Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Cu(II)-mediated Keto C(sp³)-H Bond α-Acyloxylation of *N,N*-dialkylamides with Aromatic Carboxylic Acid

Wenjing Li, Changzhen Yin, Xiao Yang, Hailong Liu, Xueli Zheng, Maolin Yuan, Ruixiang Li, Haiyan Fu* and Hua Chen*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.Fax: (+86)-28-8541-2904; E-mail: scufhy@scu.edu.cn; scuhchen@scu.edu.cn;

Table of Contents

1. General remarks	S2
2. Synthesis of acetamides	S2
3. Optimization the reaction conditions	S3
4. General procedures	S7
5. Control experiment	S 8
6. Electron paramagnetic resonance (EPR) experiment	S9
7. Procedure for Kinetic Isotope Experiments	S11
8. Hammett competition experiments	S12
9. Characterization data of products	S13
10. References	S23
11. NMR spectra	S24

1. General remarks

All reagents and starting materials were purchased from commercial sources and used as supplied, unless otherwise illustrated. All solvents were purified according to the established procedures. With the exception of *N*,*N*-dimethylacetamide (DMAc), all acetamides were prepared according to the literature procedure¹ (see Synthesis of acetamides **2b-f**). Column chromatography was performed with silica gel (Merck, 300-400 mesh). ¹H NMR spectra were recorded on Bruker Avance 400 MHz spectrometers. Chemical shifts were reported in ppm referenced to 7.26 ppm of chloroform-*d*. ¹³C NMR spectra were recorded on Bruker Avance 101 MHz spectrometers, and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.16 ppm of chloroform-*d*. HRMS was recorded on a commercial apparatus (ESI Source, TOF). Melting points were obtained by XT4A micro Melting-point Measurement Instruments. Electron paramagnetic resonance (EPR) experiment was recorded by A300.

2. Synthesis of acetamides

Synthetic procedure A: To an oven-dried round bottom flask, ammonium chloride (2.60 g, 50 mmol), amine (50 mmol) and EtOH (50 mL) were added. The solution was heated to reflux for two hours followed by dropping in trimethyl orthoacetate (14.3 mL, 75 mmol). The reactions were monitored by Thin-Layer Chromatography (TLC) on Iodine cylinder. Upon completion, the reaction mixture was cooled to room temperature. After the solvent was removed under the reduced pressure, the product was purified by flash column chromatography on silica gel using petroleum ether and ethyl acetate (PE:EA=1:1) as eluent to afford the acetamides.¹

N-Ac N,N-Diethylacetamide (**2b**). Following the synthetic procedure A. A canary yellow liquid in 61% yield. ¹H NMR (400 MHz, CDCl₃): δ 3.34 – 3.18 (m, 4H), 2.00 (s, 3H), 1.15 – 1.08 (m, 6H).

N-Ac N-Acetylpyrrolidine (**2c**). Following the synthetic procedure A. A yellow liquid in 70 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 3.43 – 3.32 (m, 4H), 1.98 (s, 3H), 1.93 – 1.75 (m, 4H).

N-Acetylmorpholine (2e). Following the synthetic procedure A. A canary yellow liquid in 68 % yield . ¹H NMR (CDCl₃, 400 MHz): δ 3.67 – 3.53 (m, 6H), 3.45 – 3.39 (m, 2H), 2.05 (d, *J* = 3.3 Hz, 3H).

 $\begin{array}{l} \mbox{4-Methyl-N-Acetylpiperidine (2f). Following the synthetic procedure} \\ \mbox{H}_{3}\mbox{C-N-Ac} \end{array} \qquad \begin{array}{l} \mbox{4-Methyl-N-Acetylpiperidine (2f). Following the synthetic procedure} \\ \mbox{A. A yellow liquid in 62 % yield . } \mbox{H} NMR (CDCl_3, 400 MHz): δ 4.42 \\ \mbox{-4.35 (m, 1H), 3.67 - 3.58 (m, 1H), 2.92 - 2.80 (m, 1H), 1.57 - 1.43 (m, 1H), 1.91 (s, 3H), 1.58 - 1.40 (m, 3H), 0.99 - 0.86 (m, 2H), 0.79 (d, J = 6.5 Hz, 3H). \end{array}$

3. Optimization of the reaction conditions

		Cu-salt, base		
	1a 2	а	3 aa	
Entry	Cu-salt	Oxidant	Base (equiv)	Yield of 3aa [%] ^b
1	$\operatorname{CuCl}_2(10)$	$K_2S_2O_8$	KOAc (2.0)	trace ^d
2	CuCl ₂ (30)	$K_2S_2O_8$	KOAc (2.0)	trace
3	CuCl ₂ (50)	$K_2S_2O_8$	KOAc (2.0)	trace
4	CuCl ₂ (50)	Cu(OAc) ₂	KOAc (2.0)	trace
5	CuCl ₂ (50)	Ag ₂ CO ₃	KOAc (2.0)	trace
6	CuCl ₂ (50)	AgOAc	KOAc (2.0)	trace
7	CuCl ₂ (50)	Ag ₂ O	KOAc (2.0)	trace
		S 3		

Table 1 Optimization of reaction conditions for o-methylbenzoic acid^a

8	$CuCl_2$ (50)	H_2O_2	KOAc (2.0)	trace
9	CuCl ₂ (30)	TBHP	KOAc (2.0)	trace
10	CuI (1.0)	_	NaOAc (1.0)	32
11	CuCl ₂ (1.0)	_	NaOAc (1.0)	33
12	CuCl (1.0)	_	NaOAc (1.0)	25
13	CuBr ₂ (1.0)	_	NaOAc (1.0)	33
14	Cu ₂ O (1.0)	_	NaOAc (1.0)	5
15	$Cu(OAc)_2$ (1.0)	_	NaOAc (1.0)	trace
16	CuSO ₄ (1.0)	_	NaOAc (1.0)	trace
17	CuBr (1.0)	_	NaOAc (1.0)	10
18	CuCl ₂ (1.0)	_	$K_2CO_3(1.0)$	6
19	CuCl ₂ (1.0)	-	CsOAc (1.0)	14
20	CuCl ₂ (1.0)	_	LiOAc (1.0)	21
21	CuCl ₂ (1.0)	-	K ₃ PO ₄ (1.0)	21
22	CuCl ₂ (1.0)	-	Cs ₂ CO ₃ (1.0)	5
23	CuCl ₂ (1.0)	-	KOAc (1.0)	33
24	CuCl ₂ (2.0)	-	KOAc (1.0)	41
25	CuCl ₂ (2.5)	_	KOAc (1.0)	44
26	CuCl ₂ (3.0)	-	KOAc (1.0)	50
27	CuCl ₂ (4.0)	_	KOAc (1.0)	43
28	CuCl ₂ (3.0)	_	KOAc (2.0)	62
29	CuCl ₂ (3.0)	-	KOAc (3.0)	75
30	CuCl ₂ (3.0)	_	KOAc (4.0)	42
31	$\operatorname{CuCl}_2(3.0)$	_	KOAc (3.0)	87 ^c

^{*a*}Reaction conditions: *o*-methylbenzoic acid **1a** (0.25 mmol, 34.0 mg), CuCl₂ (10-50 mmol%, 1.0 -3.0 equiv), Oxidant (0.5 mmol) and DMAc (1.0 mL) at 150 °C for 24 h under N₂. ^{*b*}Isolated yields. ^{*c*}Under N₂ balloon. ^{*d*} Determined by TLC.

Table 2 Optimization of reaction conditions for cinnamic acid^a

Entry	Cu-salt (equiv)	Addition (equiv)	Temp (°C)	Yield 6aa [%] ^{b,c}
1	CuBr (1.0)	KOAc (1.0)	150	16
2	$CuCl_2$ (1.0)	KOAc (1.0)	150	55
3	CuCl (1.0)	KOAc (1.0)	150	19
4	$CuSO_{4}(1.0)$	KOAc (1.0)	150	trace
5	$Cu(OAc)_2$ (1.0)	KOAc (1.0)	150	trace
6	$CuCl_2$ (1.0)	LiCO ₃ (1.0)	150	51
7	$\operatorname{CuCl}_2(1.0)$	K ₂ CO ₃ (1.0)	150	19
8	$CuCl_2$ (1.0)	NaOH (1.0)	150	48
9	$\operatorname{CuCl}_2(1.0)$	$Cs_2CO_3(1.0)$	150	37
10	$CuCl_2$ (1.0)	KHCO ₃ (1.0)	150	20
11	$\operatorname{CuCl}_2(1.0)$	LiOAc (1.0)	150	trace
12	$CuCl_2$ (1.0)	K ₃ PO ₄ (1.0)	150	22
13	$CuCl_2$ (1.0)	NaO ^t Bu (1.0)	150	32
14	$CuCl_2$ (1.0)	KO ^t Bu (1.0)	150	32
15	$\operatorname{CuCl}_2(1.0)$	CsOAc (1.0)	150	20
16	$CuCl_2$ (1.0)	KOAc (1.0)	120	50
17	$\operatorname{CuCl}_2(1.0)$	KOAc (1.0)	130	37
18	$CuCl_{2}(1.0)$	KOAc (1.0)	140	28
19	CuCl ₂ (2.0)	KOAc (2.0)	150	58
20	CuCl ₂ (2.0)	$K_2S_2O_8(2.0)$	150	17 (53 ^d)
21	CuCl ₂ (2.0)	AgOAc (2.0)	150	12 (43 ^{<i>d</i>})
22	$CuCl_{2}(2.0)$	AgCO ₃ (2.0)	150	trace (23^d)

^a Reaction conditions: cinnamic acid 5a (0.25 mmol, 37.0 mg) and DMAc (1.0 mL) at X °C for 24 h under N₂. ^bIsolated yields. ^cAround 5-30% ¹H NMR yield of transamidation by-product was detected. ^dThe transamidation by-product was reported in an isolated yield.

Table 3 Influence of the ratio of $KOAc/CuCl_2$ on the reaction outcome.

Entry	1a/CuCl ₂ /KOAc	Yield of 3aa [%] ^b	Yield of 4aa	[4aa]/[3aa]
			$[\%]^b$	
1	1/3/3	78	45	0.58
2	1/3/4	43	37	0.86
3	1/3/5	30	27	0.90

^{*a*}Reaction conditions: *o*-methylbenzoic acid **1a** (0.25 mmol, 34.0 mg), CuCl₂ (0.75 mmol, 108.6 mg) and DMAc (1.0 mL) at 150 °C for 24 h under N₂. ^{*b*}Crude ¹H NMR yield (CH₂Br₂).

o-methylbenzoic acid 1a/CuCl₂/KOAc=1/3/3: ¹H NMR (CDCl₃, 400 MHz)

o-methylbenzoic acid 1a/CuCl₂/KOAc=1/3/4: ¹H NMR (CDCl₃, 400 MHz)

o-methylbenzoic acid 1a/CuCl₂/KOAc=1/3/5: ¹H NMR (CDCl₃, 400 MHz)

Table 4 The reactivity for aliphatic acid with DMAc^a

ROH	+ H N CuCl ₂ (3 eq) KOAc (3 eq) N ₂ balloon 150 °C, 24 h		B
Entry	R	Yield of $\mathbf{A} [\%]^b$	Yield of B $[\%]^b$
1	CH ₃ -	NR	10
2	CH ₃ CH ₂ -	NR	12
3	C(CH ₃) ₃ -	NR	24
4	CN-	NR	30
5	NO ₂ -	NR	21
6	CF ₃ -	NR	18

^{*a*}Reaction conditions: aliphatic acid (0.25 mmol), CuCl₂ (0.75 mmol, 108.6 mg), KOAc (0.75 mmol, 73.6 mg) and DMAc (1 mL) at 150 °C for 24 h under N₂ balloon. ^{*b*1}H NMR yield.

4. General procedures

General procedure A: Synthesis of 3aa-ya

An oven-dried Schlenk tube was sequentially charged with benzoic acid **1a-y** (0.25 mmol), cupric chloride (0.75 mmol, 108.6 mg), potassium acetate (0.75 mmol, 73.6 mg) and DMAc (1.0 mL). The reaction mixture was stirred at 150 °C for 24 h under nitrogen balloon. Then, the reaction mixture was filtered and the resulting filtrate was concentrated in vacuo. The product was purified by flash column chromatography on silica gel using petroleum ether and ethyl acetate (PE:EA=2:1) as eluent to afford the desired products.

General procedure B: Synthesis of 6aa-fa

An oven-dried Schlenk tube was sequentially charged with cinnamic acid **5a-f** (0.25 mmol), cupric chloride (0.5 mmol, 72.4 mg), potassium acetate (0.5 mmol, 49.1 mg) and DMAc (1.0 mL). The reaction mixture was stirred at 150 °C for 24 h under nitrogen atmosphere. Then, the reaction mixture was extracted by ethyl acetate. Organic extracts were dried over anhydrous magnesium sulfate and concentrated in vacuo. The product was purified by flash column chromatography on silica gel using petroleum ether and ethyl acetate (PE:EA=1:1) as eluent to afford the desired products.

General procedure C: Synthesis of 4kb-ki

An oven-dried Schlenk tube was sequentially charged with *m*-bromobenzoic acid **1**k (0.25 mmol, 50.3 mg), cupric chloride (0.75 mmol, 108.6 mg), potassium acetate (0.75 mmol, 73.6 mg) and *N*,*N*-disubstituted acetamides **2b-i** (1.0 mL). The reaction mixture was stirred at 150 °C for 24 h under nitrogen balloon. Then, the reaction mixture was extracted by ethyl acetate. Organic extracts were dried over anhydrous magnesium sulfate and concentrated in vacuo. The product was purified by flash column chromatography on silica gel using petroleum ether and ethyl acetate (PE:EA=5:1) as eluent to afford the desired products.

5. Control experiment

	1a $2a$	CuCl ₂ , KOAc		
Entry	Cu-salt	Base	Atmopshere	Yield 3aa [%] ^b
1	CuCl ₂	KOAc	N_2 balloon	87
2	CuCl ₂	KOAc	O_2 balloon	63
3	CuCl ₂	KOAc	Air balloon	69

Table 5 Influence of reaction atmosphere^a

Table 6 Influence of radical scavenger^a

^aReaction conditions: *o*-methylbenzoic acid **1a** (0.25 mmol, 34.0 mg), CuCl₂ (0.75 mmol, 108.6 mg), KOAc (0.75mmol, 73.6 mg) and DMAc (1 mL) at 150 °C for 24 h under nitrogen balloon.
^bIsolated yields. TEMPO: 2, 2, 6, 6-tetramethyl-piperidine-N-oxyl.

Table 7 Control experiments for the reaction in the absence of benzoic acid

6. Electron paramagnetic resonance (EPR) experiment²

(1) EPR experiment on reaction system

An oven-dried Schlenk tube was sequentially charged with *o*-methylbenzoic acid **1a** (0.2 mmol, 27.2 mg), cupric chloride (0.1 mmol, 36.2 mg), potassium acetate (0.2 mmol, 49.1 mg) and DMAc (1.0 mL). The reaction mixture was stirred at 150 °C for 24 h under nitrogen atmosphere, followed by the addition of 8.0 mg DPMO. Then,

this reaction solution was taken out by capillary and was analyzed by EPR at room temperature. EPR spectrometer parameters were: Microwave Frequency 9.43 GHz, Sweep Width 80 G; Center Field 3360 G; Time Constant 40.96 ms; Modulation Amplitude 1.00 G; Modulation Frequency 100.00 kHz; Receiver Gain $1.00*10^3$; Microwave Power 121.25 mW. Finally, test data was processed by Biomolecular EPR Spectroscopy Software hyperfine spectrum (Fig. 1). An EPR signal consisted of six peaks with calculated hyperfine splittings ($g_0 = 2.0061$, $\alpha_N = 14.3$ G, $\alpha_H = 20.3$ G).

Fig. 1 The electron paramagnetic resonance (EPR) spectrum (X band, 9.4 GHz, room temperature) of conditions: *o*-methylbenzoic acid **1a** (0.2 mmol, 27.2 mg), CuCl₂ (0.1 mmol, 36.2 mg), KOAc (0.2 mmol, 49.1 mg) in DMAc (1.0 mL) heated 2 h at 150 °C under N₂ balloon, followed by the addition of 8.0 mg DPMO (5,5-dimethyl-1-pyrroline *N*-oxide).

(2) EPR studies on Cu (II) species

Fig. 2 The electron paramagnetic resonance (EPR) spectra (X band, 9.4 GHz, room temperature) of conditions: (a) CuCl₂ (0.1 mmol, 36.2 mg) in DMAc (1.0 mL) heated at 150 °C for 0 h, 1 h, 2 h

under N_2 balloon, followed by the addition of 8.0 mg DPMO; (b) $CuCl_2$ (0.1 mmol, 36.2 mg), KOAc (0.2 mmol, 49.1 mg) in DMAc (1.0 mL) heated at 150 °C for 2 h under N_2 balloon, followed by the addition of 8.0 mg DPMO.

7. Procedure for Kinetic Isotope Experiments

An oven-dried Schlenk tube was sequentially charged with 4-methylbenzoic acid **1n** (0.125 mmol, 17.0 mg), cupric chloride (0.375 mmol, 54.3 mg), potassium acetate (0.375 mmol, 36.8 mg) and DMAc (**2a**, 0.25 mL), deuterated DMAc (**2a**-*d*₉, 0.25 mL). The reaction mixture was stirred at 150 °C for 24 h under nitrogen balloon. Then, the reaction mixture was filtered and the resulting filtrate was concentrated in vacuo. The crude product was obtained by flash column chromatography on silica gel using petroleum ether and ethyl acetate (PE:EA=2:1) as eluent. The deuterated and non-deuterated product was determined by ¹H NMR analysis (Fig. 5) and the KIE value (K_H/K_D = 2.0) was calculated by the relative integration value of the Hb (4.94 ppm) based on the integral difference between Ha (8.01 ppm) and Hb (4.94 ppm).

Fig. 3 ¹H NMR spectra of the KIE value ($K_H/K_D = 2.0$)

8. Hammett Competition Experiments³

An oven-dried Schlenk tube was sequentially charged with *para*-substituted benzoic acids **1** (0.125 mmol), benzoic acid **1b** (0.125 mmol, 16.5mg), cupric chloride (0.750 mmol, 108.6 mg), potassium acetate (0.750 mmol, 73.6 mg) and DMAc (1.0 mL). The reaction mixture was stirred at 150 °C for 24 h under nitrogen atmosphere. Upon completion, the reaction mixture was filtered and the resulting filtrate was concentrated in vacuo. Organic extracts was recorded by using ¹H NMR spectroscopy with CH_2Br_2 as the internal standard, which provided the information about the ratios of products **3** to **3ba**.

Entry	[3]	[3ba]	Log([3]/[3ba])	R	σ_p	σ +
1	0.33	0.51	-0.19	OMe	-0.26	-0.78
2	0.33	0.43	-0.12	CH ₃	-0.17	-0.31
3	0	0	0	Н	0	0
4	0.51	0.38	0.13	CN	1.00	0.66
5	0.79	0.45	0.24	NO ₂	1.27	0.79

Table 8 Hammett competition experiment.

Fig. 4 Hammett correlation with σ_p values.

Fig. 5 Hammett correlation with σ^+ values.

9. Characterization data of products

2-(Dimethylamino)-2-oxoethyl 2-methylbenzoate (3aa).

Prepared according to procedure A. A white solid (48.1 mg, 87%). M.p. 85 °C - 86 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.03 (dd, J = 8.1, 1.3 Hz, 1H), 7.40 - 7.36 (m, 1H), 7.26 - 7.20 (m, 2H), 4.92 (s, 2H), 3.01 (s, 3H),

2.98 (s, 3H), 2.61 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 167.3, 166.6, 140.7, 132.4, 131.7, 131.2, 129.0, 125.9, 61.71, 36.0, 35.8, 21.8. HRMS (ESI) calcd for C₁₂H₁₅NO₃ (M + H⁺) 222.1125, found 222.1101.

2-(Dimethylamino)-2-oxoethyl benzoate (3ba).

Prepared according to procedure A. A white solid (32.6 mg, 63%). M.p. 105 °C - 107 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.12 - 8.08 (m, 2H), 7.58 - 7.53 (m, 1H), 7.43 (dd, J = 10.6, 4.7 Hz, 2H), 4.94 (s, 2H), 3.02 (s,

3H), 2.98 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ166.4, 166.3, 133.3, 130.0, 129.6, 128.4, 61.9, 36.0, 35.6. HRMS (ESI) calcd for $C_{11}H_{13}NO_3$ (M + H⁺) 208.0968, found 208.0948.

2-(Dimethylamino)-2-oxoethyl 2-chlorobenzoate (3ca).

Prepared according to procedure A. A white solid (35.3 mg, 58%). M.p. 130 °C - 132 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.02 - 7.98 (m, 1H), 7.45 - 7.38 (m, 2H), 7.32 - 7.26 (m, 1H), 4.94 (s, 2H), 3.00 (s, 3H), 2.96

(s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.1, 165.2, 134.0, 133.0, 132.2, 131.1, 129.5, 126.7, 62.0, 36.0, 35.7. HRMS (ESI) calcd for $C_{11}H_{12}CINO_3$ (M + H⁺) 242.0578, found 242.0565.

2-(Dimethylamino)-2-oxoethyl 2-iodobenzoate (3da).

Prepared according to procedure A. A white solid (52.2 mg, 63%). M.p. 128 °C - 130 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.02 (dd, J = 7.7, 1.4 Hz, 1H), 7.47 - 7.40 (m, 2H), 7.35 - 7.30 (m, 1H), 4.96 (s, 2H), 3.03 (s,

3H), 3.00 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.2, 165.2, 134.1, 133.0, 132.2, 131.1, 129.5, 126.8, 62.1, 36.0, 35.8. HRMS (ESI) calcd for $C_{11}H_{12}INO_3$ (M + H⁺) 355.9754, found 355.9764.

2-(Dimethylamino)-2-oxoethyl 2-phenylbenzoate (3ea).

Prepared according to procedure A. A white gummy solid (57.0 mg, 80%). ¹H NMR (CDCl₃, 400 MHz): δ 8.03 (d, J = 7.6 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.48 - 7.28 (m, 8H), 4.73 (s, 2H), 2.91 (s, 3H), 2.85 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 167.7, 166.2, 143.0, 141.2, 131.7, 130.9, 130.6, 129.9, 128.7, 128.0, 127.3 (d, J = 1.4 Hz), 61.9, 35.9, 35.6. HRMS (ESI) calcd for $C_{17}H_{17}NO_3$ (M + H⁺) 284.1281, found 284.1266.

2-(Dimethylamino)-2-oxoethyl 2-nitrobenzoate (3fa).

Prepared according to procedure A. A yellow solid (39.6 mg, 63%). M.p. 140 °C - 142 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.98 - 7.92 (m, 2H), 7.73 - 7.69 (m, 1H), 7.64 (dd, J = 7.9, 1.6 Hz, 1H), 4.97 (s, 2H), 3.02 (s, 3H), 2.99 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 165.8, 165.4, 147.7, 133.4, 131.9, 130.6, 127.8, 124.1, 62.8, 36.0, 35.8. HRMS (ESI) calcd for C₁₁H₁₂N₂O₅ (M + H⁺) 253.0819, found 253.0804.

2-(Dimethylamino)-2-oxoethyl 2-methoxybenzoate (3ga).

Prepared according to procedure A. A canary yellow solid (39.6 mg, 67%). M.p. 91 °C – 93 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.99 – 7.93 (m, 1H), 7.50 – 7.44 (m, 1H), 6.97 (t, *J* = 7.9 Hz, 2H), 4.91 (s, 2H), 3.88 (s,

3H), 3.02 (s, 3H), 2.97 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.7, 165.6, 159.6, 134.0, 132.3, 120.3, 119.3, 112.1, 61.7, 56.1, 36.1, 35.7. HRMS (ESI) calcd for C₁₂H₁₅NO₄ (M + H⁺) 238.1074, found 238.1057.

2-(Dimethylamino)-2-oxoethyl 2-cyanobenzoate (3ha).

Prepared according to procedure A. A canary yellow solid (25.4 mg, 44%). M.p. 142 °C - 144 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.27 - 8.23 (m, 1H), 7.82 - 7.78 (m, 1H), 7.70 - 7.64 (m, 2H), 5.02 (s, 2H), 3.02 (s,

3H), 2.97 (s, 3H); ¹³C NMR (CDCl₃, 101MHz): δ 165.6, 163.8, 134.9, 133.1, 132.6, 131.8, 117.5, 113.2, 62.4, 35.9, 35.7; HRMS (ESI) calcd for C₁₂H₁₂N₂O₃ (M + H⁺) 233.0921, found 233.0902.

2-(Dimethylamino)-2-oxoethyl 2-hydroxybenzoate (3ia).

Prepared according to procedure A. A canary yellow solid (27 mg, 24%). M.p. 61 °C - 63 °C. ¹H NMR (CDCl₃, 400 MHz): δ 10.46 (s, 1H), 7.95 (dd, J = 8.0, 1.6 Hz, 1H), 7.51 - 7.43 (m, 1H), 7.02 - 6.95 (m, 1H), 6.94

- 6.86 (m, 1H), 4.99 (s, 2H), 3.04 (s, 3H), 3.01 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 169.6, 166.0, 161.7, 136.2, 130.5, 119.5, 117.8, 112.3, 62.0, 36.0, 35.8. HRMS (ESI) calcd for C₁₁H₁₃NO₄ (M + H⁺) 224.0917, found 224.0917.

2-(Dimethylamino)-2-oxoethyl 3-chlorobenzoate (3ja).

Prepared according to procedure A. A canary yellow solid (47.9 mg, 79%). M.p. 93 °C - 95 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.08 (t, J=1.7 Hz, 1H), 8.00 - 7.97 (m, 1H), 7.55 - 7.50 (m, 1H), 7.37 (t, J =

7.9 Hz, 1H), 4.95 (s, 2H), 3.02 (s, 3H), 2.98 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.1, 165.2, 134.6, 133.4, 131.4, 130.1, 129.8, 128.2, 62.1, 35.9, 35.7. HRMS (ESI) calcd for C₁₁H₁₂CINO₃ (M + H⁺) 242.0578, found 242.0552.

2-(Dimethylamino)-2-oxoethyl 3-bromobenzoate (3ka).

Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 4.97 (s, 2H), 3.04 (s, 3H), 3.00 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.1, 165.3, 134.7, 133.4, 131.4, 130.2, 129.9, 128.3, 62.2, 36.0, 35.8. HRMS (ESI) calcd for C₁₁H₁₂BrNO₃(M + H⁺) 286.0073, found 286.0063.

2-(Dimethylamino)-2-oxoethyl 3-methylbenzoate (3la).

Prepared according to procedure A. A canary yellow solid (45.6 mg, 82%). M.p. 59 °C - 60 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.94 - 7.88 (m, 2H), 7.38 - 7.28 (m, 2H), 4.94 (s, 2H), 3.02 (s, 3H), 2.98 (s, 3H), 2.38 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.5, 138.3, 134.1, 130.6, 129.5, 128.4, 127.2, 61.9, 36.1, 35.7, 21.4. HRMS (ESI) calcd for $C_{12}H_{15}NO_3$ (M + H⁺) 222.1125, found 222.1101.

2-(Dimethylamino)-4-oxoethyl 4-cyanobenzoate (3ma).

Prepared according to procedure A. A white solid (36.1 mg, 62%). M.p. 110 °C - 112 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.23 - 8.17 (m, 2H), 7.77 – 7.72 (m, 2H), 4.99 (s, 2H), 3.03 (s, 3H), 2.99 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.8, 166.1, 163.7, 132.2, 122.0, 113.7, 61.8, 55.6, 36.1, 35.7. HRMS (ESI) calcd for $C_{12}H_{12}N_2O_3$ (M + H⁺) 233.0921, found 233.0912.

2-(Dimethylamino)-2-oxoethyl 4-methylbenzoate (3na).

Prepared according to procedure A. A white solid (46.2 mg, 84%). M.p. 82 °C - 84 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.00 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.94 (s, 2H), 3.04 (s, 3H), 2.99 (s, 3H), 2.41 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.7, 166.4, 144.1, 130.1, 129.2, 126.9, 61.9, 36.1, 35.7, 21.8. HRMS (ESI) calcd for $C_{12}H_{15}NO_3$ (M + H⁺) 222.1125, found 222.1101.

2-(Dimethylamino)-2-oxoethyl 4-fluorobenzoate (30a).

Prepared according to procedure A. A canary yellow solid (45.6 mg, 81%). M.p. 61 °C – 63 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.16 – 8.09 (m, 2H), 7.13 - 7.07 (m, 2H), 4.94 (s, 2H), 3.03 (s, 3H), 2.99 (s, 3H).

¹³C NMR (CDCl₃, 101MHz): δ 166.3, 166.1, 165.4, 132.7, 125.9, 115.8, 62.0, 36.0, 35.7. HRMS (ESI) calcd for $C_{11}H_{12}FNO_3$ (M + H⁺) 226.0874, found 226.0852.

2-(Dimethylamino)-2-oxoethyl 4-chlorobenzoate (3pa).

Prepared according to procedure A. A white solid (45.1 mg, 75%). M.p. 102 °C - 104 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.07 - 8.02 (m, 2H), 7.44 - 7.38 (m, 2H), 4.95 (s, 2H), 3.03 (s, 3H), 2.99 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.2, 165.6, 139.9, 131.5, 128.9, 128.1, 62.0, 36.0, 35.7. HRMS (ESI)

calcd for $C_{11}H_{12}CINO_3$ (M + H⁺) 242.0578, found 242.0560.

2-(Dimethylamino)-2-oxoethyl 4-bromobenzoate (3qa).

Prepared according to procedure A. A white solid (61.9 mg, 80%). M.p.118 °C - 120 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.07 - 8.01 (m, 2H), 7.45 - 7.39 (m, 2H), 4.95 (s, 2H), 3.03 (s, 3H), 2.99 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.3, 165.6, 139.9, 131.5, 128.9, 128.1, 62.0, 36.0, 35.7. HRMS (ESI) calcd for C₁₁H₁₂BrNO₃ (M + H⁺) 286.0073, found 286.0072.

2-(Dimethylamino)-2-oxoethyl 4-iodobenzoate (3ra).

Prepared according to procedure A. A white solid (58.6 mg, 70%). M.p. 105 °C - 107 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.08 - 8.02 (m, 2H), 7.41 (d, *J* = 8.6 Hz, 2H), 4.95 (s, 2H), 3.03 (s, 3H), 2.99 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.3, 165.6, 131.5, 128.9, 128.1, 100.1, 62.1, 36.0, 35.7. HRMS (ESI) calcd for C₁₁H₁₂INO₃ (M + H⁺) 333.9935, found 333.9901.

2-(Dimethylamino)-2-oxoethyl 4-nitrobenzoate (3sa).

 $\begin{array}{c} \begin{array}{c} & \text{Prepared according to procedure A. A canary yellow solid (44.2 mg, \\ & 70\%). M.p. 132 \ ^{\circ}\text{C} - 134 \ ^{\circ}\text{C}. \ ^{1}\text{H NMR (CDCl}_{3}, 400 \ \text{MHz}): \delta \ 8.27 \ (s, \\ & 4\text{H}), \ 5.00 \ (s, \ 2\text{H}), \ 3.03 \ (s, \ 3\text{H}), \ 2.99 \ (s, \ 3\text{H}). \ ^{13}\text{C} \ \text{NMR (CDCl}_{3}, \\ & 101\text{MHz}): \delta \ 165.7, \ 164.6, \ 150.8, \ 135.1, \ 131.2, \ 123.6, \ 62.4, \ 35.9, \ 35.7. \ \text{HRMS (ESI) calcd for} \\ & \text{C}_{11}\text{H}_{12}\text{N}_{2}\text{O}_{5} \ (\text{M} + \text{H}^{+}) \ 253.0819, \ found \ 253.0799. \end{array}$

2-(Dimethylamino)-4-oxoethyl 4-methoxybenzoate (3ta).

Prepared according to procedure A. A canary yellow solid (40.1 mg, 68%). M.p. 87 °C – 89 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.06 (d, J =8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.93 (s, 2H), 3.85 (s, 3H), 3.01 (d, J = 16.4 Hz, 6H). ¹³C NMR (CDCl₃, 101MHz): δ 166.8, 166.1, 163.7, 132.2, 122.0, 113.7, 61.8, 55.6, 36.1, 35.7. HRMS (ESI) calcd for C₁₂H₁₅NO₄ (M + H⁺) 238.1074, found 238.1066.

2-(Dimethylamino)-2-oxoethyl 2, 4-difluorobenzoate (3ua).

Prepared according to procedure A. A canary yellow solid (43.8 mg, 72%). M.p. 59 °C – 61 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (td, J = 8.5, 6.6 Hz, 1H), 6.95 – 6.82 (m, 2H), 4.94 (s, 2H), 3.00 (s, 3H), 2.96 (s, 3H). ¹³C NMR(CDCl₃, 101MHz): δ 166.0, 164.6, 163.0, 134.4, 114.7, 111.8, 105.3, 62.0, 35.9, 35.6. HRMS (ESI) calcd for C₁₁H₁₁F₂NO₃(M + H⁺) 244.0780, found 244.0757.

2-(Dimethylamino)-2-oxoethyl 2, 4, 6-Trimethylbenzoate (3va).

Prepared according to procedure A. A canary yellow solid (54.3 mg, 87%). M.p. 106 °C – 108 °C. ¹H NMR (CDCl₃, 400 MHz): δ 6.85 (s, 2H), 4.92 (s, 2H), 3.01 (s, 3H), 2.99 (s, 3H), 2.38 (s, 6H), 2.27 (s, 3H).

 ^{13}C NMR (CDCl₃, 101MHz): δ 169.6, 166.3, 139.6, 136.0, 130.0, 128.5, 61.6, 36.0, 35.7, 21.2, 20.0. HRMS (ESI) calcd for C14H19NO3 (M + Na^+) 272.1257, found 272.1238.

2-(Dimethylamino)-2-oxoethyl 2-oxo-2-phenylacetate (3wa).

Prepared according to procedure A. A white solid (32.0 mg, 54%). M.p. 59 °C – 62 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.14 – 8.09 (m, 2H), 7.59 – 7.54 (m, 1H), 7.44 (dd, J = 10.6, 4.7 Hz, 2H), 4.96 (s, 2H), 3.04 (s, 3H), 3.00 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.5, 166.4, 133.4, 130.1, 129.6, 128.5, 62.0, 36.1, 35.7. HRMS (ESI) calcd for C₁₂H₁₃NO₄ (M + Na⁺) 258.0737, found 258.0793.

2-(Dimethylamino)-2-oxoethyl 2-naphthoate (3xa).

Prepared according to procedure A. A white solid (42.2 mg, 66%). M.p. 110 °C – 112 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.71 (s, 1H), 8.12 (dd, J = 8.6, 1.7 Hz, 1H), 7.98 – 7.94 (m, 1H), 7.88 (dd, J = 8.4, 4.9 Hz, 2H), 7.61 – 7.51 (m, 2H), 5.02 (s, 2H), 3.05 (s, 3H), 3.01 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.5, 135.8, 132.6, 131.7, 129.6, 128.5, 128.4, 127.9, 126.8, 126.7, 125.5, 62.0, 36.1, 35.7. HRMS (ESI) calcd for C₁₅H₁₅NO₃ (M + H⁺) 258.1125, found 258.1109.

2-Formyl-N,N-dimethylbenzamide⁴

Prepared according to procedure A. A white gummy solid (10.2 mg, 23%). ¹H NMR (CDCl₃, 400 MHz): δ 10.04 (s, 1H), 7.93 (dd, J = 7.7, 0.9 Hz, 1H), 7.68 – 7.62 (m, 1H), 7.59 – 7.53 (m, 1H), 7.37 (d, J = 7.5 Hz, 1H), 3.18 (s, 3H), 2.81 (s, 3H). HRMS (ESI) calcd for C₁₀H₁₂NO₂ (M + H⁺) 178.0863.

2-(Diethylamino)-2-oxoethyl 3-bromobenzoate (4kb).

^{Br} hert = 1^{Br} hert = 1^{Br}

2-Oxo-2-(pyrrolidin-1-yl) ethyl 3-bromobenzoate (4kc).

Prepared according to procedure C. A white solid (48.0 mg, 58%). M.p. 101 °C - 103 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.08 (t, J = 1.8 Hz, 1H), 8.00 - 7.97 (m, 1H), 7.53 (ddd, J = 8.0, 2.1, 1.1 Hz, 1H),

7.37 (t, J = 7.9 Hz, 1H), 4.86 (s, 2H), 3.51 (t, J = 6.9 Hz, 2H), 3.44 (t, J = 6.8 Hz, 2H), 2.03 – 1.97 (m, 2H), 1.90 – 1.82 (m, 2H). ¹³C NMR (CDCl₃, 101MHz): δ 165.2, 164.7, 134.6, 133.4, 131.3, 130.1, 129.8, 128.2, 62.7, 46.1, 45.4, 26.3, 24.0. HRMS (ESI) calcd for C₁₃H₁₄BrNO₃ (M + H⁺) 312.0230, found 312.0224.

2-oxo-2-(piperidin-1-yl)ethyl 3-bromobenzoate (4kd).

Prepared according to procedure C. A white gummy solid (57.0 mg, 72%). ¹H NMR (CDCl₃, 400 MHz): δ 8.08 (t, *J* = 1.8 Hz, 1H), 8.01 – 7.97 (m, 1H), 7.53 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.38 (t, *J* = 7.9 Hz,

1H), 4.96 (s, 2H), 3.61 - 3.54 (m, 2H), 3.40 - 3.34 (m, 2H), 1.71 - 1.57 (m, 6H). ¹³C NMR (CDCl₃, 101MHz): δ 165.2, 164.3, 134.6, 133.3, 131.4, 130.1, 129.8, 128.2, 62.3, 45.7, 43.2, 26.4, 25.4, 24.5. HRMS (ESI) calcd for C₁₄H₁₆BrNO₃ (M + H⁺) 326.0386, found 326.0397.

2-Morpholino-2-oxoethyl 3-bromobenzoate (4ke).

Prepared according to procedure C. A white solid (57.3 mg, 70%). M.p. 63 °C – 65 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.08 (t, *J* = 1.8 Hz, 1H), 8.01 – 7.97 (m, 1H), 7.56 (ddd, *J* = 8.0, 2.2, 1.1 Hz, 1H), 7.40 (t,

J = 7.9 Hz, 1H), 4.97 (s, 2H), 3.72 (s, 4H), 3.65 (s, 2H), 3.47 (d, J = 4.1 Hz, 2H). ¹³C NMR (CDCl₃, 101MHz): δ 165.2, 165.0, 134.8, 133.6, 131.2, 130.2, 129.9, 128.2, 66.9, 66.5, 62.0, 45.2, 42.3; HRMS (ESI) calcd for C₁₃H₁₄BrNO₄ (M + H⁺) 328.0179, found 328.0158.

2-(4-Methylpiperidin-1-yl)-2-oxoethyl 3-bromobenzoate (4kf).

Prepared according to procedure C. A white gummy solid (59.5 mg, 70%). ¹H NMR (CDCl₃, 400 MHz): δ 8.06 (t, *J* = 1.8 Hz, 1H), 7.98 – 7.95 (m, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.51 (t, J = 7.9 Hz, 1H), 7.

1H), 4.94 (s, 2H), 4.50 (d, J = 13.3 Hz, 1H), 3.64 (d, J = 13.5 Hz, 1H), 3.08 – 3.00 (m, 1H), 2.64 – 2.56 (m, 1H), 1.76 – 1.58 (m, 3H), 1.26 – 1.04 (m, 3H), 0.93 (d, J = 6.5 Hz, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 165.1, 164.3, 134.5, 133.3, 131.4, 130.0, 129.7, 128.1, 62.2, 44.9, 42.5, 34.4, 33.5, 31.0, 21.7. HRMS (ESI) calcd for C₁₅H₁₈BrNO₃ (M + H⁺) 340.0543, found 340.0535.

2-(methoxy(methyl)amino)-2-oxoethyl 3-bromobenzoate (4kg).

3.78 (s, 3H), 3.22 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 167.8, 165.3, 134.6, 133.4, 131.3, 130.1, 129.8, 128.2, 61.9, 61.7, 32.4. HRMS (ESI) calcd for C₁₁H₁₂BrNO₄ (M + H⁺) 302.0022, found 302.0037.

1-methyl 2-oxopyrrolidin 3-yl 3-bromobenzoate (4kh).

Prepared according to procedure C. A yellow gummy solid (17.6 mg, 22%). ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (s, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.54 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.38 (t, *J* = 7.9 Hz, 1H), 5.51 (t, *J*

= 8.0 Hz, 1H), 3.52 - 3.40 (m, 2H), 2.96 (s, 3H), 2.73 - 2.65 (m, 1H), 2.16 - 2.06 (m, 1H).

¹³C NMR (CDCl₃, 101MHz): δ 169.9, 165.0, 134.7, 133.5, 131.3, 130.1, 129.8, 128.2, 72.0, 46.1, 30.4, 26.1. HRMS (ESI) calcd for C₁₂H₁₂BrNO₃ (M + Na⁺) 319.9893, found 319.9751.

1-(dimethylamino)-1-oxopropan-2-yl 3-bromobenzoate (4ki).

Prepared according to procedure C. A white gummy solid (15.0 mg, 20%). ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (t, J = 1.8 Hz, 1H), 7.98 – 7.93 (m, 1H), 7.55 - 7.50 (m, 1H), 7.37 (t, J = 7.9 Hz, 1H), 5.61 (q, J =6.7 Hz, 1H), 3.10 (s, 3H), 2.99 (s, 3H), 1.56 (d, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 167.0, 165.1, 134.6, 133.4, 131.4, 130.0, 129.8, 128.1, 68.0, 36.9, 36.1, 16.8. HRMS (ESI) calcd for $C_{12}H_{14}BrNO_3$ (M + H⁺) 300.0230, found 300.0221.

2-(Dimethylamino)-2-oxoethyl cinnamate (6aa).

Prepared according to procedure B. A canary yellow solid (34.0 mg, 58%). M.p. 90 °C – 92 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, J =16.0 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.41 – 7.36 (m, 3H), 6.57 (d, J = 16.0 Hz, 1H), 4.85 (s, 2H), 3.02 (s, 3H), 3.00 (s, 3H). ¹³C NMR (CDCl₃,101MHz): δ 166.7, 146.1, 134.4, 130.6, 129.0, 128.4, 117.3, 61.6, 36.1, 35.8. HRMS (ESI) calcd for C₁₃H₁₅NO₃ (M + H⁺) 234.1125, found 234.1113.

2-(Dimethylamino)-2-oxoethyl (E)-3-(o-tolyl)acrylate (6ba).

Prepared according to procedure B. A canary yellow solid (41.1 mg, 67%). M.p. 118 °C – 120 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.06 (d, J = 15.9 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 6.9 Hz, 1H), 7.20 (t, J = 7.6 Hz, 2H), 6.49 (d, J = 15.9 Hz, 1H), 4.85 (s, 2H), 3.02 (s, 3H), 3.00 (s, 3H), 2.43 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.7 (d, J = 10.6 Hz), 143.8, 138.0, 133.4, 130.9, 130.3, 126.6 (d, J = 17.7 Hz), 118.2, 61.6, 36.1, 35.8, 19.9. HRMS (ESI) calcd for C₁₄H₁₇NO₃ (M + H⁺) 248.1281, found 248.1269.

2-(Dimethylamino)-2-oxoethyl (E)-3-(2-chlorophenyl)acrylate (6ca).

Prepared according to procedure B. A yellow solid (40.0 mg, 60%). M.p. 99 °C – 101 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.17 (d, J = 16.0 Hz, 1H), 7.63 (dd, J = 7.3, 2.1 Hz, 1H), 7.42 - 7.38 (m, 1H), 7.32 -

7.24 (m, 2H), 6.55 (d, J = 16.0 Hz, 1H), 4.85 (s, 2H), 3.01 (s, 3H), 2.98 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.4, 166.1, 141.7, 135.2, 132.6, 131.3, 130.3, 127.8, 127.2, 119.9, 61.6, 36.0, 35.7. HRMS (ESI) calcd for $C_{13}H_{14}CINO_3$ (M + H⁺) 268.0735, found 268.0736.

2-(Dimethylamino)-2-oxoethyl (E)-3-(2-fluorophenyl)acrylate (6da).

Prepared according to procedure B. A canary yellow solid (34.8 mg, 55%). M.p. 100 °C – 102 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.90 (d, J

= 16.2 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.38 – 7.32(m, 1H), 7.17 – 7.06 (m, 2H), 6.66 (d, J = 16.2 Hz, 1H), 4.85 (s, 2H), 3.01 (s, 3H), 2.98 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.45 (d, J = 3.4 Hz), 161.5, 138.6, 132.0, 129.3, 124.6, 122.6, 119.9, 116.4, 61.6, 36.0, 35.7. HRMS (ESI) calcd for C₁₃H₁₄FNO₃ (M + H⁺) 252.1030, found 252.1026.

2-(Dimethylamino)-2-oxoethyl (E)-3-(2-methoxyphenyl)acrylate (6ea).

Prepared according to procedure B. A canary yellow solid (38.8 mg, 59%). M.p. 88 °C – 90 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.07 (d, *J* = 16.2 Hz, 1H), 7.51 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.36 – 7.32 (m, 1H), 6.97 – 6.88 (m, 2H), 6.66 (d, *J* = 16.2 Hz, 1H), 4.84 (s, 2H), 3.87 (s, 3H), 3.01 (s, 3H), 2.98 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 167.1, 166.8, 158.6, 141.6, 131.8, 129.3, 123.4, 120.8, 117.7, 111.2, 61.5, 55.6, 36.1, 35.7. HRMS (ESI) calcd for C₁₄H₁₇NO₄ (M + H⁺) 264.1230, found 264.1236.

2-(Dimethylamino)-2-oxoethyl (E)-3-(4-chlorophenyl)acrylate (6fa).

Prepared according to procedure B. A yellow solid (43.5 mg, 65%). M.p. 137 °C - 139 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.70 (d, J = 16.0 Hz, 1H), 7.44 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H),

6.51 (d, J = 16.0 Hz, 1H), 4.83 (s, 2H), 2.99 (s, 3H), 2.97 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.3, 144.5, 136.4, 132.9, 129.4, 129.3 (d, J = 18.8 Hz), 117.9, 61.5, 35.9, 35.7. HRMS (ESI) calcd for C₁₃H₁₄ClNO₃ (M + H⁺) 268.0735, found 268.0738.

N,N-dimethylcinnamamide (7aa).

Prepared according to procedure B. A canary yellow solid (15.8 mg, 36%). M.p. 87 °C – 89 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.67 (d, *J* = 15.5 Hz, 1H), 7.53 (dd, *J* = 7.6, 1.8 Hz, 2H), 7.40 – 7.32 (m, 3H), 6.89 (d, *J* = 15.5 Hz,

1H), 3.18 (s, 3H), 3.07 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.8, 142.5, 135.5, 129.6, 128.9, 127.9, 117.5, 37.5, 36.1. HRMS (ESI) calcd for C₁₁H₁₃NO (M + H⁺) 176.1070, found 176.1068.

(E)-N,N-dimethyl-3-(o-tolyl)acrylamide (7ba).

Prepared according to procedure B. A canary yellow solid (12.3 mg, 26%). M.p. 66 °C – 68 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, *J* = 15.3 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.26 – 7.16 (m, 3H), 6.79 (d, *J* = 15.3 Hz, 1H), 3.23 – 3.13 (m, 3H), 3.10 (s, 3H), 2.43 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 167.0, 140.4, 137.6, 134.7, 130.8, 129.4, 126.3 (d, *J* = 2.1 Hz), 118.9, 37.6, 36.6, 20.0. HRMS (ESI) calcd for C₁₂H₁₅NO (M + H⁺) 190.1226, found 190.1223.

(E)-3-(2-chlorophenyl)-N,N-dimethylacrylamide (7ca).

Prepared according to procedure B. A yellow solid (18.3 mg, 35%). M.p. 81 $^{\circ}C - 83 \circ C. ^{1}H NMR (CDCl_3, 400 MHz): \delta 8.00 (d, J = 15.5 Hz, 1H), 7.62 - 7.55 (m, 1H), 7.43 - 7.37 (m, 1H), 7.29 - 7.23 (m, 2H), 6.87 (d, J = 15.5 Hz, 1H), 3.13 (d, J = 17.0 Hz, 6H). ^{13}C NMR (CDCl_3, 101MHz): \delta 166.5, 138.4, 134.8, 134.0, 130.3 (d, J = 11.7 Hz), 127.8, 127.0, 120.8, 37.7, 36.1. HRMS (ESI) calcd for C₁₁H₁₂ClNO (M + H⁺) 210.0680, found 210.0673.$

(E)-3-(2-fluorophenyl)-N,N-dimethylacrylamide (7da).

Prepared according to procedure B. A yellow solid (19.3 mg, 40%). M.p. 55 $^{\circ}C - 57 \circ C$. ¹H NMR (CDCl₃, 400 MHz): δ 7.71 (d, *J* = 15.7 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.34 – 7.27 (m, 1H), 7.17 – 7.05 (m, 2H), 7.03 (d, *J* = 15.7 Hz, 1H), 3.16 (s, 3H), 3.07 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 166.8, 161.4, 135.5, 130.9, 130.0, 124.5, 123.5, 120.7, 116.4, 37.5, 36.1. HRMS (ESI) calcd for C₁₁H₁₂FNO (M + H⁺) 194.0976, found 194.0979.

(E)-3-(2-methoxyphenyl)-N,N-dimethylacrylamide (7ea).

Prepared according to procedure B. A yellow solid (16.9 mg, 33%). M.p. 59 $^{\circ}C - 60 \ ^{\circ}C. \ ^{1}H \ NMR \ (CDCl_{3}, 400 \ MHz): \delta \ 7.91 \ (d, J = 15.6 \ Hz, 1H), 7.49 \ (dd, J = 7.6, 1.5 \ Hz, 1H), 7.34 - 7.28 \ (m, 1H), 7.03 - 6.90 \ (m, 3H), 3.88 \ (s, 3H), 3.11 \ (s, 6H). \ ^{13}C \ NMR \ (CDCl_{3}, 101 \ MHz): \delta \ 167.5, 158.3, 138.0, 130.7, 129.1, 124.6, 120.7, 118.6, 111.2, 55.6, 37.6, 36.0. \ HRMS \ (ESI) \ calcd \ for \ C_{12}H_{15}NO_{2} \ (M + H^{+}) \ 206.1176, found \ 206.1165.$

(E)-3-(4-chlorophenyl)-N,N-dimethylacrylamide (7fa).

Prepa N 120 ° 1H), Ha

Prepared according to procedure B. A yellow solid (15.6 mg, 30%). M.p. 120 °C – 122 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.61 (d, *J* = 15.2 Hz, 1H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 15.4 Hz, 1H), 3.17 (s, 3H), 3.07 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ

166.6, 141.1, 135.5, 134.0, 129.2, 129.1, 118.1, 37.6, 36.1. HRMS (ESI) calcd for $C_{11}H_{12}CINO (M + H^+) 210.0680$, found 210.0674.

2-(dimethylamino)-2-oxoethyl acetate.

Prepared according to procedure A. A canary yellow gummy solid. ¹H NMR (CDCl₃, 400 MHz): δ 4.69 (s, 2H), 2.95 (d, J = 3.8 Hz, 6H), 2.16 (s, 3H). ¹³C NMR (CDCl₃, 101MHz): δ 170.8, 166.5, 61.4, 35.9, 35.7,

20.7. HRMS (ESI) calcd for $C_6H_{12}NO_3$ (M + H⁺) 146.0812.

10. References

1. M. J. D. Grandi, C. Bennett, K. Cagino, A. Muccini, C. Suraci and S. Saba, *Synth. Commun.*, 2015, 45, 2601-2607.

(a) J. Liu, X. Zhang, H. Yi, C. Liu, R. Liu, H. Zhang, K. Zhuo and A. Lei, *Angew. Chem., Int. Ed.*, 2015, 54, 1261-1265; (b) Q. Wu, Y. Luo, A. Lei and J. You, *J. Am. Chem. Soc.*, 2016, 138, 2885-2888.

3. K. Yang, F. Zhou, Z. Kuang, G. Gao, T. G. Driver and Q. Song, *Org. Lett.*, 2016, **18**, 4088-4091.

4. S. Priyadarshini, P. J. A. Joseph and M. L. Kantam, RSC Adv., 2013, 3, 18283-18287.

11. NMR spectra

N-Acetylpyrrolidine (2c): ¹H NMR (CDCl₃, 400 MHz)

S24

N-Acetylmorpholine (2e): ¹H NMR (CDCl₃, 400 MHz)

4-Methylpiperidine (2f): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 2-methylbenzoate (3aa): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 2-chlorobenzoate (3ca): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 2-iodobenzoate (3da): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 2-iodobenzoate (3da): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 2-phenylbenzoate (3ea): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 2-phenylbenzoate (3ea): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 2-nitrobenzoate (3fa): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 2-methoxybenzoate (3ga): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 2-cyanobenzoate (3ha): ¹³C NMR (CDCl₃, 101 MHz)

()0 fl (ppm)

2-(Dimethylamino)-2-oxoethyl 2-hydroxylbenzoate (3ia): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 3-chlorobenzoate (3ja): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 3-bromobenzoate (3ka): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 4-cyanobenzoate (3ma): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 4-methylbenzoate (3na): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 4-methylbenzoate (3na): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 4-fluorobenzoate (30a): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 4-chlorobenzoate (3pa): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 4-bromobenzoate (3qa): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 4-bromobenzoate (3qa): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 4-iodobenzoate (3ra): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 4-iodobenzoate (3ra): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 4-nitrobenzoate (3sa): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 4-nitrobenzoate (3sa): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 4-methoxybenzoate (3ta): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 4-methoxybenzoate (3ta): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 2, 4-difluorobenzoate (3ua): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 2, 4-difluorobenzoate (3ua): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 2, 4, 6-Trimethylbenzoate (3va): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 2, 4, 6-Trimethylbenzoate (3va): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 2-oxo-2-phenylacetate (3wa): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl 2-oxo-2-phenylacetate (3wa): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl 2-naphthoate (3xa): ¹³C NMR (CDCl₃, 101 MHz)

2-Formyl-N,N-dimethylbenzamide: ¹H NMR (CDCl₃, 400 MHz)

2-(Diethylamino)-2-oxoethyl 3-bromobenzoate (4kb): ¹H NMR (CDCl₃, 400 MHz)

2-Oxo-2-(pyrrolidin-1-yl)ethyl 3-bromobenzoate (4kc): ¹H NMR (CDCl₃, 400 MHz)

2-Oxo-2-(piperidin-1-yl)ethyl 3-bromobenzoate (4kd): ¹H NMR (CDCl₃, 400 MHz)

(

2-(4-Methylpiperidin-1-yl)-2-oxoethyl 3-bromobenzoate (4kf): ¹³C NMR (CDCl₃, 101 MHz)

2-(methoxy(methyl)amino)-2-oxoethyl 3-bromobenzoate (4kg): ¹³C NMR (CDCl₃, 101 MHz)

1-methyl-2-oxopyrrolidin-3-yl 3-bromobenzoate (4kh): ¹H NMR (CDCl₃, 400 MHz)

1-methyl-2-oxopyrrolidin-3-yl 3-bromobenzoate (4kh): ¹³C NMR (CDCl₃, 101MHz)

1-(dimethylamino)-1-oxopropan-2-yl 3-bromobenzoate (4ki): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl cinnamate (6aa): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl cinnamate (6aa): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl (E)-3-(o-tolyl)acrylate (6ba): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl (E)-3-(o-tolyl)acrylate (6ba): ¹³C NMR (CDCl₃, 101 MHz)

2-(dimethylamino)-2-oxoethyl (*E*)-3-(2-chlorophenyl)acrylate (6ca): ¹H NMR (CDCl₃, 400 MHz)

2-(dimethylamino)-2-oxoethyl (*E*)-3-(2-chlorophenyl)acrylate (6ca): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl (*E*)-3-(2-fluorophenyl)acrylate (6da): ¹H NMR (CDCl₃, 400 MHz)

2-(dimethylamino)-2-oxoethyl (*E*)-3-(2-fluorophenyl)acrylate (6da): ¹³C NMR (CDCl₃, 101 MHz)

2-(Dimethylamino)-2-oxoethyl (*E*)-3-(2-methoxyphenyl)acrylate (6ea): ¹H NMR (CDCl₃, 400 MHz)

2-(Dimethylamino)-2-oxoethyl (*E*)-3-(2-methoxyphenyl)acrylate (6ea): ¹³C NMR (CDCl₃, 101 MHz)

<pre><167.12 166.77 -158.59</pre>	-141.58	↓131.76 ↓129.29 ↓123.39 ↓11.77 ↓11.24	77.48 77.16 76.84	-61.50	-55.56	35.71
--	---------	---	-------------------------	--------	--------	-------

2-(dimethylamino)-2-oxoethyl (*E*)-3-(4-chlorophenyl)acrylate (6fa): ¹H NMR (CDCl₃, 400 MHz)

2-(dimethylamino)-2-oxoethyl (*E*)-3-(4-chlorophenyl)acrylate (6fa): ¹³C NMR (CDCl₃, 101 MHz)

N,N-dimethylcinnamamide (7aa): ¹H NMR (CDCl₃, 400 MHz)

S66

(E)-N,N-dimethyl-3-(o-tolyl)acrylamide (7ba): ¹³C NMR (CDCl₃, 101 MHz)

(E)-3-(2-chlorophenyl)-N,N-dimethylacrylamide (7ca): ¹³C NMR (CDCl₃, 101 MHz)

S68

(E)-3-(2-fluorophenyl)-N,N-dimethylacrylamide (7da): ¹H NMR (CDCl₃, 400 MHz)

(E)-3-(2-methoxyphenyl)-N,N-dimethylacrylamide (7ea): ¹³C NMR (CDCl₃, 101 MHz)

S70

(E)-3-(4-chlorophenyl)-N,N-dimethylacrylamide (7fa): ¹³C NMR (CDCl₃, 101 MHz)

2-(dimethylamino)-2-oxoethyl acetate : ¹H NMR (CDCl₃, 400 MHz)

2-chloro-N,N-dimethylacetamide: ¹H NMR (CDCl₃, 400 MHz)

