Metal-free Synthesis of Isatin Oximes *via* Radical Coupling Reactions of Oxindoles with *t*-BuONO in Water

Wen-Ting Wei,* Wen-Ming Zhu, Wei-Wei Ying, Yi Wu, Yi-Ling Huang, Hongze Liang School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China E-mail: weiwenting@nbu.edu.cn

Supporting Information

List of Contents

 (A) Typical experimental procedure for the radical coupling reaction (B) Analytical data (C) References (D) Spectra 	S2 S2-6 S6 S7-20
--	---------------------------

(A) Typical Experimental Procedure for the Radical Coupling Reaction:

To a Schlenk tube were added oxindole 1 (0.3 mmol), *t*-BuONO 2a (1.2 mmol) and H_2O (2 mL). Then the tube was stirred at room temperature under air for the indicated time until complete consumption of starting material as monitored by TLC analysis. After the reaction was finished, the solution was diluted by ethyl acetate and washed with brine. The organic layer was extracted with ethyl acetate, and the combined organic layers were dried over anhydrous sodium sulfate. After removal of sodium sulfate through filtration, the solution was concentrated under reduced pressure, and the mixture was purified by flash column chromatography over silica gel (hexane/ethyl acetate) to afford the desired products **3**.

(B) Analytical data

3-(Hydroxyimino)indolin-2-one (**3a**)^[1], yellow solid (0.0467 g, 96% yield) ; ¹H NMR (400 MHz, DMSO-*d6*) δ : 13.30 (s, 1H), 10.70 (s, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.02 (t, *J* = 7.2 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d6*) δ : 164.9, 144.7, 143.1, 132.5, 127.5, 122.5, 116.4, 110.7; LRMS (EI, 70 eV) *m/z* (%): 162 (M⁺, 1), 118 (100), 91 (43).

Hz, 2H), 3.18 (s, 3H); ¹³C NMR (75 MHz, DMSO-d6) δ: 163.6, 144.2, 144.1, 132.5,

127.2, 123.1, 115.5, 109.4, 26.3; LRMS (EI, 70 eV) m/z (%): 176 (M⁺, 1), 148 (68), 133 (100).

118 (37).

(m, 2H), 7.17 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 5.4 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d6) 5: 163.0, 143.9, 143.8, 134.1, 132.5, 130.1, 128.8, 127.6, 127.3, 123.7, 115.8, 109.8; LRMS (EI, 70 eV) *m/z* (%): 238 (M⁺, 1), 145 (61), 91 (100).

vellow

solid

Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.26 (t, J = 8.0 Hz, 1H), 1.59 (s, 9H); ¹³C NMR (100 MHz, DMSO-d6) δ: 161.2, 148.8, 142.6, 139.9, 132.5, 127.1, 125.1, 116.8, 115.2, 84.4, 28.1; LRMS (EI, 70 eV) m/z (%): 262 (M⁺, 1), 161 (100), 131 (93); HRMS m/z (ESI) calcd for $C_{13}H_{15}N_2O_4$ ([M+H]⁺) 263.1026, found 263.1030.

 $\begin{array}{c} \text{MeO} \\ \begin{array}{c} & \text{MeO} \\ & \text{H} \end{array} \end{array} \begin{array}{c} \textbf{3-(Hydroxyimino)-5-methoxyindolin-2-one} \quad (\textbf{3f})^{[4]}, \quad \text{saffron} \\ & \text{yellow solid (0.0364 g, 63\% yield);} \quad ^{1}\text{H NMR (300 MHz,} \\ \text{DMSO-}d6) \ \delta: \ 13.38 \ (\text{s}, 1\text{H}), \ 10.54 \ (\text{s}, 1\text{H}), \ 7.54 \ (\text{s}, 1\text{H}), \ 6.96 \ (\text{d}, J = 8.1 \text{ Hz}, 1\text{H}), \ 6.81 \\ & (\text{d}, J = 8.4 \text{ Hz}, 1\text{H}), \ 3.74 \ (\text{s}, 3\text{H}); \ ^{13}\text{C NMR} \ (75 \text{ MHz}, \text{DMSO-}d6) \ \delta: \ 165.1, \ 155.2, \\ & 145.0, \ 136.6, \ 118.0, \ 116.8, \ 113.3, \ 111.4, \ 56.0; \ \text{LRMS (EI, 70 eV)} \ m/z \ (\%): \ 192 \ (\text{M}^+, 2), \ 161 \ (27), \ 118 \ (100). \end{array}$

CI H **5-Chloro-3-(hydroxyimino)indolin-2-one** $(3g)^{[5]}$, yellow solid (0.0525 g, 89% yield); ¹H NMR (300 MHz, DMSO-*d6*) δ : 13.71 (s, 1H), 10.88 (s, 1H), 7.93 (s, 1H), 7.44 (d, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 6.9 Hz, 1H); ¹³C NMR (75 MHz, DMSO-*d6*) δ : 164.7, 144.0, 141.7, 132.0, 126.7, 126.3, 117.5, 112.3; LRMS (EI, 70 eV) *m/z* (%): 198 (M+2, 3), 196 (M⁺, 9), 161 (100), 118 (63).

Br H **5-Bromo-3-(hydroxyimino)indolin-2-one** (**3h**)^[5], yellow solid (0.0702 g, 97% yield): ¹H NMR (300 MHz, DMSO-*d6*) δ : 13.67 (s, 1H), 10.87 (s, 1H), 8.04 (s, 1H), 7.54 (d, *J* = 8.1 Hz, 1H), 6.87 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (75 MHz, DMSO-*d6*) δ : 164.6, 143.8, 142.1, 134.8, 129.5, 117.9, 113.9, 112.8; LRMS (EI, 70 eV) *m/z* (%): 242 (M+2, 2), 240 (M⁺, 2), 118 (100), 91 (37).

3H); ¹³C NMR (75 MHz, DMSO-*d6*) δ: 163.4, 155.6, 144.3, 137.8, 117.2, 116.1, 113.4, 109.9, 56.0, 26.3; LRMS (EI, 70 eV) *m/z* (%): 206 (M⁺, 2), 175 (27), 118 (100); HRMS *m/z* (ESI) calcd for C₁₀H₁₁N₂O₃ ([M+H]⁺) 207.0764, found 207.0768.

1H), 7.11 (d, J = 8.4 Hz, 1H), 3.16 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d6*) δ : 163.2, 143.4, 143.0, 131.9, 126.9, 126.5, 116.6, 111.0, 26.4; LRMS (EI, 70 eV) m/z (%):212 (M+2, 1), 210 (M⁺, 3), 179 (46), 118 (100); HRMS m/z (ESI) calcd for C₉H₈ClN₂O₂ ([M+H]⁺) 211.0269, found 211.0272.

1H), 7.07 (d, *J* = 8.4 Hz, 1H), 3.16 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d6*) δ: 163.1, 143.3, 143.2, 134.7, 129.1, 117.1, 114.5, 111.5, 26.4; LRMS (EI, 70 eV) *m/z* (%): 256 (M+2, 2), 254 (M⁺, 2), 144 (100), 118 (35).

1H), 7.31 (d, J = 8.7 Hz, 1H), 3.25 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d6*) δ : 163.9, 149.5, 142.9, 142.8, 128.9, 121.8, 115.4, 109.9, 26.9; LRMS (EI, 70 eV) m/z (%): 221 (M⁺, 1), 190 (42), 91 (100); HRMS m/z (ESI) calcd for C₉H₈N₃O₄ ([M+H]⁺) 222.0509, found 222.0513.

6.77 (d, J = 8.4 Hz, 1H); ¹³C NMR (75 MHz, DMSO-*d6*) δ : 162.7, 143.1, 142.6, 133.9, 131.9, 130.2, 128.9, 127.9, 127.3, 126.8, 117.0, 111.4; LRMS (EI, 70 eV) *m/z* (%): 274 (M+2, 1), 272 (M⁺, 3), 237 (52), 206 (100); HRMS *m/z* (ESI) calcd for $C_{14}H_{10}CIN_2O_2$ ([M+H]⁺) 273.0425, found 273.0430.

(C) References

- [1] Z. Wang, C. Wang, Y. Sun, N. Zhang, Z. Liu, J. Liu, Tetrahedron 2014, 70, 906.
- [2] N. Sin, B. L. Venables, X. Liu, S. Huang, Q. Gao, J. Heterocyclic. Chem. 2009, 46, 432.
- [3] J. Cao, H. Gao, G. Bemis, F. Salituro, M. Ledeboer, E. Harrington, S. Wilke, P. Taslimi, S. Pazhanisamy, X. Xie, M. Jacobs, J. Green, *Bioorg. Med. Chem. Lett.* 2009, **19**, 2891.
- [4] A. C. Pinto, A. A. M. Lapis, B. V. Silva, R. S. Bastos, J. Dupont, B. A. D. Neto, *Tetrahedron Lett.* 2008, 49, 5639.
- [5] T. Kearney, P. A. Harris, A. Jackson, J. A. Joule, Synthesis 1992, 8,769.
- [6] L.D. Pinkin, V. G. Dzyubenko, P. I. Abramenko, I. S. Shpileva. *Chem. Heterocycl. Com.* 1987, 23, 345.

(D) Spectra

3-(Hydroxyimino)indolin-2-one (3a)

1-Benzyl-3-(hydroxyimino)indolin-2-one (3c)

tert-Butyl-3-(hydroxyimino)-2-oxoindoline-1-carboxylate (3e)

5-Chloro-3-(hydroxyimino)indolin-2-one (3g)

5-Bromo-3-(hydroxyimino)indolin-2-one (3h)

3-(Hydroxyimino)-5-nitroindolin-2-one (3i)

