{C-F} = 1.7 Hz), 129.1, 128.9, 127.8 (d, *J*_{C-F} = 3.2 Hz), 116.5 (d, *J*_{C-F} = 21.1 Hz), 59.1, 39.5, 32.8, 22.2, 21.3, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₂₈FNNaO₂S⁺ [M+Na⁺] 460.1717, found 460.1716.



^{4m} *N*-((5'-bromo-4,4''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl) methyl)-2-methyl-2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 85.5 mg, 86%. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 2H), 7.24 (d, *J* = 8.1 Hz, 4H), 7.19 (d, *J* = 8.0 Hz, 4H), 6.84 (brs, 1H), 4.29 (dd, J = 13.8, 5.5 Hz, 1H), 4.13 (dd, J = 13.9, 2.8 Hz, 1H), 2.37 (s, 6H), 2.21 (s, 3H), 1.34 (s, 3H), 1.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 145.8, 137.6, 137.0, 132.5, 131.0, 129.1, 129.0, 121.5, 59.1, 39.6, 32.8, 22.1, 21.3, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₂₈BrNNaO₂S⁺ [M+Na⁺] 520.0916, found 520.0921.

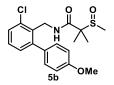
N-((3,5-dimethoxy-4'-methyl-[1,1'-biphenyl]-2-yl)methyl)-2-


methyl-2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 39.6 mg, 51%. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.17 (m, 5H), 6.47 (d, J = 2.4 Hz, 1H), 6.39 (d, J = 2.4 Hz, 1H), 4.34 (ABqd, $J_{AB} = 13.9$ Hz, $J_d = 4.6$ Hz, 1H), 4.30 (ABqd, $J_{AB} = 13.6$ Hz, $J_d = 5.2$ Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 2.40 (s, 3H), 2.38 (s, 3H), 1.52 (s, 3H), 1.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 159.8, 159.6, 144.7, 138.0, 137.2, 129.1, 129.0, 116.0, 106.3, 97.7, 59.5, 55.7, 55.5, 36.9, 33.0, 22.2, 21.3, 19.0. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₇NNaO₄S⁺ [M+H⁺] 412.1553, found 412.1549.

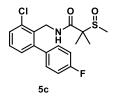

N-((3,5-dichloro-4'-methyl-[1,1'-biphenyl]-2-yl)methyl)-2-

methyl-2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 68.0 mg, 86%. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 2.2 Hz, 1H), 7.29 (brs, 1H), 7.22-7.17 (m, 5H), 4.47 (ABqd, $J_{AB} = 13.8$ Hz, $J_d = 5.5$ Hz, 1H), 4.36 (ABqd, $J_{AB} = 13.8$ Hz, $J_d = 3.8$ Hz, 1H), 2.44 (s, 3H), 2.39 (s, 3H), 1.56 (s, 3H), 1.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 146.5, 138.1, 136.4, 136.2, 134.0, 131.3, 129.2, 129.2, 128.8, 128.6, 59.3, 39.5, 33.1, 22.8, 21.3, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₂Cl₂NO₂S⁺ [M+H⁺] 398.0743, found 398.0748.

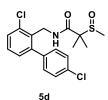
2.3.2 General procedure for ortho-arylation of 3d with aryl iodides



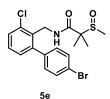
A 38 mL Schlenk sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with amide **3d** (27.3 mg, 0.10 mmol, 1.0 equiv), aryl iodides (0.30 mmol, 3.0 equiv), Pd(OAc)₂ (2.3 mg, 0.01 mmol, 10 mol %), AgOAc (41.8 mg, 0.25 mmol, 2.5 equiv) and K₂HPO₄ (52.2 mg, 0.3 mmol, 3.0 equiv). Then HFIP (1 mL) was added along the inside wall of the tube. The tube was then capped and submerged into a preheated 100 °C oil bath. The reaction was stirred for 20-48 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 30 mL of EtOAc. The filtrate was concentrated *in vacuo*, crude ¹H NMR spectrum was taken using CH₂Br₂ as internal standard. The resulting residue was purified by preparative thin layer chromatography preparative chromatography using petroleum ether/EtOAc as the eluent.


N-((3-chloro-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-2-

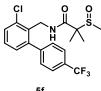
(**methylsulfinyl**)**propanamide:** The corresponding reaction was run with standard conditions for 20 h in 0.1 mmol scale; 30.3 mg, 87%. ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.28 (m, 7H), 7.23 (brs, 1H), 7.18 (dd, *J* = 7.6, 1.3 Hz, 1H), 4.52 (ABqd, *J*_{AB} = 13.7 Hz, *J*_d = 5.5 Hz, 1H), 4.39 (ABqd, *J*_{AB} = 13.7 Hz, *J*_d = 3.7 Hz, 1H), 2.44 (s, 3H), 1.56 (s, 3H), 1.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 145.4, 140.2, 135.7, 132.4, 129.1, 129.1, 129.0, 129.0, 128.4, 127.8, 59.3, 39.9, 33.1, 22.8, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₂₀CINNaO₂S⁺ [M+Na⁺] 372.0795, found 372.0798.


N-((3-chloro-4'-methoxy-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-2-(methylsulfinyl)pr opanamide: ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 7.9 Hz, 1H), 7.28-7.23 (m, 4 H),

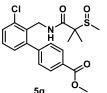
7.16 (d, J = 7.0 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 4.51 (ABqd, $J_{AB} = 13.6$ Hz, $J_d = 5.2$ Hz, 1H), 4.41 (ABqd, $J_{AB} = 13.6$ Hz, $J_d = 3.6$ Hz, 1H), 3.84 (s, 3H), 2.46 (s, 3H), 1.57 (s, 3H), 1.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 159.2, 145.1, 135.7, 132.5, 132.5, 130.2, 129.2, 128.8, 128.8, 113.7, 59.3, 55.3, 40.0, 33.0, 22.7, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₂ClNNaO₃S⁺ [M+Na⁺] 402.0901, found 402.0901.


N-((3-chloro-4'-fluoro-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-

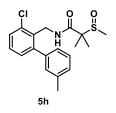
2-(methylsulfinyl)propenamide: The corresponding reaction was run with standard conditions for 48 h in 0.1 mmol scale; 33.8 mg, 92%. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.32-7.26 (m, 4H), 7.16 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.13-7.03 (m, 2H), 4.50 (ABqd, *J*_{AB} = 13.7 Hz, *J*_d = 5.6 Hz, 1H), 4.36 (ABqd, *J*_{AB} = 13.8 Hz, *J*_d = 3.7 Hz, 1H), 2.45 (s, 3H), 1.57 (s, 3H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 162.5 (d, *J*_{C-F} = 248.2 Hz), 144.3, 136.2 (d, *J*_{C-F} = 3.4 Hz), 135.8, 132.6, 130.8 (d, *J*_{C-F} = 8.2 Hz), 129.3, 129.1, 129.0, 115.4 (d, *J*_{C-F} = 21.6 Hz), 59.3, 39.9, 33.1, 22.9, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₁₉ClFNNaO₂S⁺ [M+Na⁺] 390.0701, found 390.0705.


N-((3,4'-dichloro-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-2-

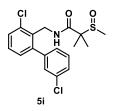
(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.1 mmol scale; 35.8 mg, 93%. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 8.0, 1.2 Hz, 1H), 7.40-7.36 (m, 2H), 7.31-7.24 (m, 4H), 7.15 (dd, J = 7.6, 1.2 Hz, 1H), 4.50 (ABqd, $J_{AB} = 13.8$ Hz, $J_d = 5.6$ Hz, 1H), 4.36 (ABqd, $J_{AB} = 13.8$ Hz, $J_d = 3.7$ Hz, 1H), 2.45 (s, 3H), 1.58 (s, 3H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 144.1, 138.6, 135.9, 134.0, 132.4, 130.5, 129.5, 129.1, 129.0, 128.6, 59.3, 39.9, 33.1, 22.9, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₁₉Cl₂NNaO₂S⁺ [M+Na⁺] 406.0406, found 406.0402.



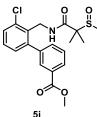
N-((4'-bromo-3-chloro-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-


2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.1 mmol scale; 38.8 mg, 91%. ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.51 (m, 2H), 7.43 (dd, J = 8.0, 1.1 Hz, 1H), 7.34-7.27 (m, 2H), 7.21-7.18 (m, 2H), 7.14 (dd, J = 7.6, 1.1 Hz, 1H), 4.50 (ABqd, $J_{AB} = 13.8$ Hz, $J_d = 5.6$ Hz, 1H), 4.36 (ABqd, $J_{AB} = 13.8$ Hz, $J_d = 3.6$ Hz, 1H), 2.45 (s, 3H), 1.57 (s, 3H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 144.1, 139.1, 135.9, 132.3, 131.5, 130.8, 129.5, 129.1, 128.9, 122.2, 59.3, 39.9, 33.1, 22.9, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₁₉BrClNNaO₂S⁺ [M+Na⁺] 449.9901, found 449.9901.

^{5f} *N*-((3-chloro-4'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)methyl)-2methyl-2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 48 h in 0.1 mmol scale; 38.3 mg, 92%. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.1 Hz, 3H), 7.38-7.29 (m, 2H), 7.16 (dd, *J* = 7.6, 1.1 Hz, 1H), 4.50 (dd, *J* = 13.9, 5.7 Hz, 1H), 4.35 (dd, *J* = 13.9, 3.6 Hz, 1H), 2.44 (s, 3H), 1.57 (s, 3H), 1.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 143.9, 136.0, 132.4, 130.1 (q, *J*_{C-F} = 32.7 Hz), 129.8, 129.6, 129.2, 128.9, 125.4 (q, *J*_{C-F} = 3.7 Hz), 124.2 (q, *J*_{C-F} = 274.2 Hz), 59.3, 39.9, 33.1, 22.9, 18.5. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₁₉ClF₃NNaO₂S⁺ [M+Na⁺] 440.0669, found 440.0671.



^{5g} methyl 3'-chloro-2'-((2-methyl-2-(methylsulfinyl)propanamido) methyl)-[1,1'-biphenyl]-4-carboxylate: The corresponding reaction was run with standard conditions for 24 h in 0.2 mmol scale; 50.0 mg, 61%. ¹H NMR (400 MHz, CDCl₃) δ 8.13-8.06 (m, 2H), 7.45 (dd, J = 8.0, 1.2 Hz, 1H), 7.43-7.39 (m, 2H), 7.35-7.27 (m, 2H), 7.18 (dd, J = 7.7, 1.2 Hz, 1H), 4.49 (ABqd, $J_{AB} = 13.8$ Hz, $J_d = 5.6$ Hz, 1H), 4.36 (ABqd, $J_{AB} = 13.8$ Hz, $J_d = 3.6$ Hz, 1H), 3.95 (s, 3H), 2.45 (s, 3H), 1.58 (s, 3H), 1.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 166.8, 144.9, 144.3, 136.0, 132.3, 129.7, 129.6, 129.3, 129.1, 128.8, 59.3, 52.3, 39.9, 33.1, 22.9, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₂CINNaO₄S⁺ [M+Na⁺] 430.0850, found 430.0852.


N-((3-chloro-3'-methyl-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-

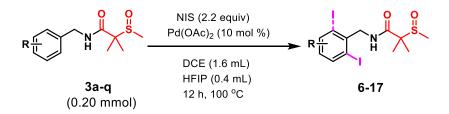
2-(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.1 mmol scale; 26.1 mg, 72%. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 1H), 7.34-7.15 (m, 2H), 7.10 (brs, 2H), 4.51 (ABqd, *J*_{AB} = 13.6 Hz, *J*_d = 5.3 Hz, 1H), 4.40 (ABqd, *J*_{AB} = 13.6 Hz, *J*_d = 2.7 Hz, 1H), 2.46 (s, 3H), 2.38 (s, 3H), 1.57 (s, 3H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 145.6, 140.2, 138.0, 135.7, 132.4, 129.8, 129.0, 129.0, 128.9, 128.6, 128.3, 126.2, 59.3, 40.0, 33.1, 22.8, 21.6, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₂ClNNaO₂S⁺ [M+Na⁺] 386.0952, found 386.0948.

N-((3,3'-dichloro-[1,1'-biphenyl]-2-yl)methyl)-2-methyl-2-

(methylsulfinyl)propanamide: The corresponding reaction was run with standard conditions for 24 h in 0.1 mmol scale; 35.6 mg, 93%. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.37-7.27 (m, 5H), 7.23-7.19 (m, 1H), 7.16 (dd, *J* = 7.6, 1.2 Hz, 1H), 4.49 (ABqd, *J*_{AB} = 13.8 Hz, *J*_d = 5.6 Hz, 1H), 4.36 (ABqd, *J*_{AB} = 13.8 Hz, *J*_d = 3.5 Hz, 1H), 2.48 (s, 3H), 1.60 (s, 3H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 143.9, 141.9, 135.9, 134.2, 132.3, 129.7, 129.6, 129.2, 129.1, 128.9, 128.1, 127.3, 59.3, 39.9, 33.1, 23.0, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₁₉Cl₂NNaO₂S⁺ [M+Na⁺] 406.0406, found 406.0407.

^{5j} methyl 3'-chloro-2'-((2-methyl-2-(methylsulfinyl)propanamido) methyl)-[1,1'-biphenyl]-3-carboxylate: The corresponding reaction was run with standard conditions for 48 h in 0.1 mmol scale; 37.0 mg, 91%. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dt, *J* = 7.4, 1.6 Hz, 1H), 7.97 (t, *J* = 1.4 Hz, 1H), 7.54 (dt, *J* = 7.6, 1.6 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.45 (dd, J = 8.0, 1.2 Hz, 1H), 7.33-7.29 (m, 2H), 7.18 (dd, J = 7.6, 1.2 Hz, 1H), 4.47 (ABqd, $J_{AB} = 13.8$ Hz, $J_d = 5.4$ Hz, 1H), 4.40 (ABqd, $J_{AB} = 13.8$ Hz, $J_d = 3.9$ Hz, 1H), 3.92 (s, 3H), 2.45 (s, 3H), 1.58 (s, 3H), 1.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 166.8, 144.2, 140.5, 135.9, 133.6, 132.5, 130.4, 130.1, 129.6, 129.1, 129.1, 128.6, 59.3, 52.3, 39.9, 33.1, 22.8, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₂CINNaO₄S⁺ [M+Na⁺] 430.0850, found 430.0853.

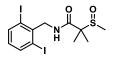
2.4 Reaction conditions optimization for *ortho*-C-H bond iodination.


General optimization procedure: A 38 mL Schlenk sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with amide **3a** (23.9 mg, 0.10 mmol, 1.0 equiv), *N*-Iodosuccinimide (49.5 mg, 0.22 mmol, 2.2 equiv), $Pd(OAc)_2$ (2.3 mg, 0.01 mmol, 10 mol %). Then (combined) solvent (1 mL) was added along the inside wall of the tube. The tube was then capped and submerged into a preheated 100 °C oil bath. The reaction was stirred for 12 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 30 mL of EtOAc. The filtrate was concentrated *in vacuo*, crude ¹H NMR spectrum was taken using CH₂Br₂ as internal standard.

[O ← N ← O Pd _{cat} ← O Solvent, heat	L L	o s
	3a	F (0.0)		no, di
Entry	Solvent	T (°C)	Yield [%] ^[0]
	(v/v)		6 _{mono}	6 _{di}
1	Dioxane	100	27	33
2	Toluene	100	27	34
3	DCE	100	24	39
4	HFIP	100	50	9
5	Toluene	90	37	28
6	Toluene/HFIP (9/1)	90	42	27
7	DCE/HFIP (9/1)	90	43	34
8	DCE/HFIP (8/2)	90	33	49
9	DCE/HFIP (8/2)	100	32	62

Table S2. Screening of the optimal iodination reaction conditions.^[a]

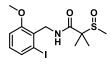
^{a)} Reaction conditions: substrate amide **3a** (0.10 mmol), *N*-Iodosuccinimide (0.22 mmol, 2.2 equiv), Pd(OAc)₂ (0.01 mmol, 10 mol %) in solvent (1.0 mL), heat, 12 h. ^{b)} Yield was determined by ¹H NMR with CH_2Br_2 as internal standard.


2.5 General procedure for ortho-iodination of benzylamine.

A 38 mL Schlenk sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with amide **3** (0.20 mmol, 1.0 equiv), *N*-Iodosuccinimide (99 mg, 0.44 mmol, 2.2 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol %) and HFIP (0.4 mL). Then DCE (1.6 mL) was added along the inside wall of the tube. The tube was then capped and submerged into a preheated 100 °C oil bath. The reaction was stirred for 12 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc (10 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 60 mL of EtOAc. The filtrate was concentrated *in vacuo*, crude ¹H NMR spectrum was taken using CH₂Br₂ as internal standard. The resulting residue was purified (10% NaOH aqueous solution could be used to remove pyrrolidine-2,5-dione before purification) by preparative thin layer chromatography or preparative chromatography using petroleum ether/EtOAc as the eluent.

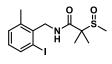
N-(2-iodobenzyl)-2-methyl-2-(methylsulfinyl)propanamide: The

corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 22.6 mg, 31%. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.61 (brs, 1H), 7.40 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.32 (td, *J* = 7.5, 1.1 Hz, 1H), 6.97 (td, *J* = 7.6, 1.7 Hz, 1H), 4.58 (ABqd, *J*_{AB} = 14.9 Hz, *J*_d = 5.9 Hz, 1H), 4.48 (ABqd, *J*_{AB} = 14.9 Hz, *J*_d = 5.8 Hz, 1H), 2.44 (s, 3H), 1.64 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 140.3, 139.7, 129.9, 129.4, 128.6, 99.2, 59.5, 48.5, 33.1, 22.8, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₇INO₂S⁺ [M+H⁺] 366.0019, found 366.0018.

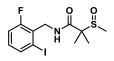


6_{di}

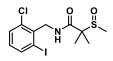
N-(2,6-diiodobenzyl)-2-methyl-2-(methylsulfinyl)propanamide: The

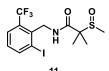

corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 53.8

mg, 55%. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.9 Hz, 2H), 7.35 (brs, 1H), 6.62 (t, *J* = 7.9 Hz, 1H), 4.92 (ABqd, *J*_{AB} = 14.0 Hz, *J*_d = 5.4 Hz, 1H), 4.82 (ABqd, *J*_{AB} = 14.0 Hz, *J*_d = 4.1 Hz, 1H), 2.56 (s, 3H), 1.64 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 141.3, 140.5, 131.4, 100.1, 59.5, 55.0, 33.4, 23.0, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₆I₂NO₂S⁺ [M+H⁺] 491.8986, found 491.8982.

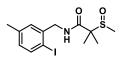


N-(2-iodo-6-methoxybenzyl)-2-methyl-2-(methylsulfinyl)


propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 62.7 mg, 79%. ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.52 (m, 3H), 6.63 (d, J = 8.6 Hz, 1H), 4.45 (ABqd, $J_{AB} = 14.6$ Hz, $J_d = 6.2$ Hz, 1H), 4.38 (ABqd, $J_{AB} = 14.6$ Hz, $J_d = 5.7$ Hz, 1H), 3.82 (s, 3H), 2.36 (s, 3H), 1.60 (s, 3H), 1.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 157.5, 138.2, 137.7, 129.0, 112.7, 82.7, 59.4, 55.6, 38.9, 32.9, 22.8, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₉INO₃S⁺ [M+H⁺] 396.0125, found 396.0127.

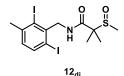

⁸ *N*-(2-iodo-6-methylbenzyl)-2-methyl-2-(methylsulfinyl) propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 58.0 mg, 77%. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.9 Hz, 1H), 7.34 (brs, 1H), 7.15 (d, J = 7.5 Hz, 1H), 6.88 (t, J = 7.7 Hz, 1H), 4.70 (ABqd, $J_{AB} = 14.1$ Hz, $J_d = 5.7$ Hz, 1H), 4.59 (ABqd, $J_{AB} = 14.1$ Hz, $J_d = 4.5$ Hz, 1H), 2.49 (s, 3H), 2.48 (s, 3H), 1.60 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 139.1, 138.0, 137.9, 131.0, 129.8, 102.3, 59.5, 46.2, 33.2, 22.7, 21.1, 18.8. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₉INO₂S⁺ [M+H⁺] 380.0176, found 380.0173.

⁹ *N*-(2-fluoro-6-iodobenzyl)-2-methyl-2-(methylsulfinyl) propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 66.3 mg, 87%. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.8 Hz, 1H), 7.49 (brs, 1H), 7.07 (t, *J* = 8.5 Hz, 1H), 6.99 (td, *J* = 8.0, 5.8 Hz, 1H), 4.71-4.59 (ABm, 2H), 2.46 (s, 3H), 1.60 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 160.7 (d, *J*_{C-F} = 253.6 Hz), 135.5 (d, *J*_{C-F} = 3.7 Hz), 131.1 (d, *J*_{C-F} = 9.0 Hz), 128.2 (d, *J*_{C-F} = 16.3 Hz), 116.1 (d, *J*_{C-F} = 23.1 Hz), 100.8 (d, *J*_{C-F} = 2.8 Hz), 59.5, 42.2 (d, *J*_{C-F} = 3.7 Hz), 33.2, 22.8, 18.7. HRMS (m/z, ESI-TOF): Calcd for $C_{12}H_{15}FINNaO_2S^+$ [M+Na⁺] 405.9744, found 405.9747.

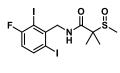


¹⁰ *N*-(2-chloro-6-iodobenzyl)-2-methyl-2-(methylsulfinyl) propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 65.9 mg, 83%; 864 mg, 72% in a 3 mmol (0.821 gram) scale. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 7.9, 0.9 Hz, 1H), 7.44 (brs, 1H), 7.38 (dd, *J* = 8.0, 0.8 Hz, 1H), 6.93 (t, *J* = 8.0 Hz, 1H), 4.84 (ABqd, *J*_{AB} = 14.0 Hz, *J*_d = 5.4 Hz, 1H), 4.78 (ABqd, *J*_{AB} = 14.0 Hz, *J*_d = 4.8 Hz, 1H), 2.50 (s, 3H), 1.61 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 138.8, 137.5, 134.9, 130.8, 130.3, 101.6, 59.5, 47.3, 33.2, 22.9, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₆CIINO₂S⁺ [M+H⁺] 399.9630, found 399.9626.

N-(2-iodo-6-(trifluoromethyl)benzyl)-2-methyl-2-(methylsulfinyl)

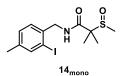

propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 79.0 mg, 91%. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.9 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.29 (brs, 1H), 7.14 (t, *J* = 7.9 Hz, 1H), 4.80 (ABqd, *J*_{AB} = 14.3 Hz, *J*_d = 5.5 Hz, 1H), 4.70 (ABqd, *J*_{AB} = 14.3 Hz, *J*_d = 2.6 Hz, 1H), 2.54 (s, 3H), 1.63 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 144.1, 137.5, 131.2 (q, *J*_{C-F} = 30.4 Hz), 129.8, 126.6 (q, *J*_{C-F} = 5.7 Hz), 123.5 (q, *J*_{C-F} = 275.6 Hz), 104.1, 59.2, 45.7 (d, *J*_{C-F} = 2.2 Hz), 33.1, 23.0, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₆F₃INO₂S⁺ [M+H⁺] 433.9893, found 433.9895.

2_{mono}


N-(2-iodo-5-methylbenzyl)-2-methyl-2-(methylsulfinyl)

propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 56.0 mg, 74%. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 1H), 7.56 (brs, 1H), 7.21 (d, *J* = 1.4 Hz, 1H), 6.80 (dd, *J* = 8.0, 1.6 Hz, 1H), 4.54 (ABqd, *J*_{AB} = 14.8 Hz, *J*_d = 6.0 Hz, 1H), 4.43 (ABqd, *J*_{AB} = 14.8 Hz, *J*_d = 5.7 Hz, 1H), 2.45 (s, 3H), 2.28 (s, 3H), 1.64 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 140.0, 139.4, 138.6, 130.9, 130.4, 95.1, 59.5, 48.4, 33.1, 22.7, 21.1, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₈INNaO₂S⁺ [M+Na⁺] 401.9995, found 401.9998.

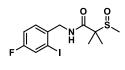
N-(2,6-diiodo-3-methylbenzyl)-2-methyl-2-(methylsulfinyl)


propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 13.0 mg, 13%. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.27 (brs, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 5.02 (ABqd, *J*_{AB} = 14.0 Hz, *J*_d = 5.4 Hz, 1H), 4.94 (ABqd, *J*_{AB} = 14.0 Hz, *J*_d = 3.9 Hz, 1H), 2.58 (s, 3H), 2.45 (s, 3H), 1.64 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 143.9, 141.4, 139.6, 131.0, 107.9, 96.1, 59.5, 56.1, 33.4, 30.2, 23.0, 18.8. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₇I₂NNaO₂S⁺ [M+Na⁺] 527.8962, found 527.8963.

13

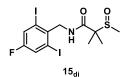

N-(3-fluoro-2,6-diiodobenzyl)-2-methyl-2-(methylsulfinyl)

propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 90.2 mg, 89%. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 8.6, 5.5 Hz, 1H), 7.44 (brs, 1H), 6.75 (dd, J = 8.6, 7.2 Hz, 1H), 4.98 (ABqd, $J_{AB} = 13.9$ Hz, $J_d = 5.5$ Hz, 1H), 4.86 (ABqd, $J_{AB} = 14.0$ Hz, $J_d = 4.2$ Hz, 1H), 2.56 (s, 3H), 1.63 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 162.3 (d, $J_{C-F} = 247.5$ Hz), 143. 5 (d, $J_{C-F} = 0.6$ Hz), 141.0 (d, $J_{C-F} = 7.6$ Hz), 116.9 (d, $J_{C-F} = 25.7$ Hz), 93.2 (d, $J_{C-F} = 3.5$ Hz), 89.0 (d, $J_{C-F} = 26.1$ Hz), 59.5, 54.4 (d, $J_{C-F} = 2.4$ Hz), 33.4, 23.1, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₅Fl₂NO₂S⁺ [M+H⁺] 509.8892, found 509.8892.

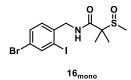

N-(2-iodo-4-methylbenzyl)-2-methyl-2-(methylsulfinyl)

propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 16.5 mg, 22%. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 0.7 Hz, 1H), 7.54 (brs, 1H), 7.27 (d, J = 7.7 Hz, 1H), 7.11 (dd, J = 7.7, 0.8 Hz, 1H), 4.53 (ABqd, $J_{AB} = 14.8$ Hz, $J_d = 5.9$ Hz, 1H), 4.45 (ABqd, $J_{AB} = 14.8$ Hz, $J_d = 5.7$ Hz, 1H), 2.43 (s, 3H), 2.28 (s, 3H), 1.63 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 140.1, 139.6, 137.4, 129.7, 129.4, 99.2, 59.5, 48.1, 33.1, 22.7, 20.6, 18.7. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₉INO₂S⁺ [M+H⁺] 380.0176, found 380.0178.

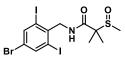
N-(2,6-diiodo-4-methylbenzyl)-2-methyl-2-(methylsulfinyl)


propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 69.6 mg, 69%. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 2H), 7.27 (brs, 1H), 4.87 (ABqd, $J_{AB} = 14.0$ Hz, $J_d = 5.3$ Hz, 1H), 4.79 (ABqd, $J_{AB} = 14.0$ Hz, $J_d = 4.2$ Hz, 1H), 2.55 (s, 3H), 2.24 (s, 3H), 1.63 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 141.9, 141.0, 138.2, 99.6, 59.5, 54.5, 33.4, 22.9, 19.8, 18.8. HRMS (m/z, ESI-TOF): Calcd for C₁₃H₁₈I₂NHO₂S⁺ [M+H⁺] 505.9142, found 505.9146.

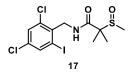
15_{mono}


N-(4-fluoro-2-iodobenzyl)-2-methyl-2-(methylsulfinyl)

propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 25.8 mg, 34%. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (brs, 1H), 7.56 (dd, *J* = 8.0, 2.6 Hz, 1H), 7.38 (dd, *J* = 8.5, 5.9 Hz, 1H), 7.04 (td, *J* = 8.3, 2.6 Hz, 1H), 4.54 (ABqd, *J*_{AB} = 14.9 Hz, *J*_d = 5.9 Hz, 1H), 4.46 (ABqd, *J*_{AB} = 14.9 Hz, *J*_d = 5.9 Hz, 1H), 2.43 (s, 3H), 1.64 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 161.4 (d, *J*_{C-F} = 252.5 Hz), 136.5 (d, *J*_{C-F} = 3.4 Hz), 130.8 (d, *J*_{C-F} = 8.2 Hz), 126.6 (d, *J*_{C-F} = 23.8 Hz), 115.6 (d, *J*_{C-F} = 20.9 Hz), 98.3 (d, *J*_{C-F} = 8.2 Hz), 59.4, 47.6, 33.1, 22.9, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₆FINO₂S⁺ [M+H⁺] 383.9925, found 383.9923.


N-(4-fluoro-2,6-diiodobenzyl)-2-methyl-2-(methylsulfinyl)

propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 51.8 mg, 51%. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.5 Hz, 2H), 7.38 (brs, 1H), 4.92 (ABqd, *J*_{AB} = 14.2 Hz, *J*_d = 5.5 Hz, 1H), 4.81 (ABqd, *J*_{AB} = 14.2 Hz, *J*_d = 4.2 Hz, 1H), 2.55 (s, 3H), 1.63 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 160.7 (d, *J*_{C-F} = 259.1 Hz), 137.6 (d, *J*_{C-F} = 3.8 Hz), 127.5 (d, *J*_{C-F} = 23.1 Hz), 98.3 (d, *J*_{C-F} = 8.0 Hz), 59.5, 53.8, 33.4, 23.0, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₅FI₂NO₂S⁺ [M+H⁺] 509.8892, found 509.8893.



N-(4-bromo-2-iodobenzyl)-2-methyl-2-(methylsulfinyl)

propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 21.0 mg, 24%. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 1.9 Hz, 1H), 7.68 (brs, 1H), 7.45 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.28 (d, *J* = 5.4 Hz, 1H), 4.52 (ABqd, *J*_{AB} = 15.0 Hz, *J*_d = 5.9 Hz, 1H), 4.42 (ABqd, *J*_{AB} = 15.0 Hz, *J*_d = 5.9 Hz, 1H), 2.44 (s, 3H), 1.64 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 141.5, 139.5, 131.7, 130.9, 122.0, 99.4, 59.4, 47.9, 33.1, 22.9, 18.5. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₅BrINNaO₂S⁺ [M+Na⁺] 465.8944, found 465.8946.

¹⁶di *N*-(4-bromo-2,6-diiodobenzyl)-2-methyl-2-(methylsulfinyl) propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 76.8 mg, 68%. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 2H), 7.44 (brs, 1H), 4.89 (ABqd, $J_{AB} = 14.1$ Hz, $J_d = 5.5$ Hz, 1H), 4.76 (ABqd, $J_{AB} = 14.1$ Hz, $J_d = 4.3$ Hz, 1H), 2.55 (s, 3H), 1.63 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 142.4, 140.5, 123.1, 99.7, 59.5, 54.1, 33.4, 23.1, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₄BrI₂NNaO₂S⁺ [M+Na⁺] 591.7910, found 591.7908.

N-(2,4-dichloro-6-iodobenzyl)-2-methyl-2-(methylsulfinyl)

propanamide: The corresponding reaction was run with standard conditions for 12 h in 0.2 mmol scale; 76.0 mg, 88%. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 2.1 Hz, 1H), 7.50 (brs, 1H), 7.41 (d, *J* = 2.1 Hz, 1H), 4.76 (ABqd, *J*_{AB} = 14.1 Hz, *J*_d = 5.1 Hz, 2H), 2.49 (s, 3H), 1.61 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 138.2, 136.3, 135.1, 134.8, 130.1, 101.1, 59.4, 46.5, 33.2, 22.9, 18.6. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₄Cl₂INNaO₂S⁺ [M+Na⁺] 455.0959, found 455.0960.

2.6 Arylation at a lower temperature

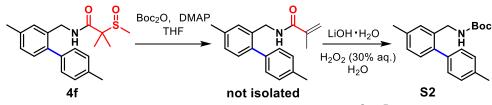
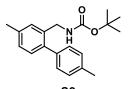

		<i>p</i> -lodotoluene (3 equiv) Pd(OAc) ₂ (10 mol %) K ₂ HPO ₄ (3 equiv)	N N S
	3f	AgOAc (2.5 equiv) HFIP (0.1 M) 48 h, Heat	4f
	Entry	Temperature (℃)	Yield [%]
	1	60	23
	2	70	61

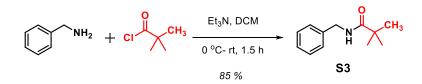
Table S3. Screening of the lower-temperature arylation^a

^{a)} General reaction conditions: amide **3f** (0.10 mmol), *p*-iodotoluene (0.30 mmol), Pd(OAc)₂ (0.01 mmol), K₂HPO₄ (0.30 mmol) and AgOAc (0.25 mmol) in HFIP (1.0 mL), heat, 48 h. Yield was determined by ¹H NMR with CH₂Br₂ as internal standard. ^{b)} 0.2 mmol, scale, isolated yield.


General procedure: A 38 mL Schlenk sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with amide **3f** (25.3 mg, 0.10 mmol, 1.0 equiv), *p*-iodotoluene (65.5mg, 0.30 mmol, 3.0 equiv), Pd(OAc)₂ (2.3 mg, 0.01 mmol, 10 mol %), AgOAc (41.8 mg, 0.25 mmol, 2.5 equiv), K₂HPO₄ (52.2 mg, 0.30 mmol, 3.0 equiv) and Additives (0.02 mmol, 20 mol %). Then HFIP (1 mL) was added along the inside wall of the tube. The tube was then capped and submerged into a preheated set temperature oil bath. The reaction was stirred for 48 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 30 mL of EtOAc. The filtrate was concentrated *in vacuo*, crude ¹H NMR spectrum was taken using CH₂Br₂ as internal standard.

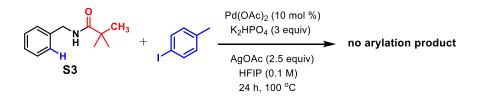
2.7 Removal of the directing group

One Pot, 62% overall yeald


A mixture of arylation product **4f** (102.9 mg, 0.30 mmol, 1.0 equiv), (Boc)₂O (124 μ L, 0.54 mmol, 1.8 equiv) and DMAP (7.3 mg, 0.06 mmol, 0.2 equiv) in anhydrous tetrahydrofuran (0.65 mL) in a sealed tube was stirred at 100 °C for 16 h. Then LiOH·H₂O (63 mg, 1.50 mmol, 5.0 equiv), 30% H₂O₂ (120 μ L, 1.20 mmol, 4.0 equiv) and H₂O (0.20 mL) were added in the same system. The mixture was stirred at 100 °C for 2 h, followed by stirring at room temperature for 12 h. The reaction mixture was diluted with water (10 mL) and extracted with EtOAc (25 mL × 3). The combined organic phase was dried on Na₂SO₄, filtered and concentrated *in vacuo* to afford crude products as orange oil. The resulting residue was purified by silica-gel flash chromatography (petroleum ether/EtOAc: 25:1) to give the product **S2** as a white solid (57.6 mg, 62%).

^{S2} *tert*-butyl ((4,4'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)carbamate: The corresponding reaction was run with standard conditions in 0.3 mmol scale; 57.6 mg, 62%. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.08 (m, 7H), 4.60 (brs, 1H), 4.25 (d, J = 5.4Hz, 2H), 2.39 (s, 3H), 2.38 (s, 3H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 138.8, 137.9, 137.3, 136.8, 136.0, 130.2, 129.1, 129.1, 129.0, 128.0, 79.4, 42.6, 28.5, 21.3, 21.2. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅NNaO₂⁺ [M+Na⁺] 334.1777, found 334.1778.

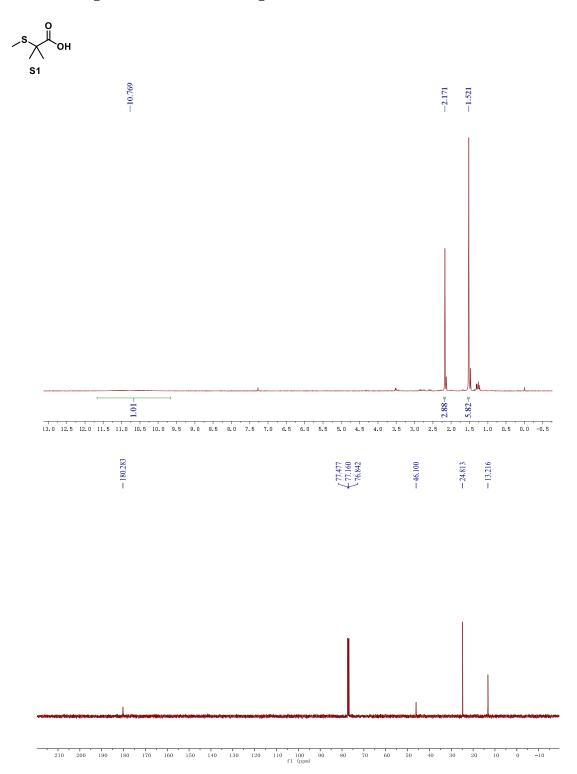
2.8 Control experiment.

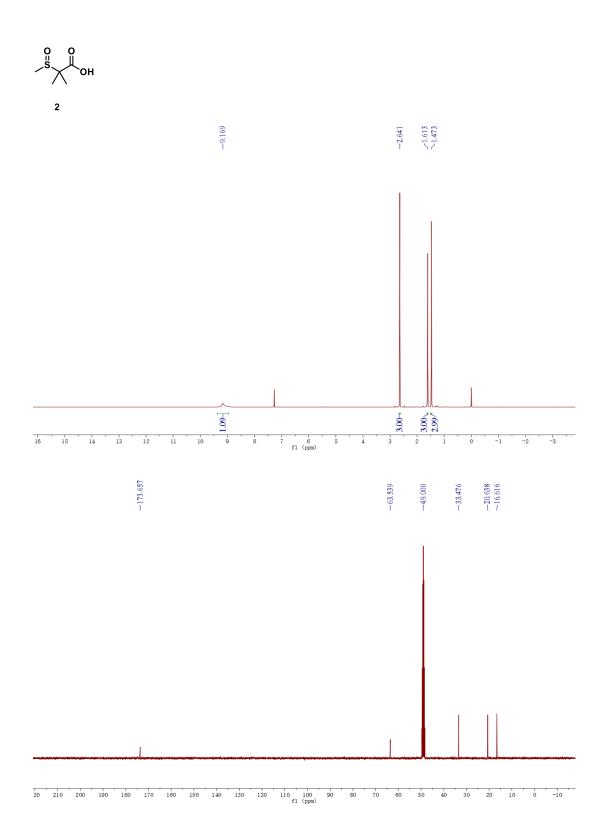

2.8.1 Procedures for preparing substrate N-benzyl-pivalamide S3 [S2]

To a solution of benzylamine (218.3 μ L, 2.0 mmol, 1.0 equiv) and trimethylamine (278 μ L, 2.0 mmol, 1.0 equiv) stirred in anhydrous dichloromethane (10 mL), pivaloyl chloride (246.3 μ L, 2.0 mmol, 1.0 equiv) was added dropwise at 0 °C. The mixture was stirred for another 80 min at room temperature. After addition of H₂O (20 mL), the resulting aqueous extracted with DCM (20 mL × 3). The combined organic phase were dried on Na₂SO₄, filtered and concentrated *in vacuo* to afford crude products as yellow oil. The resulting residue was purified by silica gel chromatography with petroleum

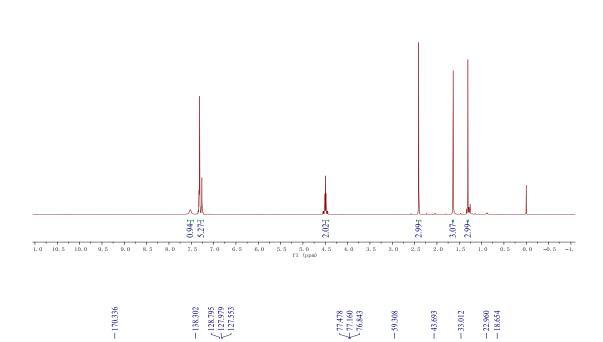
ether/EtOAc (12:1) to afford compound *N*-benzyl-pivalamide **S3** (323.8 mg, 85%) as clear oil. Substrate **S3** (CAS 26209-45-0): ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.24 (m, 5H), 5.89 (brs, 1H), 4.44 (d, *J* = 5.6 Hz, 2H), 1.23 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 138.8, 128.9, 127.8, 127.6, 43.8, 38.9, 27.8.

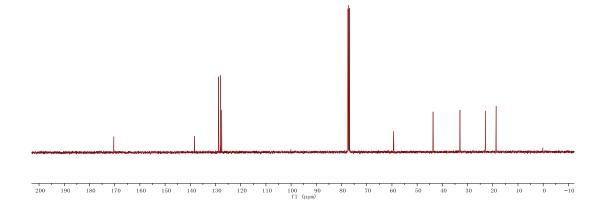
2.8.2 Control arylation reaction

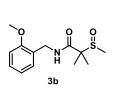

A 38 mL Schlenk sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with amide **S3** (38.2 mg, 0.20 mmol, 1.0 equiv), aryl iodides (130.8 mg, 0.60 mmol, 3.0 equiv), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol %), AgOAc (83.5 mg, 0.5 mmol, 2.5 equiv) and K₂HPO₄ (104.4 mg, 0.6 mmol, 3.0 equiv). Then HFIP (2 mL) was added along the inside wall of the tube. The tube was then capped and submerged into a preheated 100 °C oil bath. The reaction was stirred for 24 h and cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 50 mL of EtOAc. The filtrate was concentrated *in vacuo*, crude ¹H NMR spectrum was taken using CH₂Br₂ as internal standard. The resulting residue was also determined by GC-MS. No desired arylation products was observed.

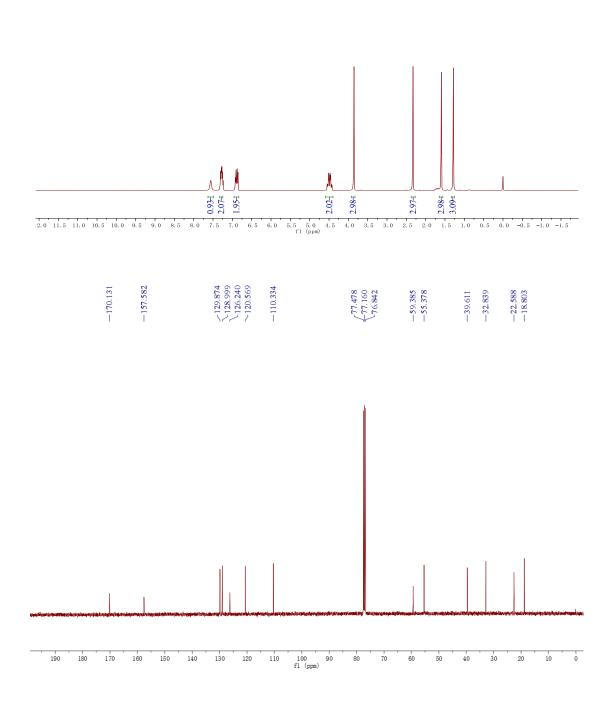

2.9 References

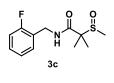

^{S1} C. A. Gandolfi, R. D. Domenico, S. Spinelli, L. Gallico, L. Fiocchi, A. Lotto, E. Menta, A. Borghi, C. D. Rosa and S. Tognella, *J. Med. Chem.*, 1995, **38**, 508.

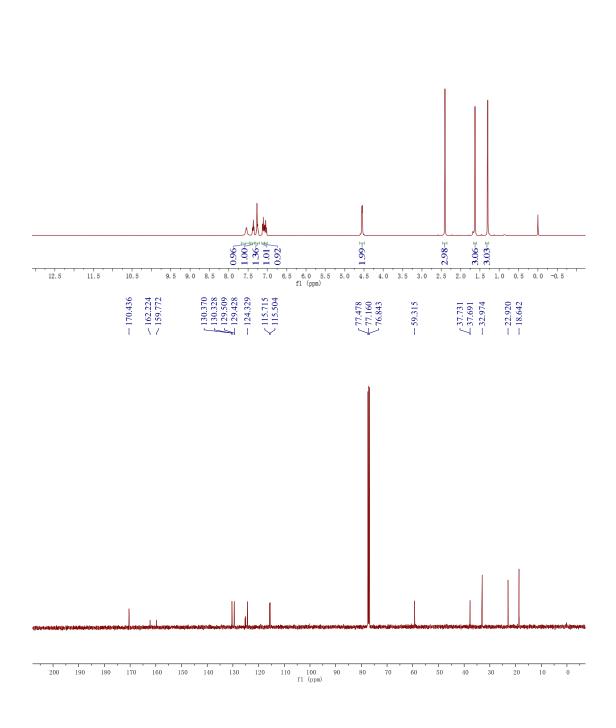

^{S2} L. Zhou and W. Lu, Org. Lett., 2014, 16, 508.

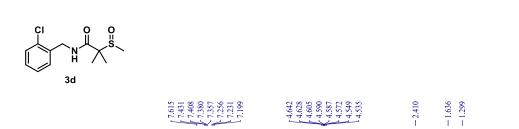

3. NMR Spectra of New Compounds

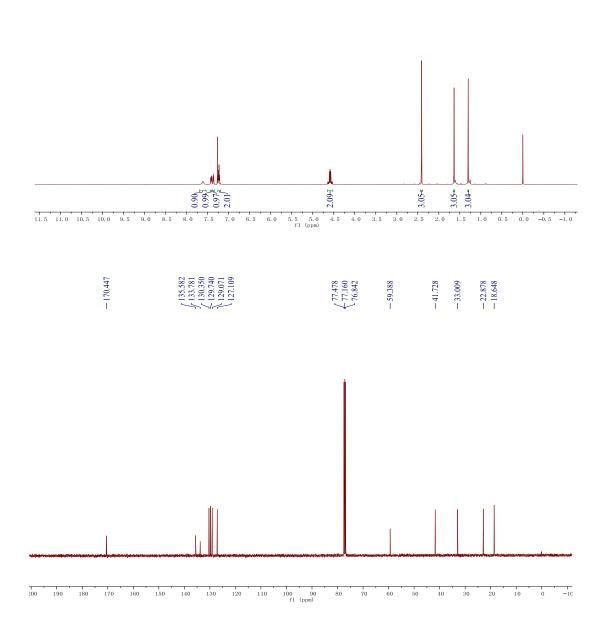


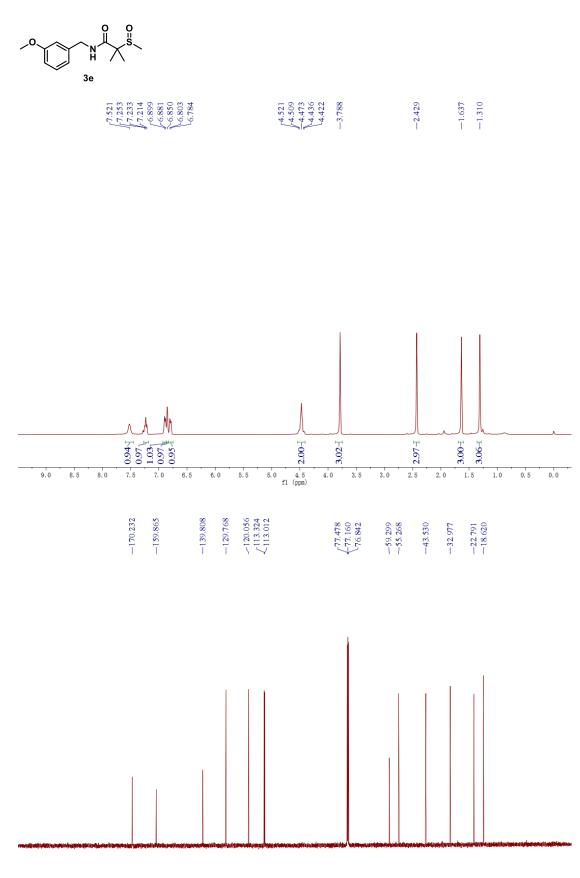




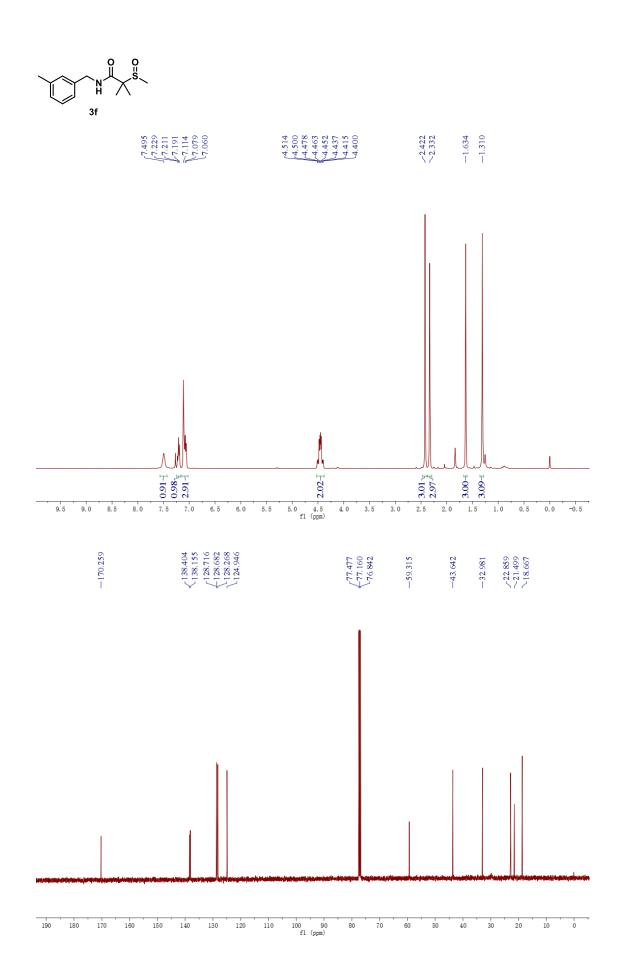


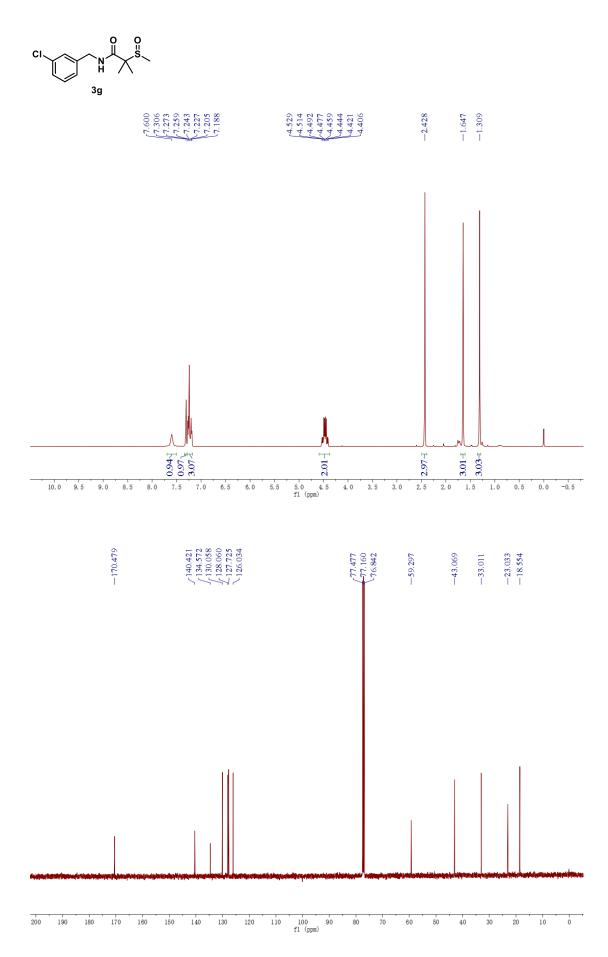


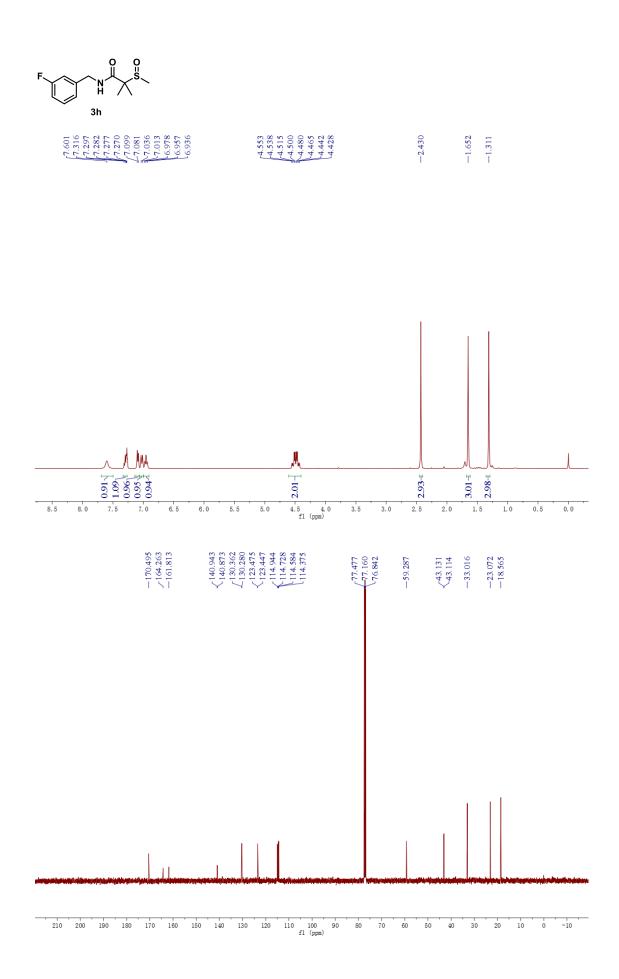


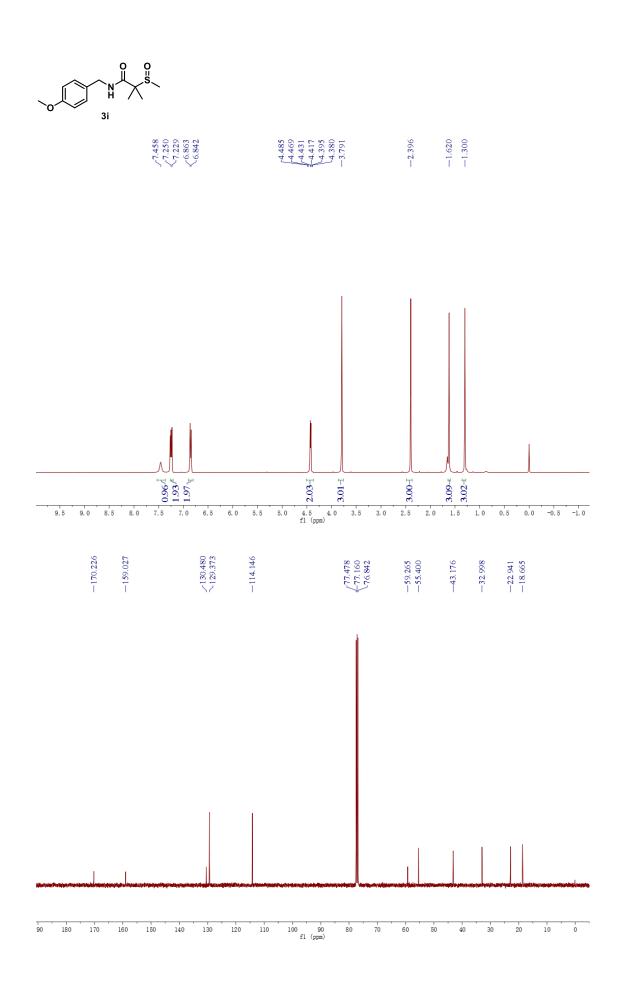


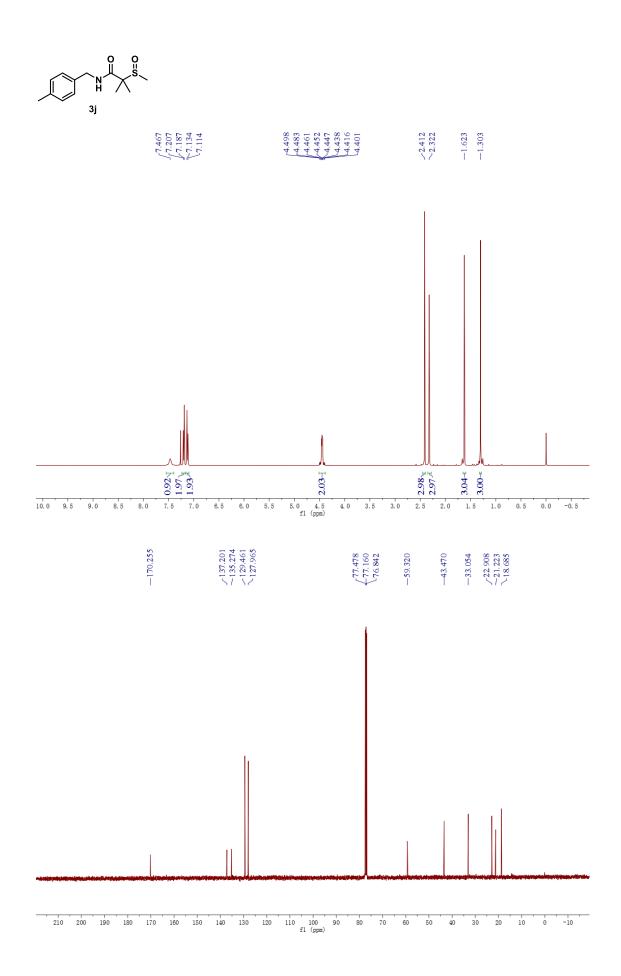
7.7.543 7.7.383 7.7.3848 7.7.236 7.7.021 7.7.071 7.7.077 7.7.077 7.7.077 7.7.077 7.7.077 7.7.077 7.7.077 7.7.077 7.7.077 7.7.025 7.7.077 7.7.025 7.7.077 7.7.025 7.7.077 7.7.025 7.7.077 7.7.025 7.7.077 7.7.025 7.7.077 7.7.025 7.7.077 7.7.025 7.7.077 7.7.025 7.7.077 7.7.025 7.7.077

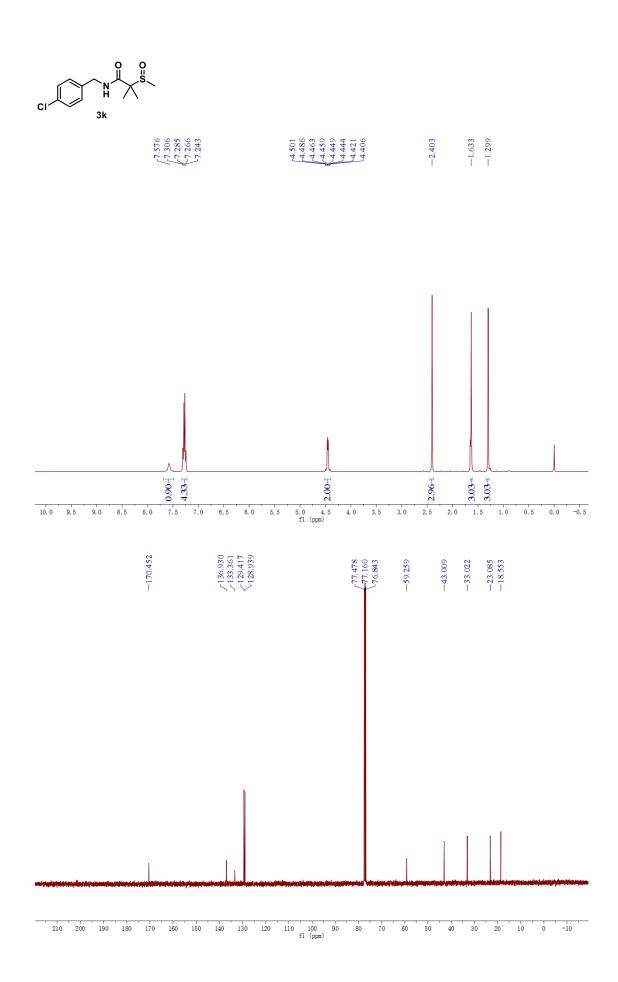


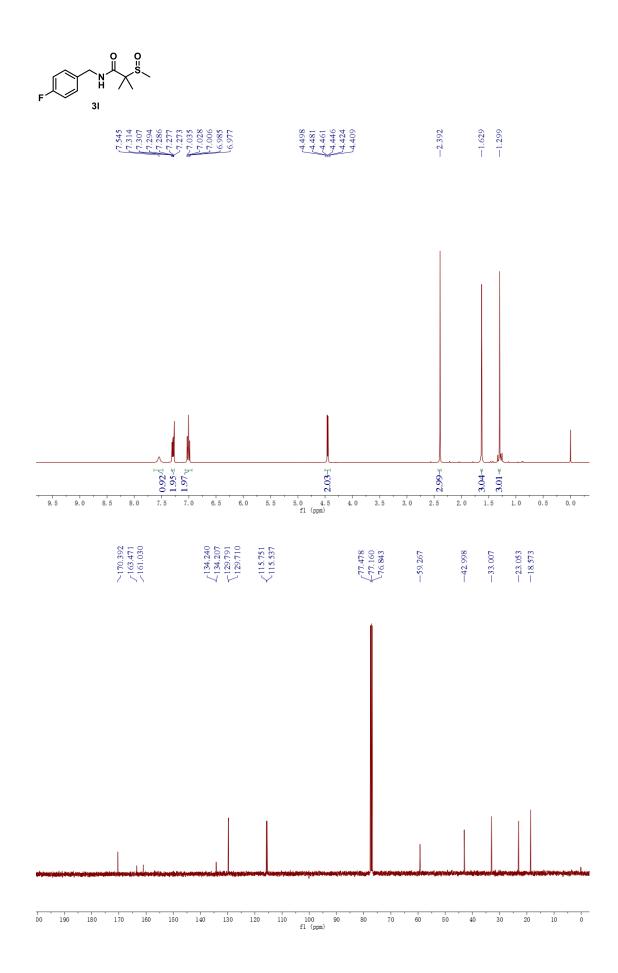


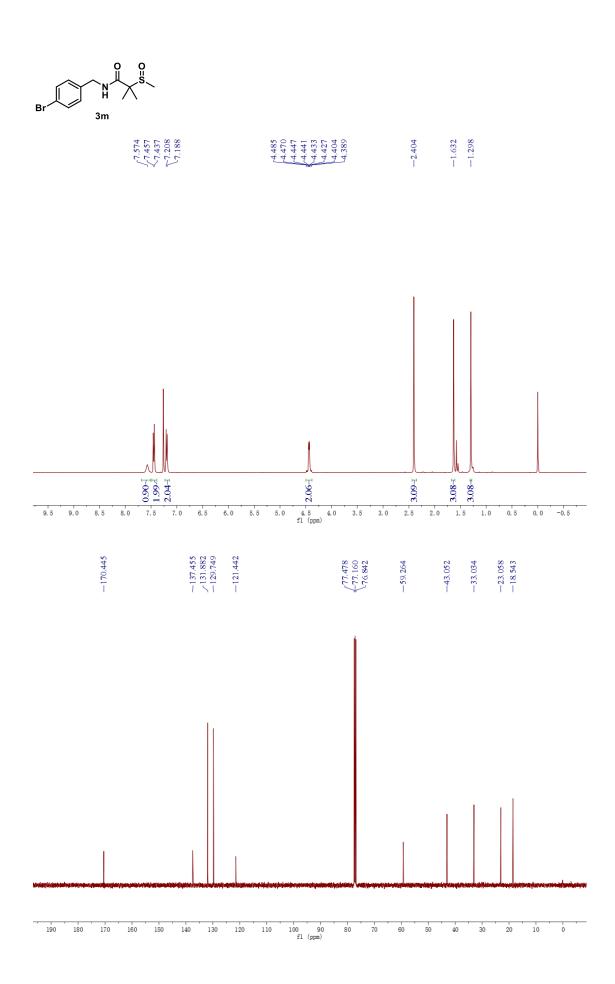


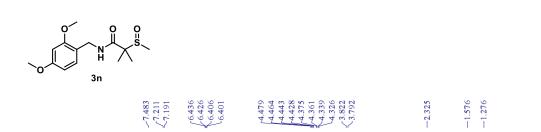


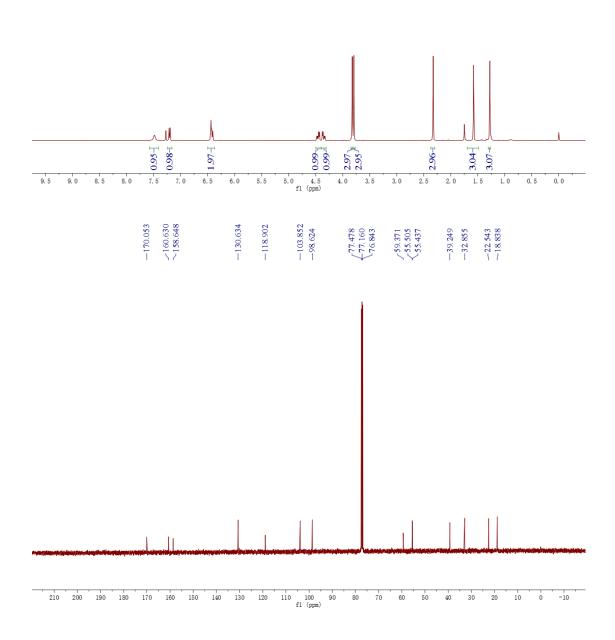

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

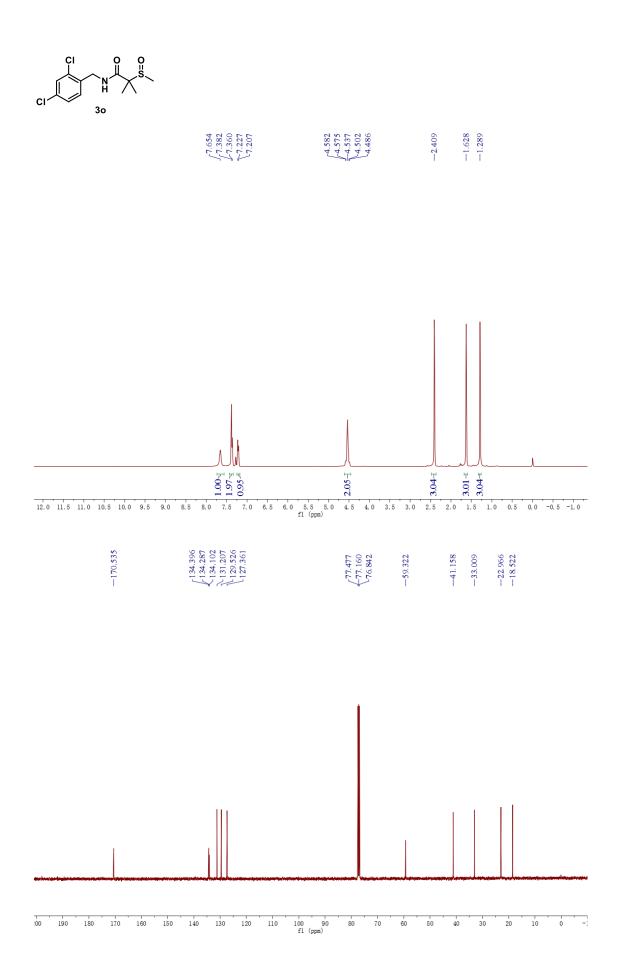


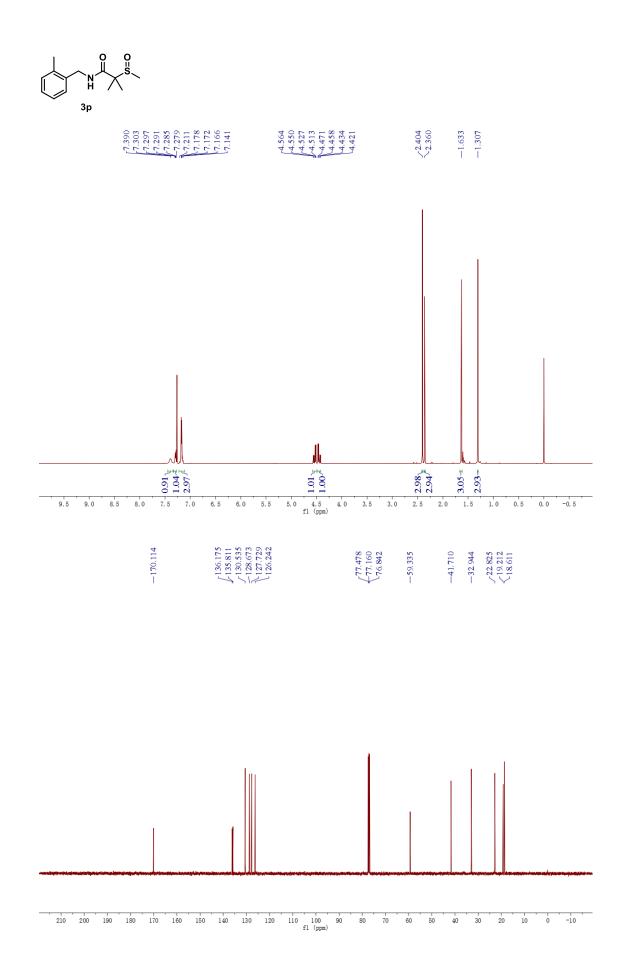


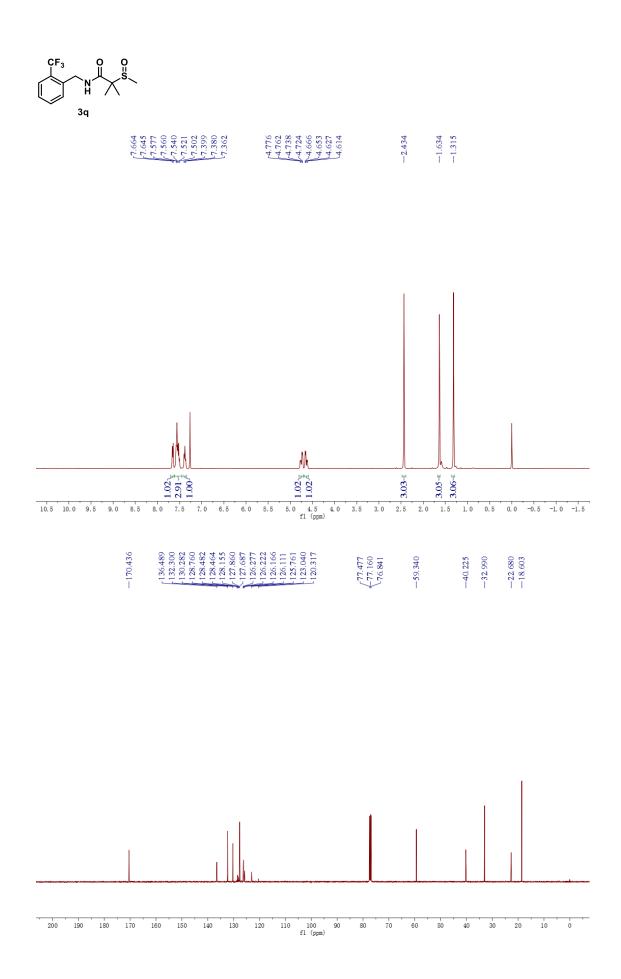


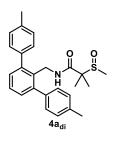


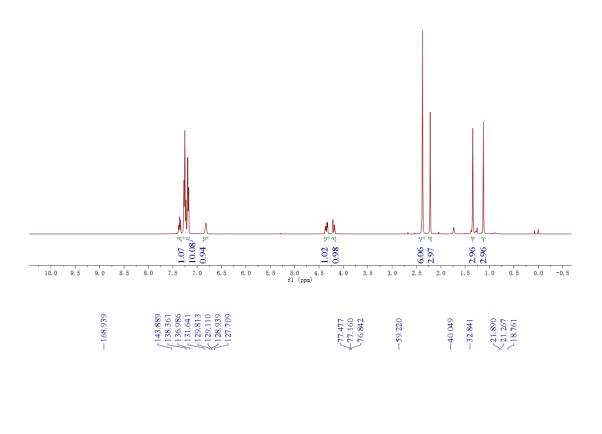


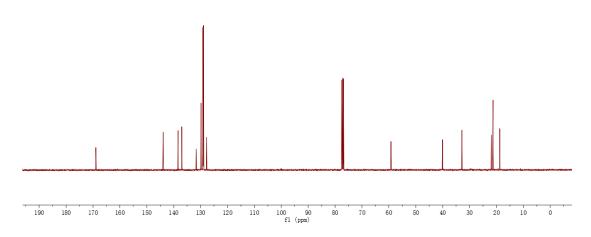


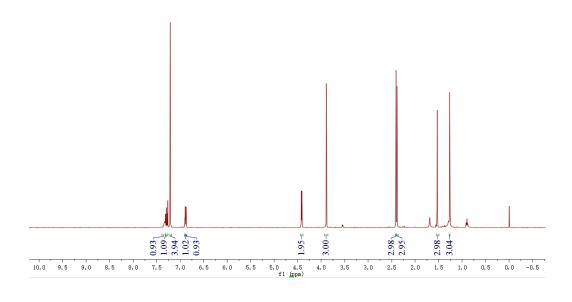




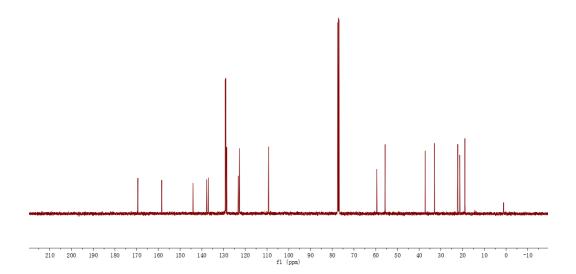


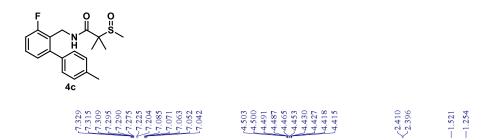


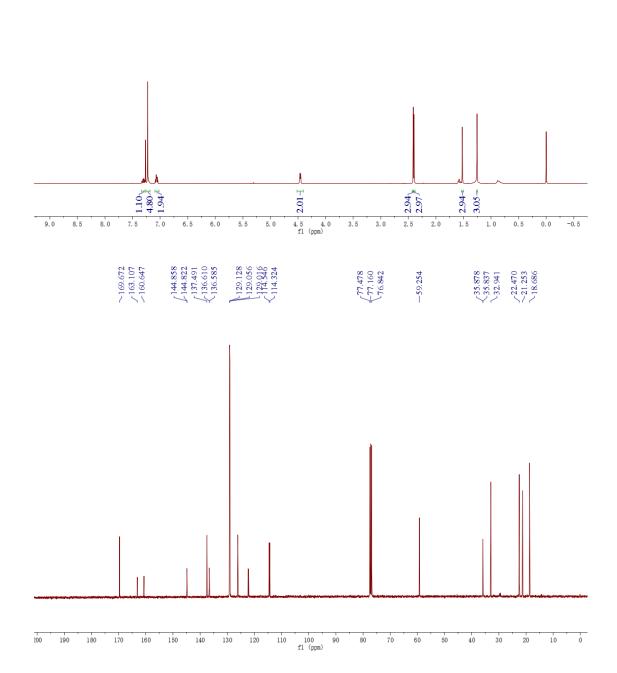


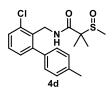


7,379 7,341 7,134 7,134 6,820 6,820 6,820 6,820 6,820 6,134 4,117 4,117 4,1183 4,117 4,117 4,1183 4,1174,117 4,117 4,117 4,117 4,117 4,1174,117 4,117 4,117 4,117 4,1174,117 4,117 4,117 4,1174,117 4,117 4,11

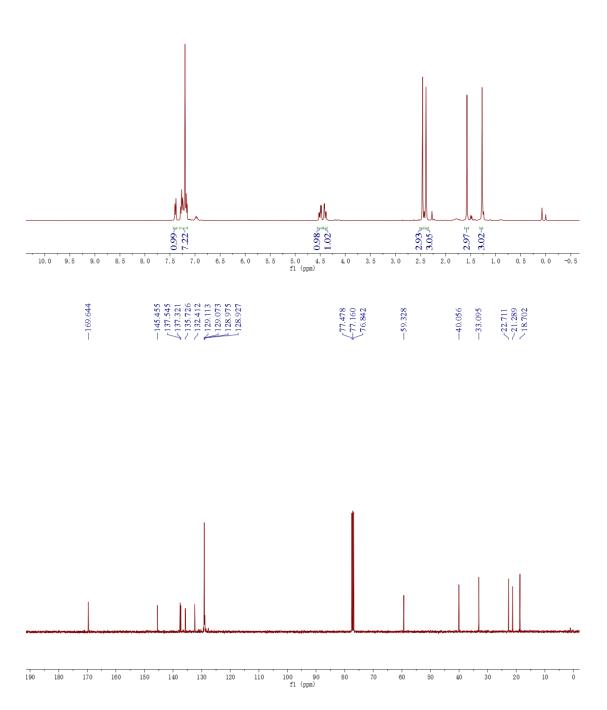


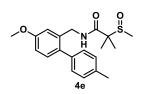


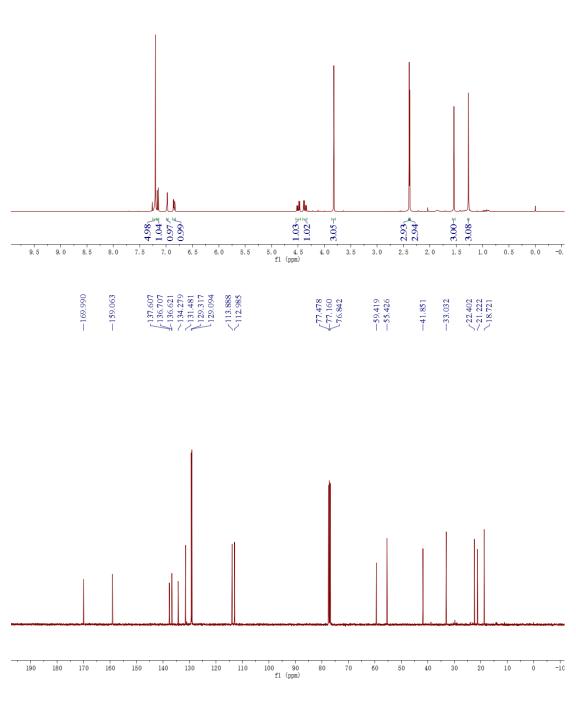


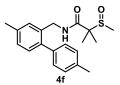


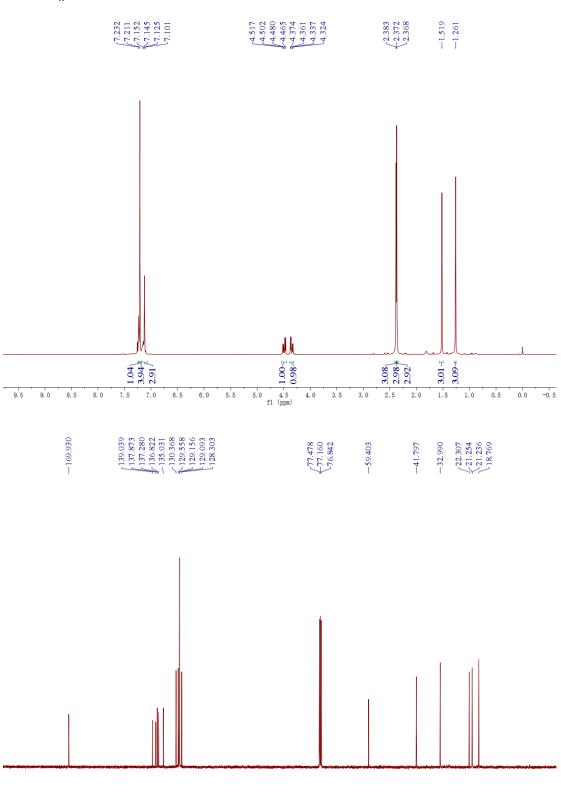
-169.437 -158.458 -158.458 137.716 137.716 122.965 122.9472 -109.313 -109.313 -77.477 77.477 77.477 -77.477 -77.460 76.842 -55.652

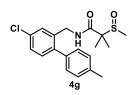


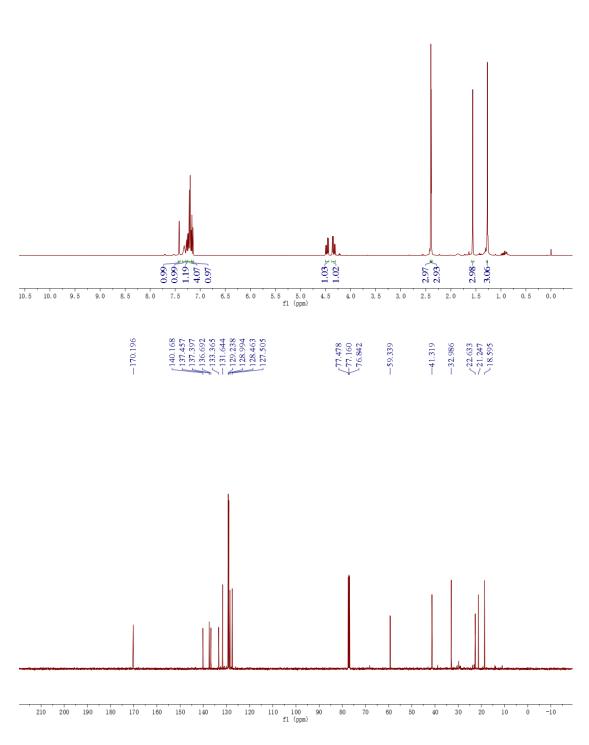


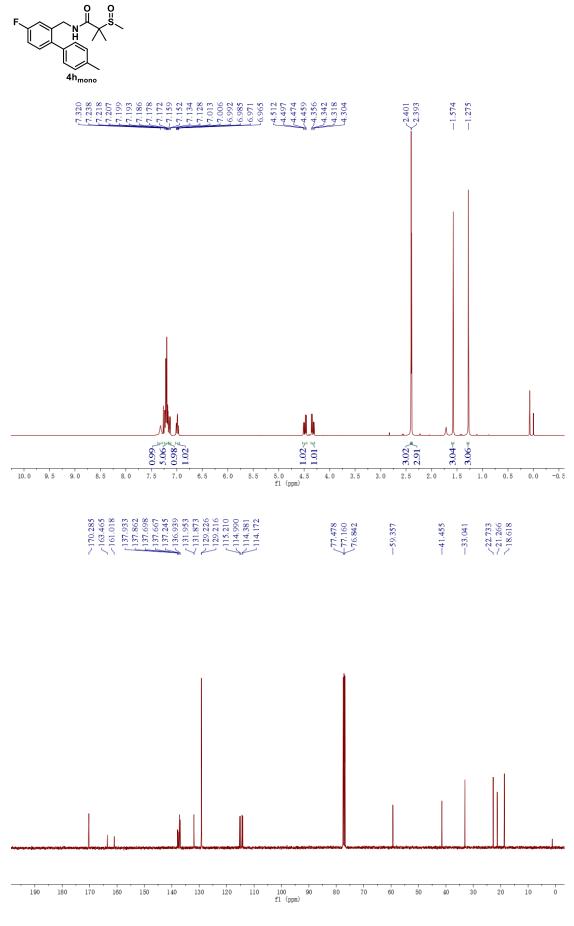


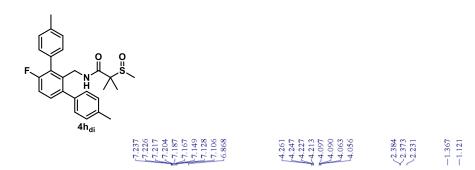


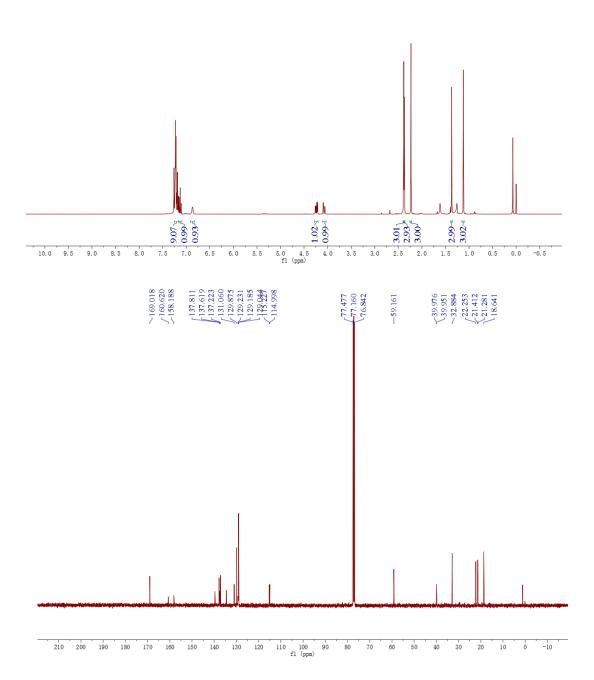


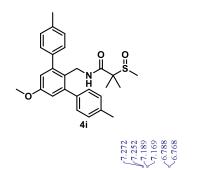

77.125 77.185 77.185 77.185 77.185 77.185 77.168 77.168 77.168 6.834 6.834 6.833 6.833 6.833 6.833 6.833 6.833 7.445 6.834 6.833 7.445 6.834 6.833 7.445 6.834 6.833 7.445 6.834 6.833 7.445 6.834 7.455 6.834 7.455 6.834 7.455 7.455 6.833 7.455 7.235 7.2557

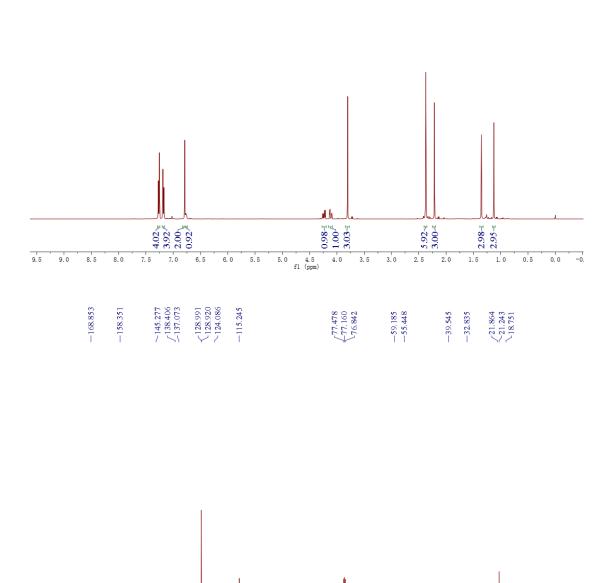


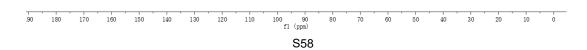


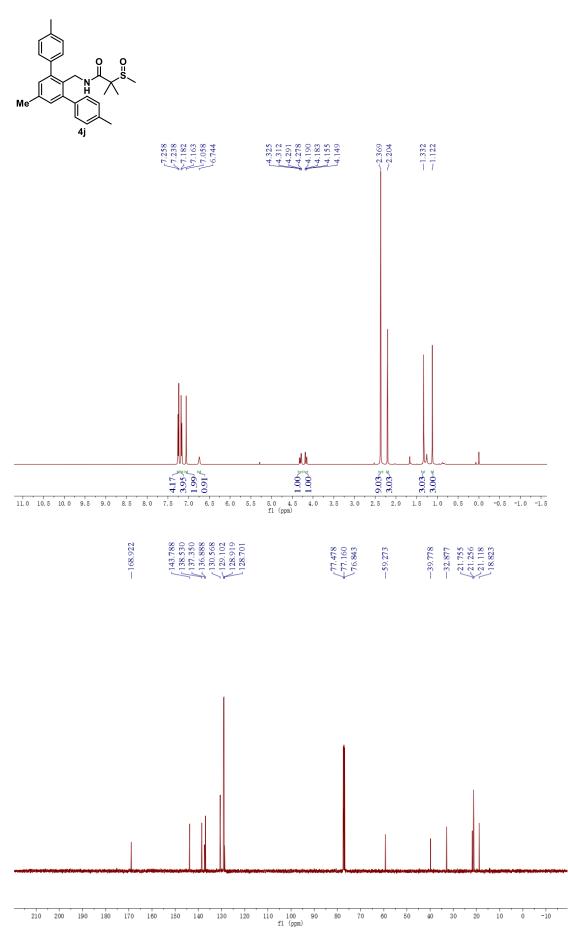

Ó 100 90 fl (ppm)

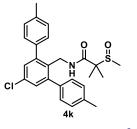



7,4237,73227,73297,73997,72997,72997,72997,72997,72997,72997,72997,72997,1467,12997,12



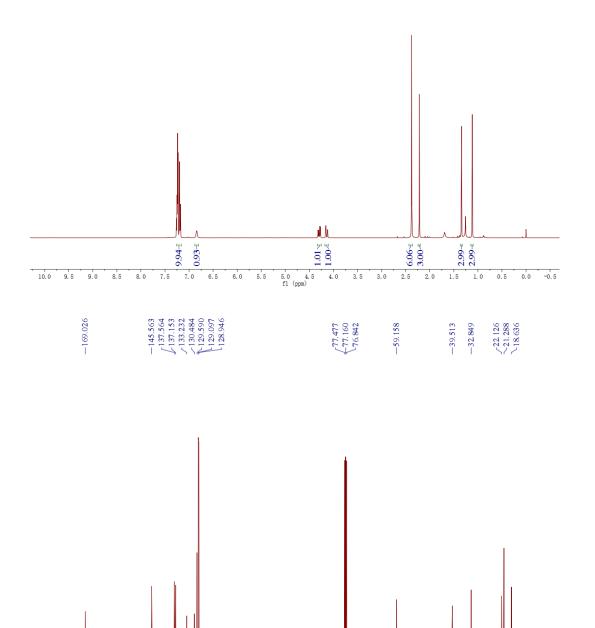






180

170


160

150

140

130

-7.239 -7.229 -7.229 -7.229 -7.178 -6.843 -4.327 -4.327 -4.327 -2.376 -2.376 -2.376 -1.117

80

70

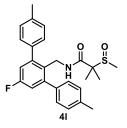
60

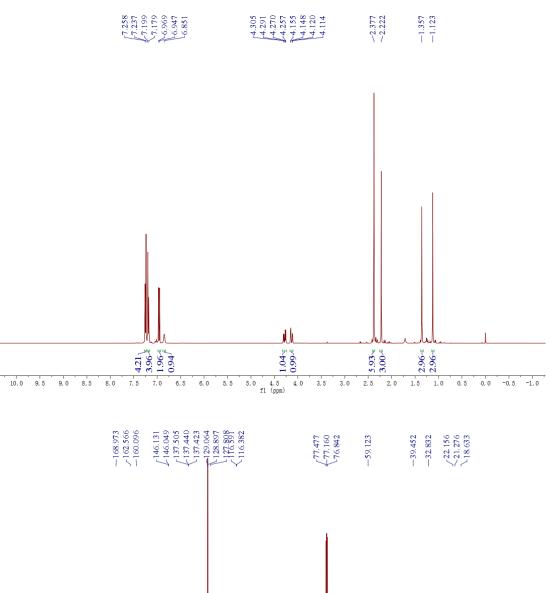
50

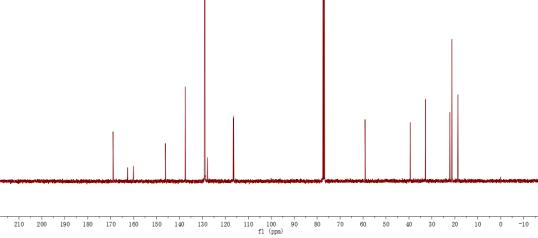
40

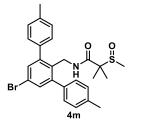
30

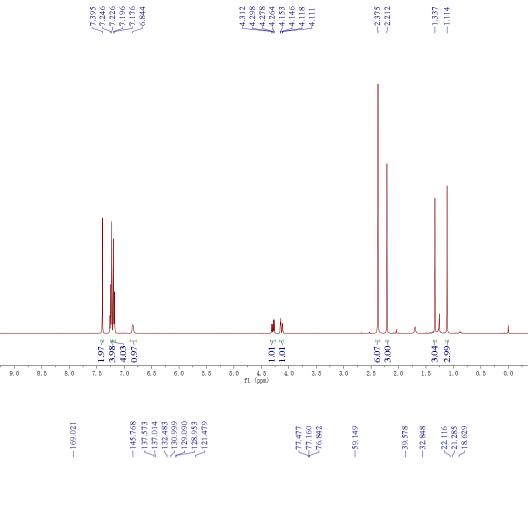
20

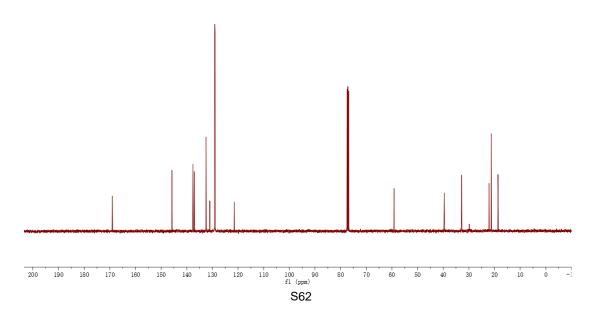

10

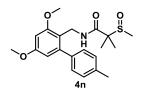

0

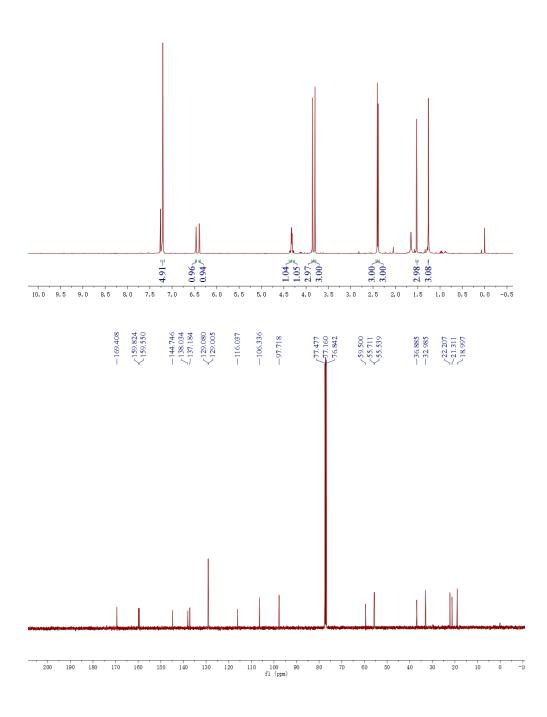

100 90 fl (ppm)

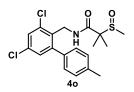

120

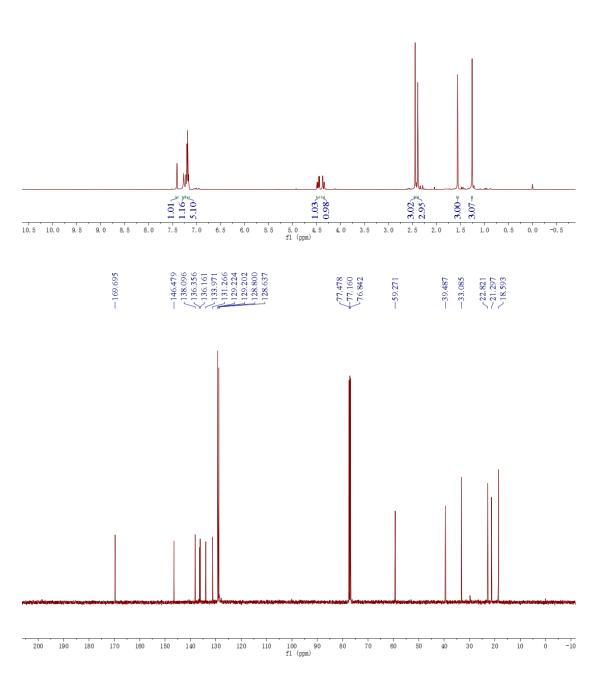

110

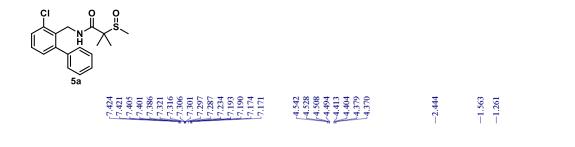


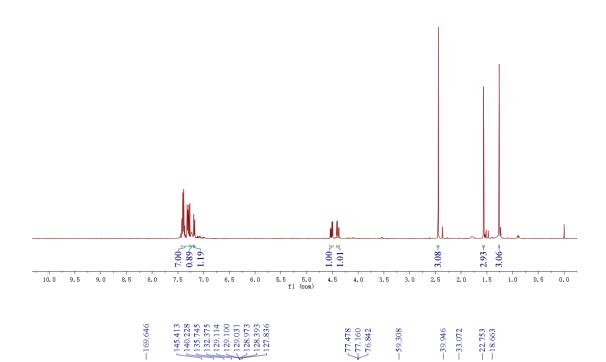


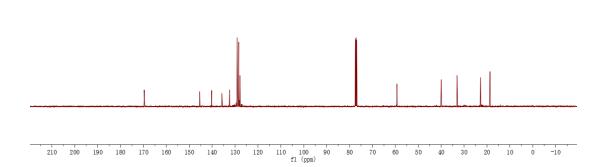


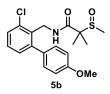




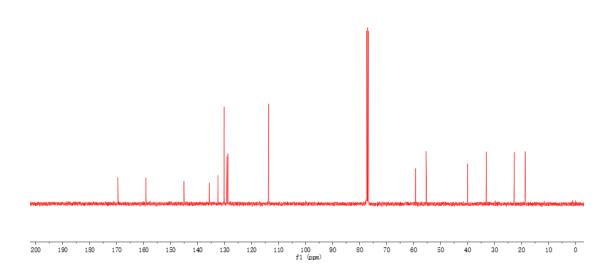

 $\begin{array}{c} & -1.200 \\ & -7.200 \\ & -7.200 \\ & -7.200 \\ & -6.463 \\ & -6.463 \\ & -6.463 \\ & -6.387 \\ & -6.387 \\ & -6.387 \\ & -6.387 \\ & -6.387 \\ & -6.387 \\ & -6.387 \\ & -6.387 \\ & -1.524 \\ & -1.524 \end{array}$

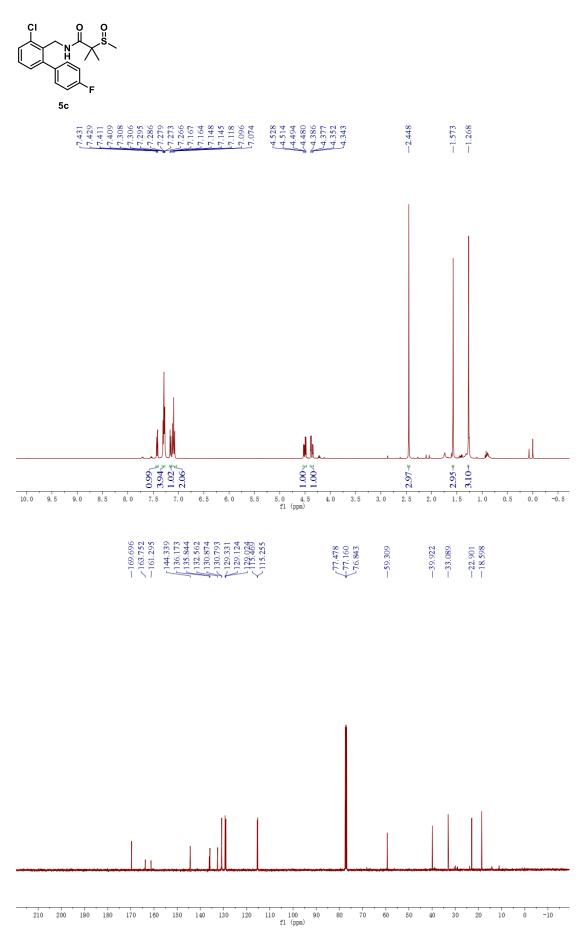


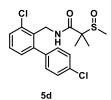


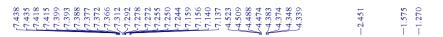


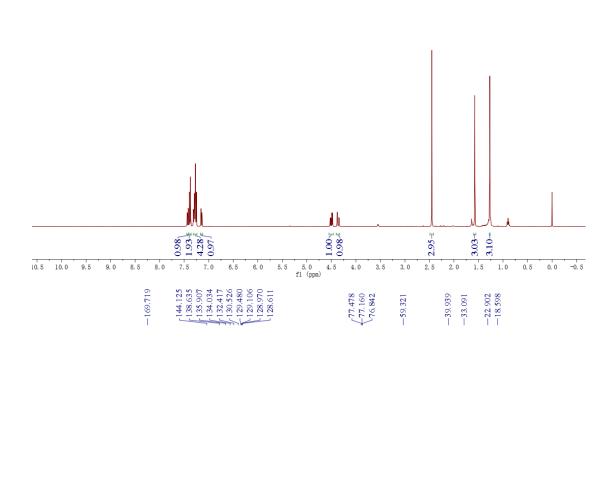


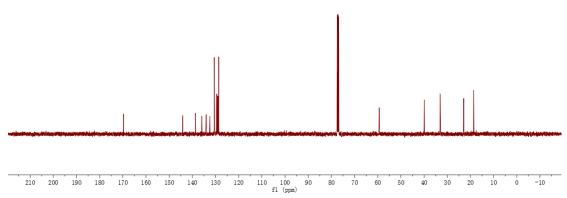


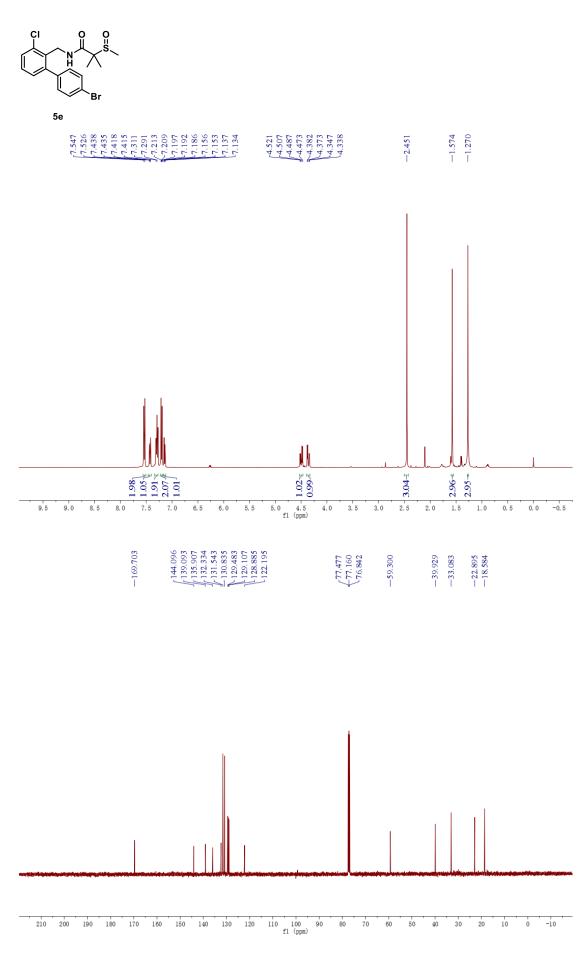


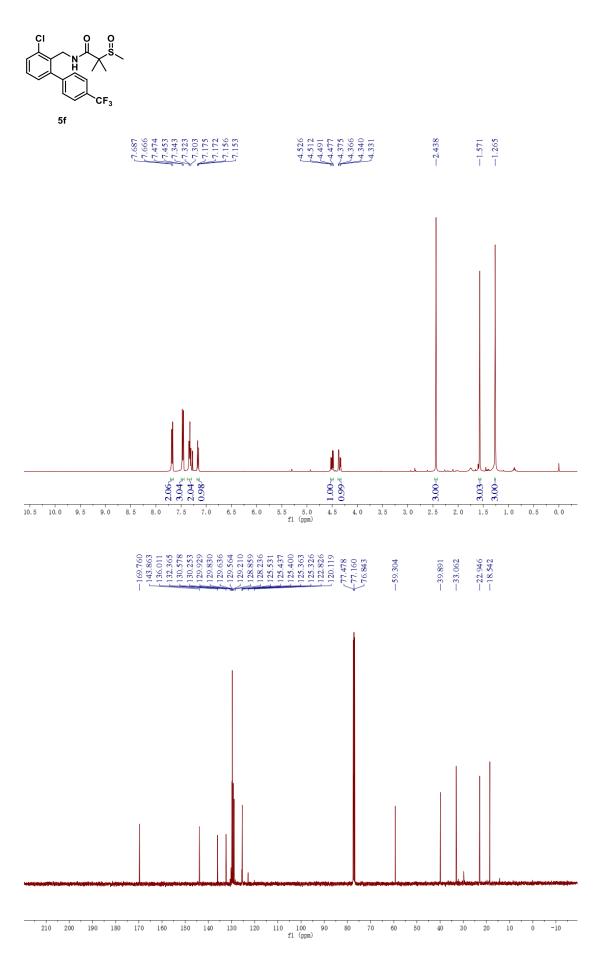


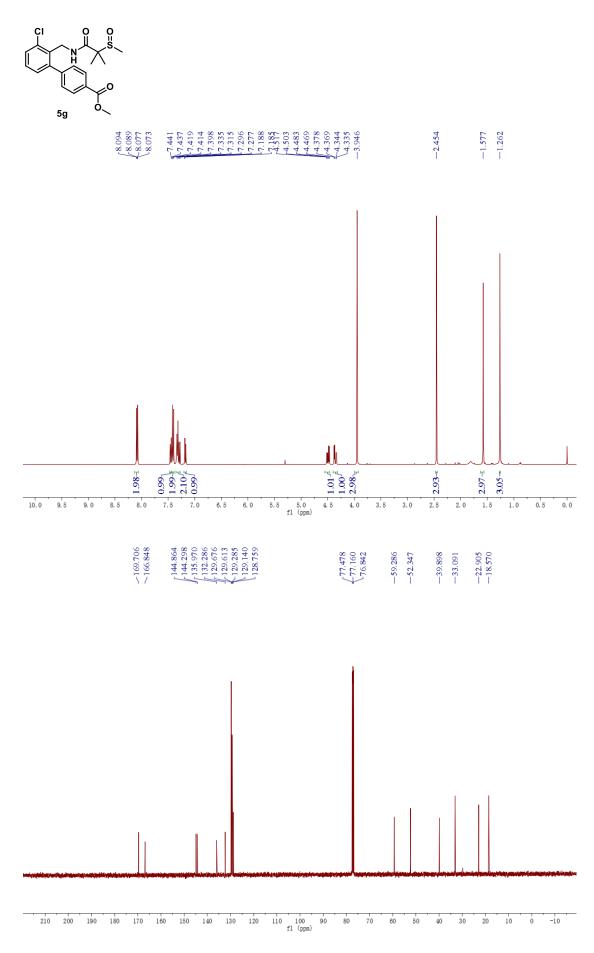


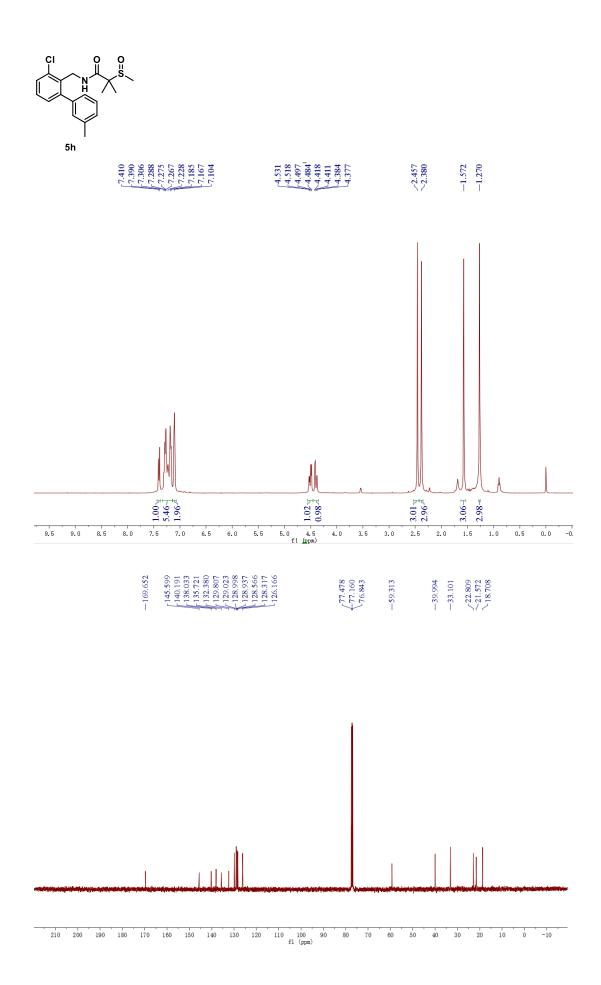


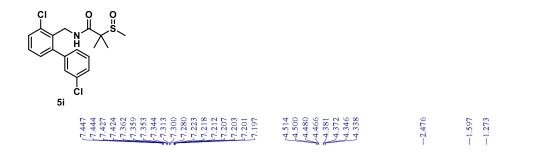


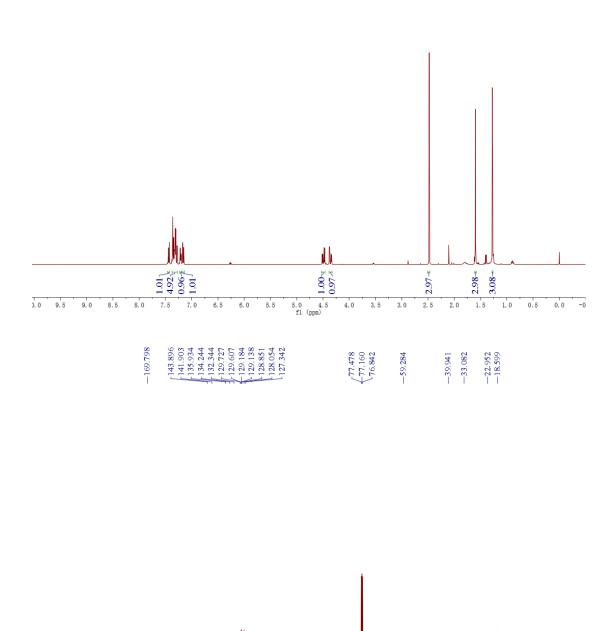


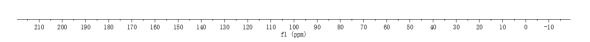


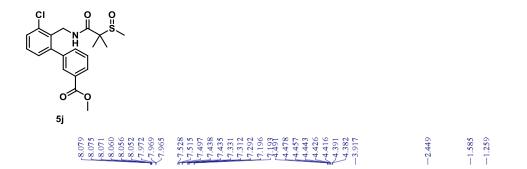


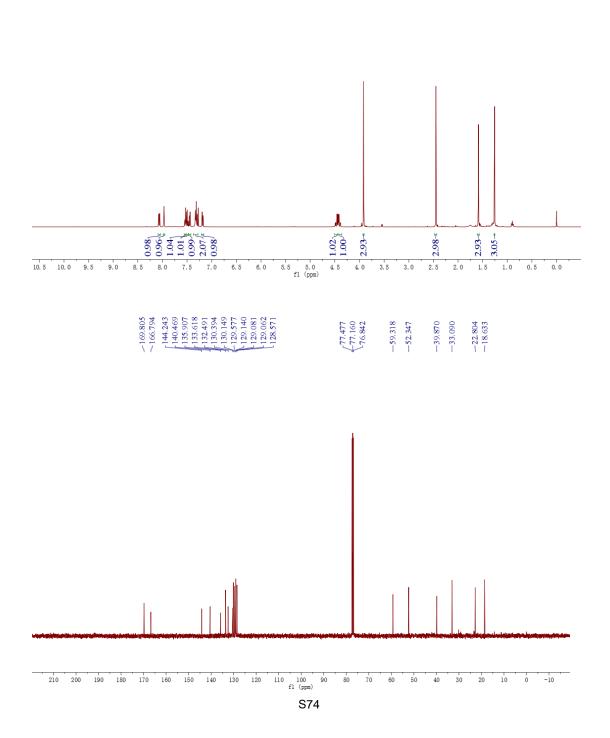


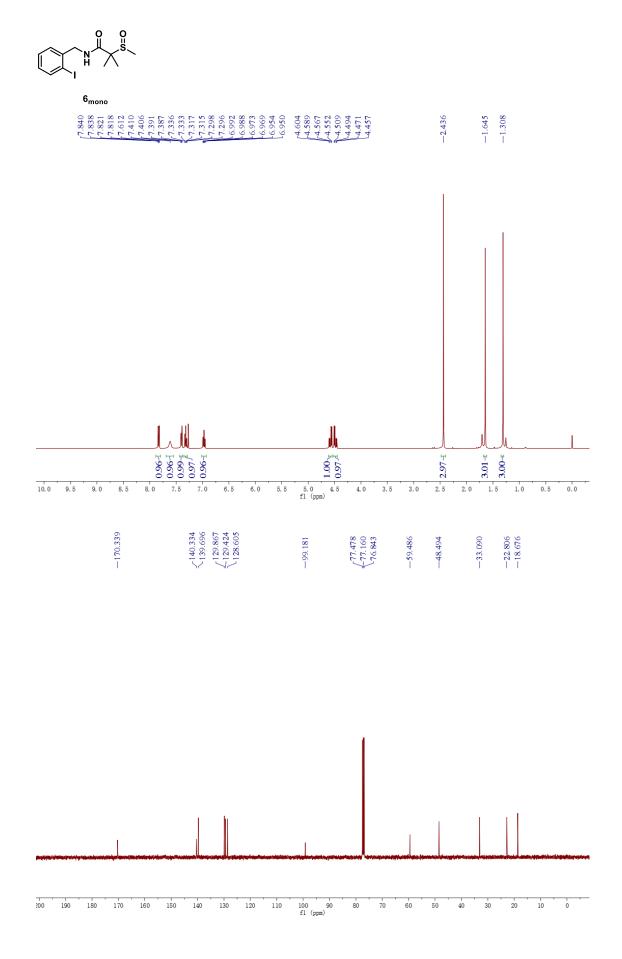


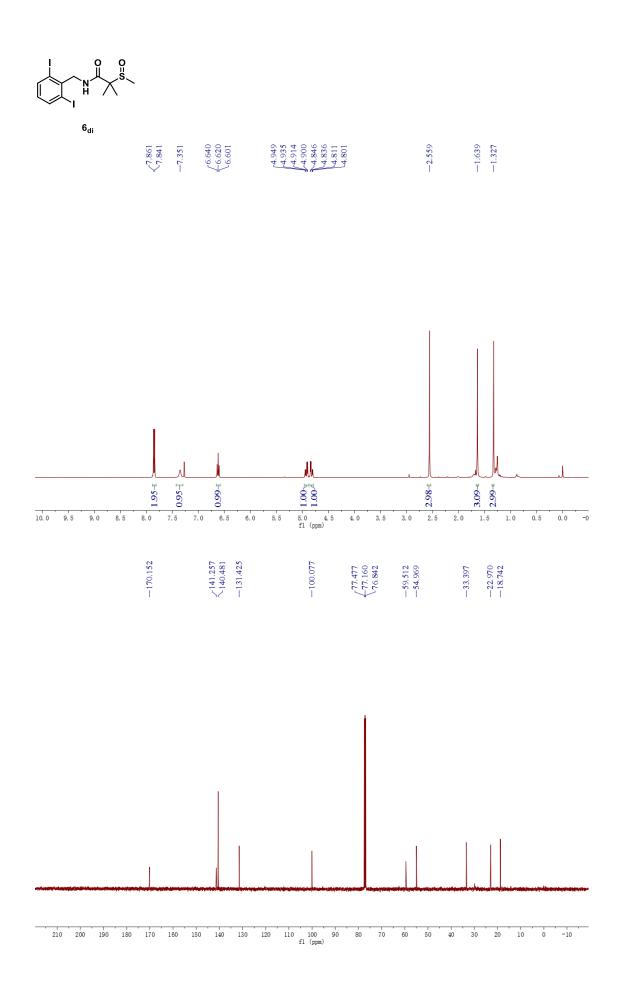


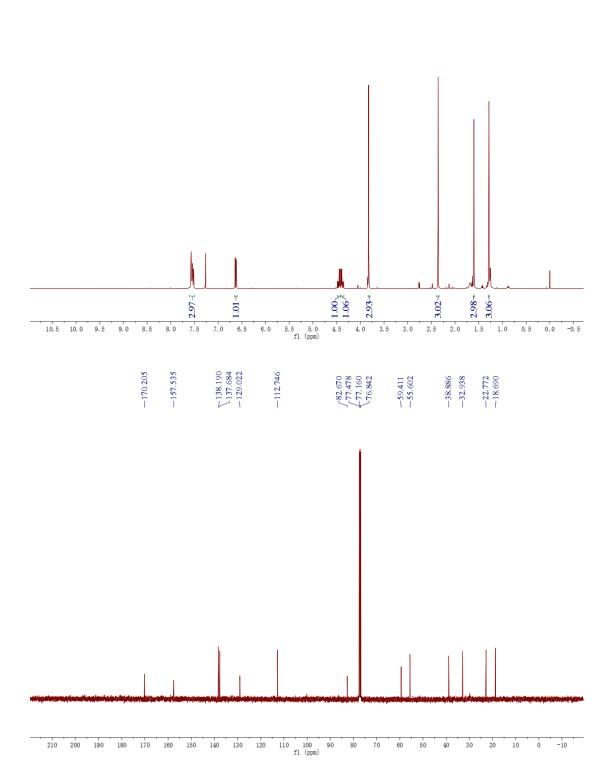


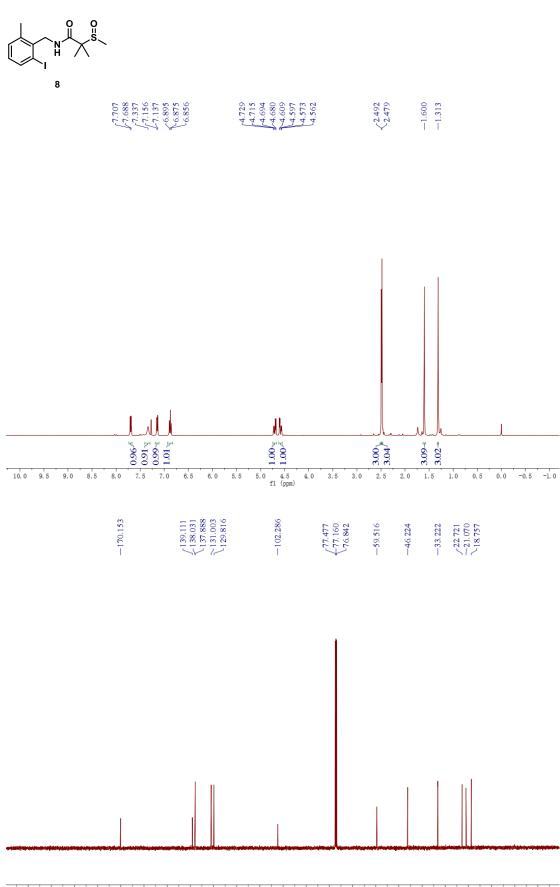


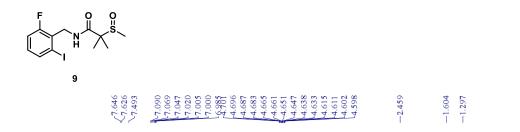


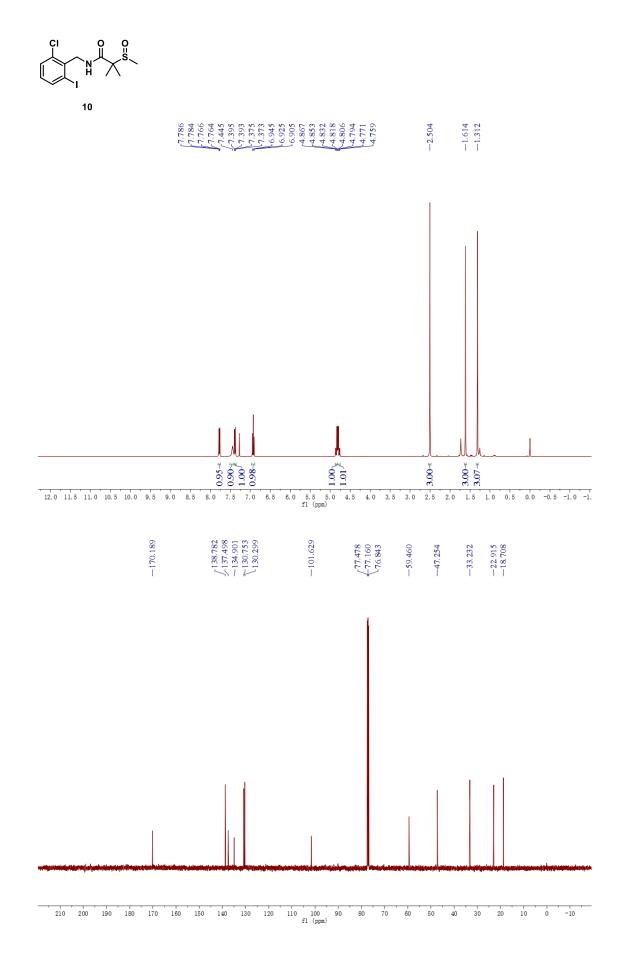


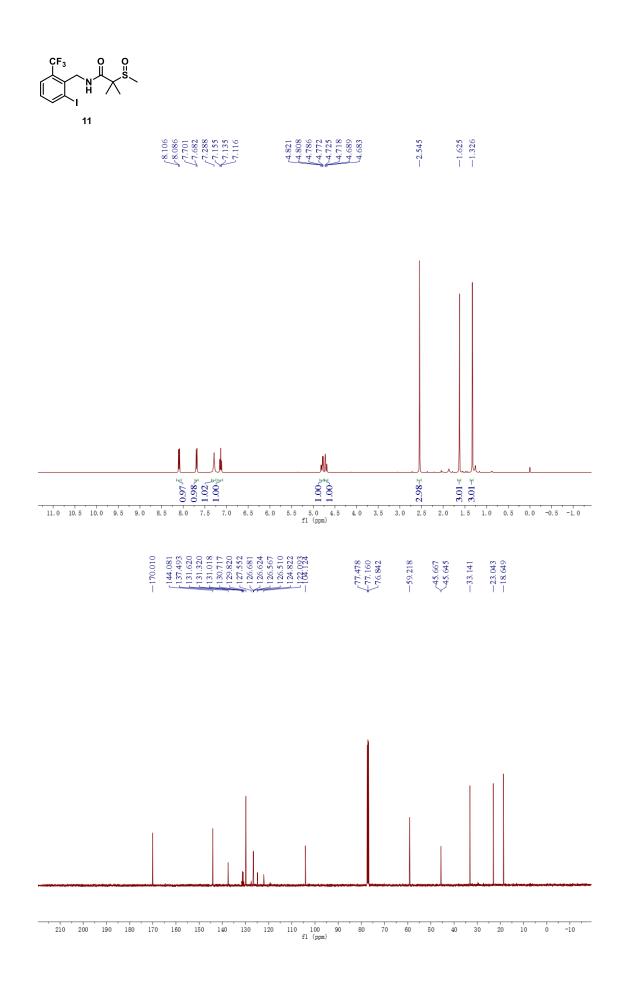


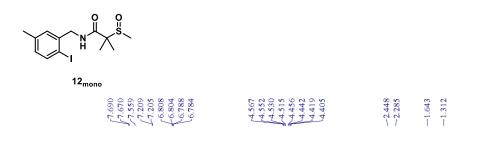


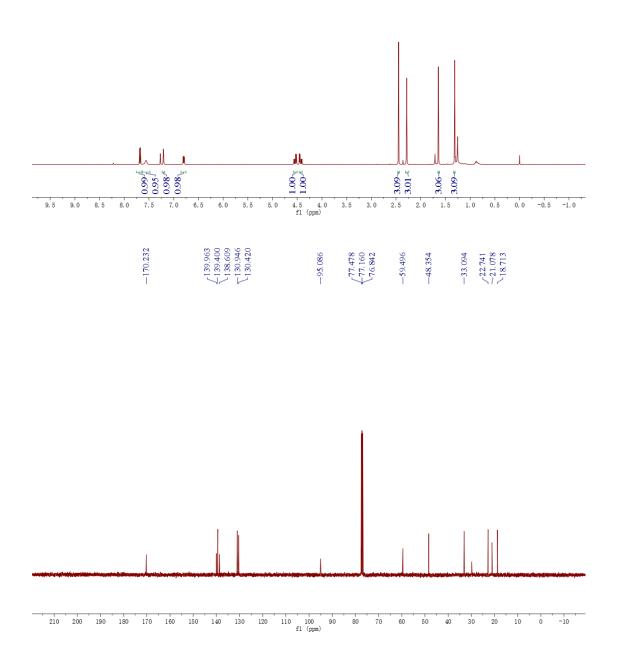


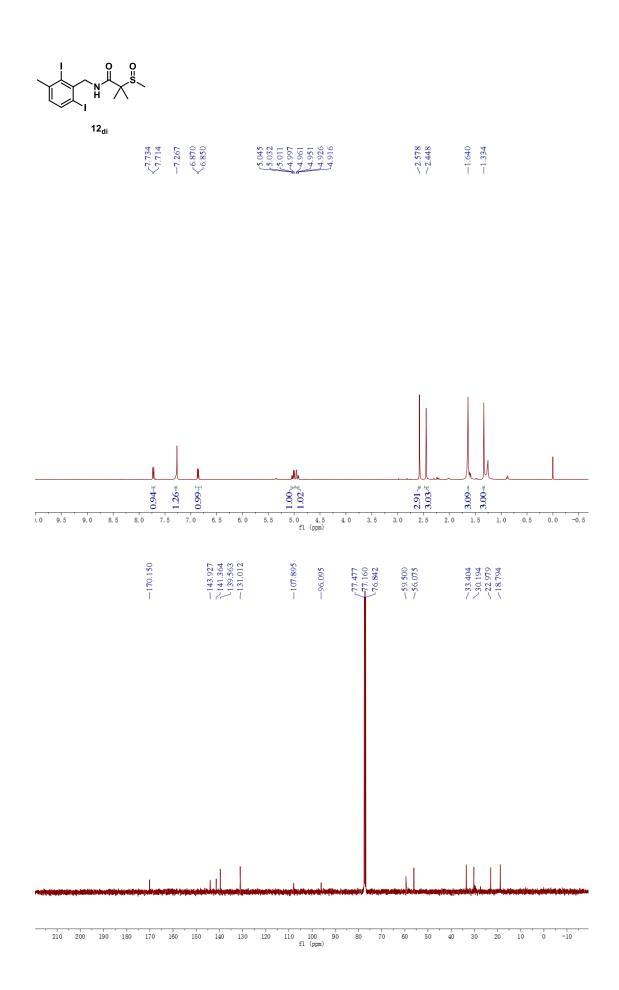


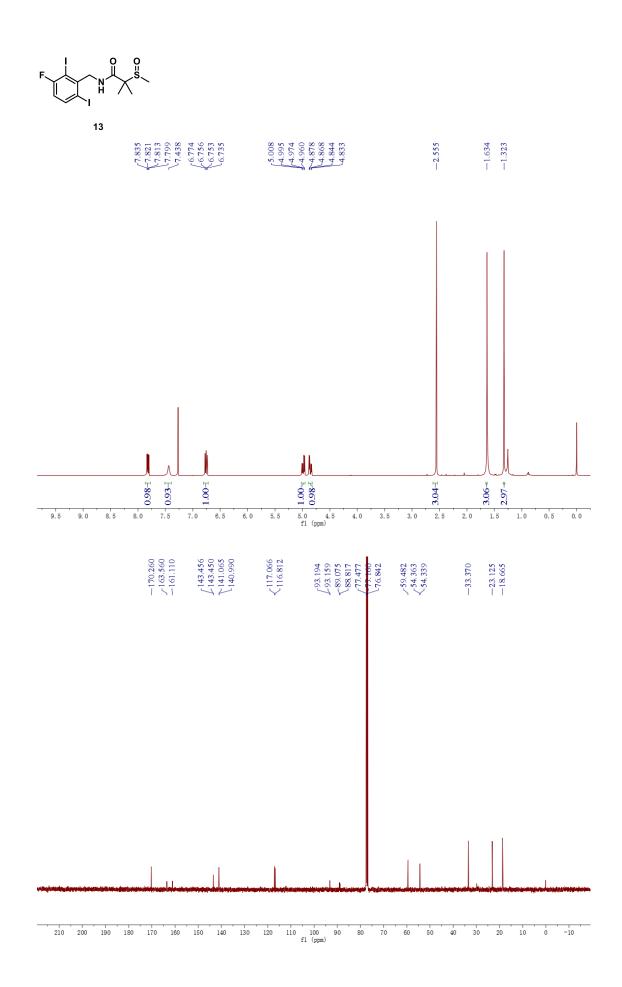


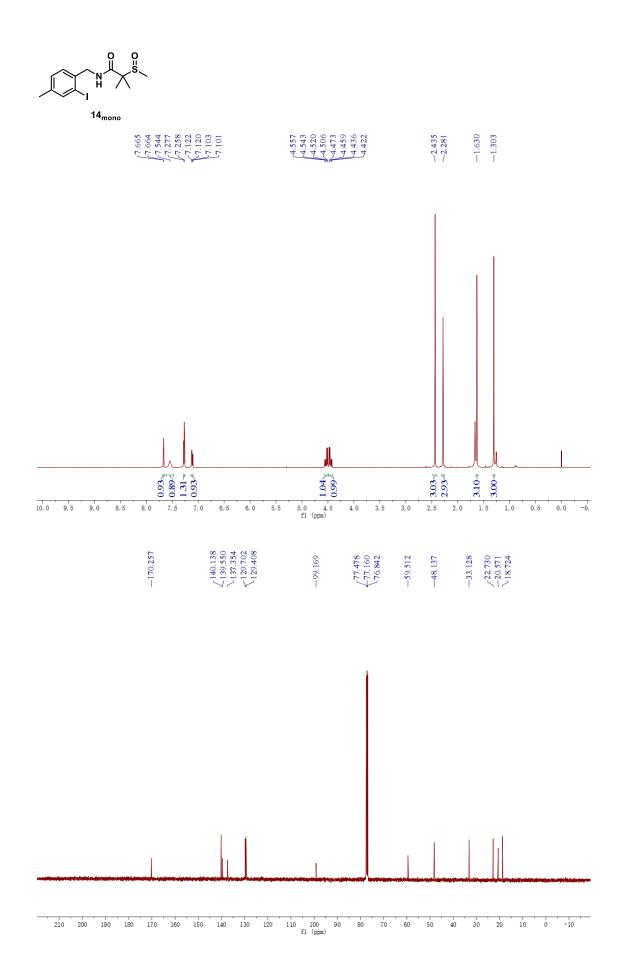


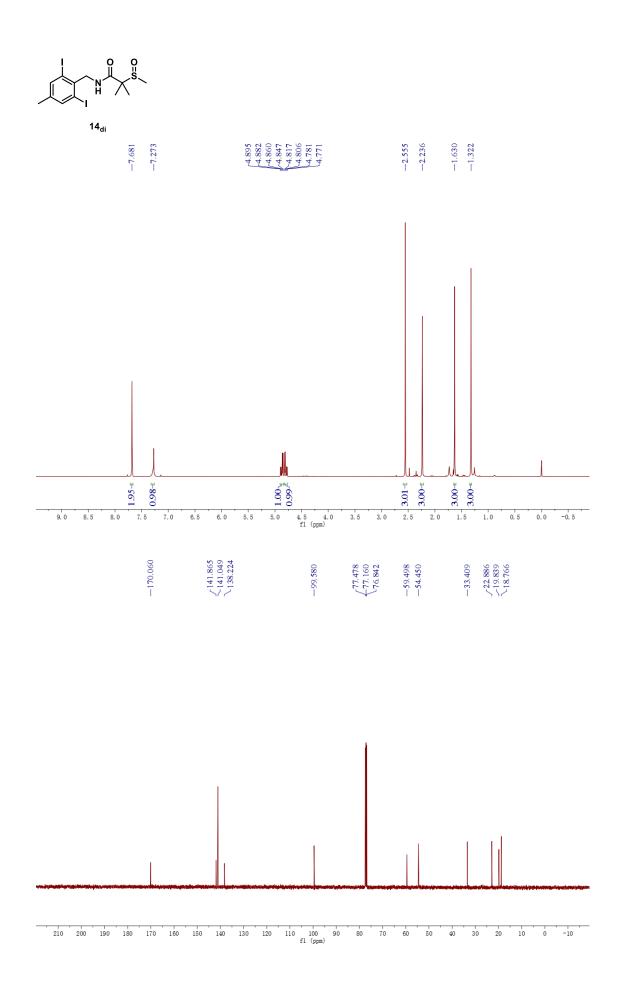




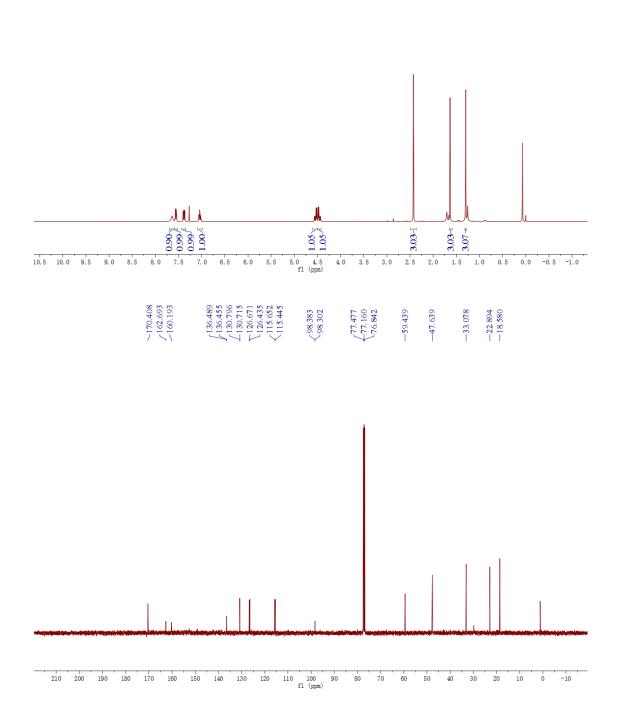


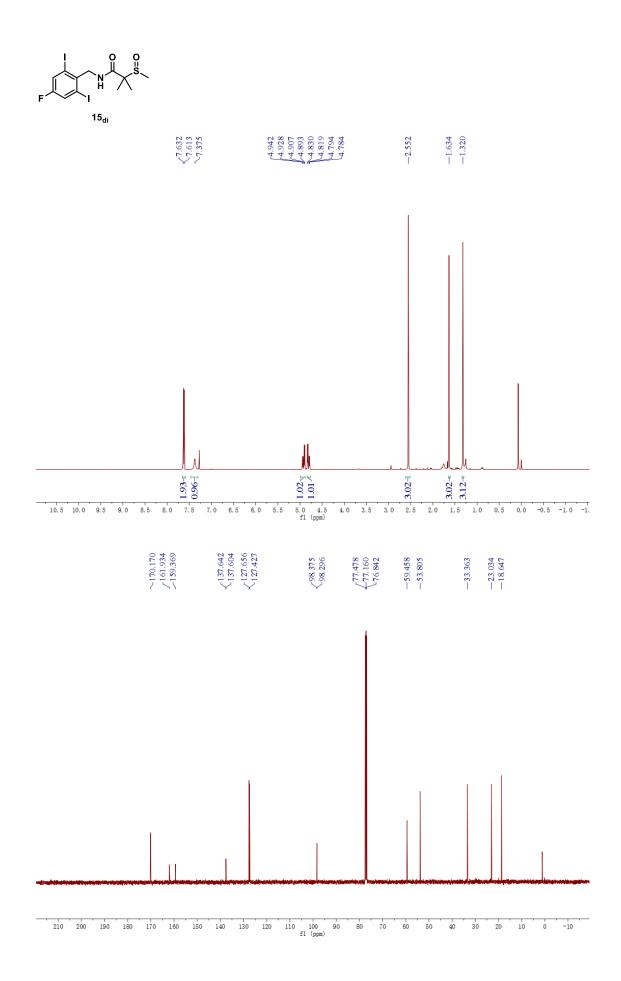


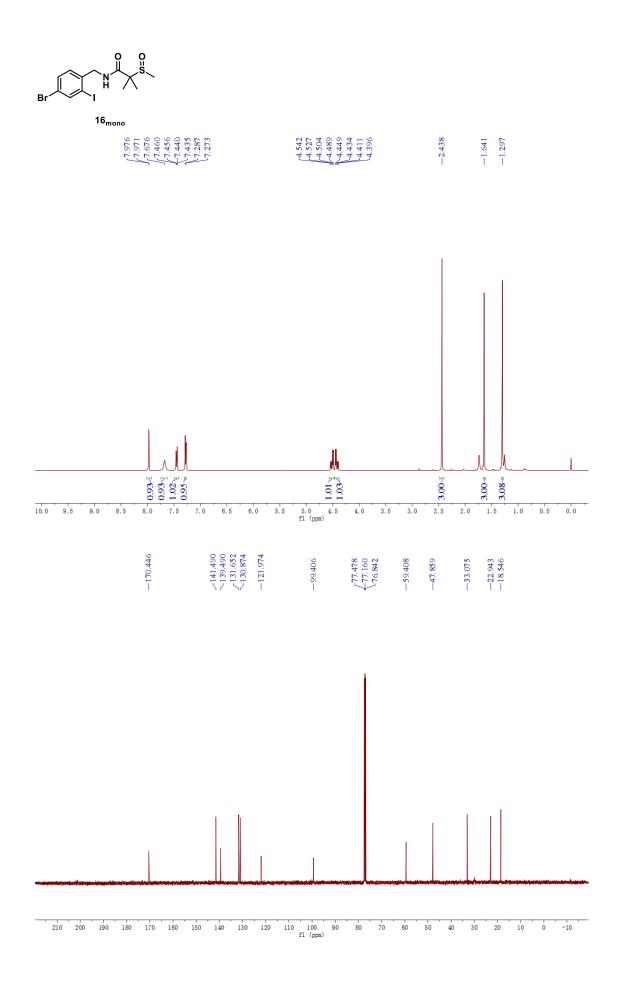


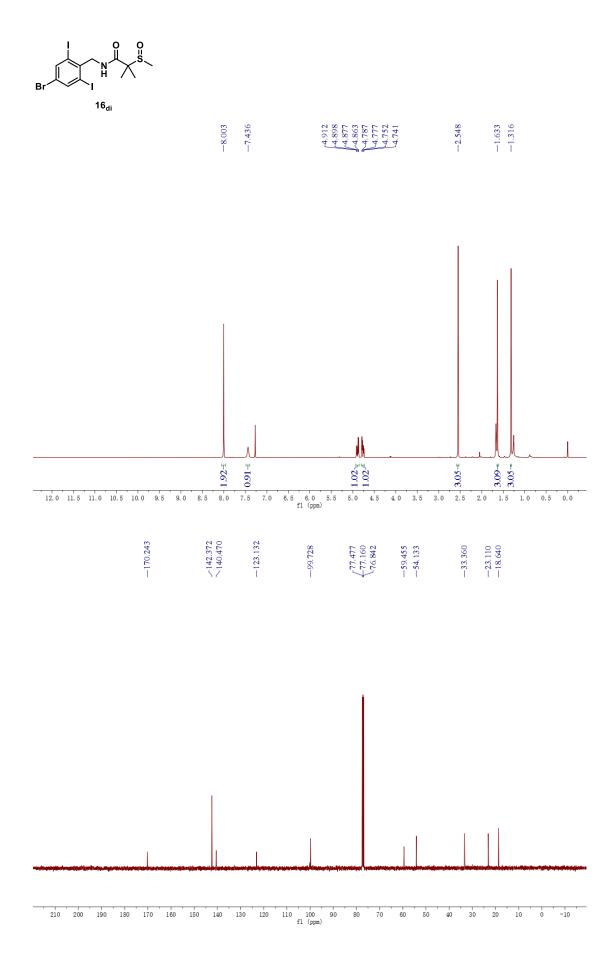


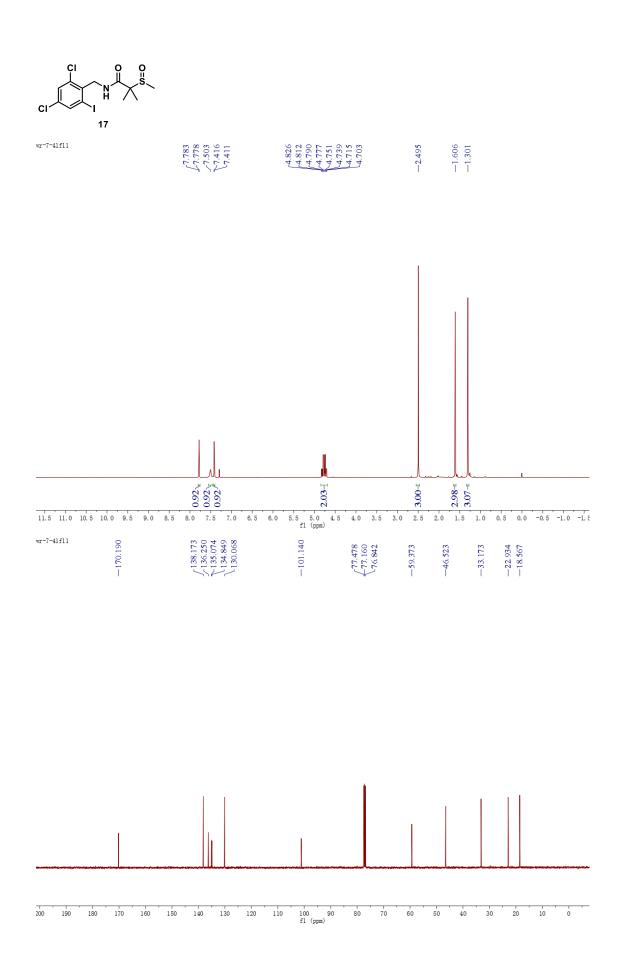


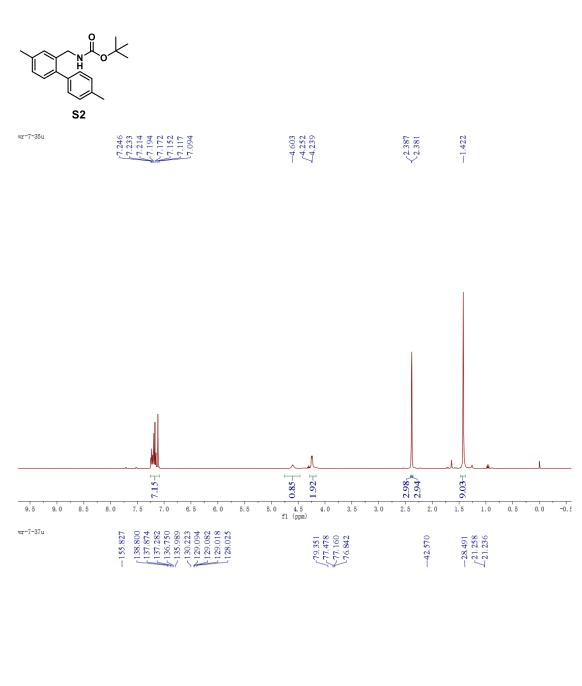


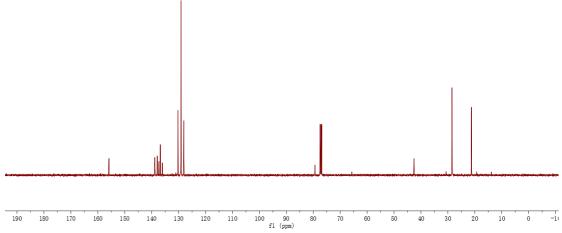











S88

