A Pd-catalyzed Miyaura Borylation/Suzuki cross-coupling cascade synthesis of tricyclic biaryls

Zhilong Chen and Xiaodong Wang*
Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and
Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA

Supporting information

Table of Contents
I. General Information 2
II. Synthesis of Starting Materials 3
III. Optimization of Reaction Conditions 6
IV. General Procedures and Product Spectra Data 10
V. Mechanism Study 19

I. General Information

Glassware and stir bars were dried in an oven at $140^{\circ} \mathrm{C}$ for at least 12 h and then cooled in a desiccator cabinet over Drierite prior to use. Optimization and substrate screens were performed in 20 mL tubes. All other reactions were performed in round-bottom flasks sealed with rubber septa. Plastic syringes or glass pipets were used to transfer liquid reagents. Reactions were stirred magnetically using Teflon-coated, magnetic stir bars.

All commercially available reagents were used without any further purification. Flash chromatography was carried out on pre-packed silica gel disposable columns. A gradient from 0% to 100% ethyl acetate (100% to 0% hexane) for nonpolar compounds and 20% methanol $\left(100 \%\right.$ to $80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) for polar compounds were used as elutes. Analytical thin-layer chromatography (TLC) was performed with silica gel $60 \mathrm{~F}_{254}, 0.25 \mathrm{~mm}$ pre-coated TLC plates. TLC plates were visualized using UV_{254} and/or KMnO_{4} stain or phosphomolybdic acid (PMA) with charring. All ${ }^{1} \mathrm{H}$ NMR spectra were obtained with a 400 MHz spectrometer and ${ }^{13} \mathrm{C}$ NMR spectra were obtained with a 100 MHz spectrometer. MS was performed using an analytical instrument with the UV detector set to $220 \mathrm{~nm}, 254 \mathrm{~nm}$, and 280 nm , and a single quadrupole mass spectrometer using electrospray ionization (ESI) source. Samples were injected ($2 \mu \mathrm{~L}$) onto a 4.6 x $50 \mathrm{~mm}, 1.8 \mu \mathrm{M}, \mathrm{C} 18$ column at room temperature. A linear gradient from 10% to $100 \% \mathrm{~B}(\mathrm{MeOH}+0.1 \%$ acetic acid) in 5.0 min was followed by pumping 100% B for another 2 or 4 minutes with A being $\mathrm{H}_{2} \mathrm{O}+$ 0.1% acetic acid. The flow rate was $1.0 \mathrm{~mL} / \mathrm{min}$. Infrared spectroscopic data are reported in wavenumbers ($\mathrm{cm}-1$). High-resolution mass spectra were obtained using a liquid chromatographyelectrospray ionization and time-of-flight mass spectrometer.

II. Synthesis of Starting materials

II-1. The structures of starting materials $\mathbf{1}$ and 2: majority of starting material $\mathbf{1}$ and $\mathbf{2}$ were purchased from Aldrich, Alfa, Combi-Blocks, or Matrix. The synthesis of the ones that were not commercially available are in section II-2.

Scheme 1. Structures of starting materials 1 and 2.

II-2. Synthesis of Starting materials

(S)-4-Amino-3-bromo-N-(1-methoxypropan-2-yl)benzamide (2c): To a mixture of 4-amino-3bromobenzoic acid (S-1, 2.16g, $10.0 \mathrm{mmol}, 1.0$ equiv) and O-(benzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}-$ tetramethyluronium tetrafluoroborate (TBTU, $3.85 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.2$ equiv) in 60 mL DMF was slowly added DIPEA ($1.85 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.5$ equiv) and (S)-1-methoxypropan-2-amine ($1.07 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.2$ equiv) at room temperature. The reaction mixture was stirred at room temperature (rt) overnight. The solvents were removed under reduced pressure. The residue was purified by silica column to afford the desired product $\mathbf{2 c}$ as brown oil ($2.6 \mathrm{~g}, 91 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{br}, 1 \mathrm{H}), 4.34-4.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.50\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.42\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.38(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.7, 144.4, 134.8, 132.5, 116.8, 114.4, 112.3, 75.3, 59.1, 45.4, 17.6; IR (neat, cm^{-1}): 3411.5, 2956.3, 2918.7, 2869.6, 15968, 1509.0, 1457.0, 1428.0, 1320.0, 1161.9, 1018.2, 739.6;

4-(2-(1,3-Dioxolan-2-yl)ethoxy)-2-bromoaniline (2d): To a mixture of 3-bromo-4-nitrophenol (S-2, 2.18 g , $10.0 \mathrm{mmol}, 1.0$ equiv) and cesium carbonate $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3}, 4.90 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.5\right.$ equiv) in 20 mL dimethylformamide (DMF) was slowly added 2-(2-bromoethyl)-1,3-dioxolane ($2.17 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.2$ equiv). The reaction mixture was heated at $50^{\circ} \mathrm{C}$ overnight (3-bromo-4-nitrophenol was consumed), diluted with ethyl acetate (EtOAc) (150 mL), washed with water ($30 \mathrm{~mL} \times 2$) and brine (30 mL), and dried (magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$). After filtration and concentration, the crude product $\mathbf{S} \mathbf{- 3}$ was directly used in the next step without further purification.

The crude product S-3 and ammonium chloride ($\mathrm{NH}_{4} \mathrm{Cl}, 530 \mathrm{mg}, 10 \mathrm{mmol}, 1.0$ equiv) were dissolved in a mixture of ethanol (EtOH) and $\mathrm{H}_{2} \mathrm{O}(3: 1,80 \mathrm{~mL})$, followed by the addition of iron powder $(2.8 \mathrm{~g}, 50$ $\mathrm{mmol}, 5.0$ equiv) at rt in the open air. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 6 h (the S-3 was consumed). Then the reaction mixture was then cooled down to room temperature, filtered with celite and washed by methanol (MeOH). All the solvents were removed under the reduced pressure. The residue was purified by pre-packed silica gel column to afford the desired product $\mathbf{2 d}(1.18 \mathrm{~g}, 41 \%$ yield for two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22\left(\mathrm{dd}, J_{1}\right.$ $\left.=8.0 \mathrm{~Hz}, \mathrm{~J}_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.06(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 2 \mathrm{H})$, 3.89-3.86 (m, 2H), 2.15-2.10 (m, 2H); ${ }^{13}$ C NMR (100 MHz , DMSO-D 6): 158.7, 146.6, 132.4, 104.4, 101.2, 100.9, 98.7, 64.2, 63.2, 33.3; IR (neat, cm^{-1}): 3360.4, 2967.0, 2885.0, 1617.0, 1490.7, 1196.6, 1141.7, 1065.5, 1010.5, 917.0, 827.3; HRMS-ESI (m/z): Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 288.0230; found: 288.0228; m.p. $83{ }^{\circ} \mathrm{C}$.

2-Bromo- N -isopentylaniline ($\mathbf{2 k}$) To a solution of $\mathbf{2 a}(1.72 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) and 3-methylbutanal $(860 \mathrm{mg}, 10.0 \mathrm{mmol}, 1.0$ equiv) in a mixture of dichloromethane (DCM) and $\mathrm{MeOH}(5: 1,60 \mathrm{~mL})$ was added sodium triacetoxyborohydride $\left(\mathrm{NaB}(\mathrm{OAc})_{3} \mathrm{H}, 2.33 \mathrm{~g} 11.0 \mathrm{mmol}, 1.1\right.$ equiv) at room temperature. The reaction mixture was stirred at rt overnight, diluted with EtOAc (100 mL), washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$ and brine $(20 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. After filtration and concentration, the residue was purified by prepacked silica gel column (Hexane: $\mathrm{EtOAc}=20: 1$) to afford the desired product $\mathbf{2 k}(1.6 \mathrm{~g}, 66 \%$ yield $)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=\right.$ 4. Hz, 1H), $6.63(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55\left(\mathrm{dt}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.22(\mathrm{br}, 1 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 2 \mathrm{H}), 1.78-$ $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-D ${ }^{2}$): 145.1, 132.3, 128.4, 117.3, 111.1, 109.6, 42.0, 38.2, 26.0, 22.6; IR (neat, cm^{-1}): 3648.7, 2947.7, 2874.4, 1652.7, 1595.8, 1508.1, 1099.2, 1012.5, 740.5; HRMS-ESI (m/z): Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BrN}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 242.0539; found: 242.0542.

2-Bromo-N-(3-((tert-butyldimethylsilyl)oxy)propyl)aniline (2m) A solution of 2a(1.72 g, $10.0 \mathrm{mmol}, 1.0$ equiv) in DMF (20 mL) was added potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, 2.76 \mathrm{~g}\right.$, 20.0 mmol , 2.0 equiv), sodium iodide (NaI, $450 \mathrm{mg}, 3.0 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and (3-bromopropoxy)(tert-butyl)dimethylsilane (S-4, 2.53 g , $10.0 \mathrm{mmol}, 1.0$ equiv) at room temperature. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 24 h , diluted with EtOAc (150 mL) at room temperature, washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL} \times 4)$ and brine $(30 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. After filtration and concentration, the residue was purified by pre-packed silica gel column (Hexane) to afford the desired product $\mathbf{2 m}$ ($509 \mathrm{mg}, 15 \%$ yield, conversion $<100 \%$, not optimized) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19\left(\mathrm{t}, J_{1}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{br}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$, 0.09 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{D}}$): 144.5, 132.4, 128.4, 118.1, 112.0, 110.0, 61.1, 41.7, 26.0, 18.4, 5.3; IR (neat, cm^{-1}): 3652.5, 2954.4, 2861.8, 1716.3, 1597.7, 1540.9, 1457.0, 1256.4, 1098.3, 836.0, 739.6; HRMSESI (m/z): Calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{BrNOS}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 344.1040$; found: 344.1045.

5-Bromo- N^{4}-cyclopropyl- N^{2}-(tetrahydro-2H-pyran-4-yl)pyrimidine-2,4-diamine (2p) A solution of 5-bromo-2,4-dichloropyrimidine ($\mathrm{S}-5,6.81 \mathrm{~g}, 30 \mathrm{mmol}, 1.0$ equiv) in isopropanol (IPA) (70 mL) was slowly added a solution of cyclopropanamine ($2.18 \mathrm{~mL}, 31.5 \mathrm{mmol}$, 1.05 equiv) and triethyl amine ($\mathrm{NEt}^{2}, 6.5 \mathrm{~mL}$, $45 \mathrm{mmol}, 1.5$ equiv) in IPA (30 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed slowly to rt and stirred overnight (5-bromo-2,4-dichloropyrimidine was consumed (LC-MS)). The solvents were removed under the reduced pressure. The residue was dissolved in EtOAc $(200 \mathrm{~mL})$, washed by $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right.$, aq. 50 mL), and brine (50 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. After filtration and concentration, the crude product S-6 was obtained as white solid ($6.9 \mathrm{~g},>90 \%$ purity in based LC), and was used as such in the next step.

A solution of S-6 (1.23 g , 5.0 mmol , 1.0 equiv) in dimethylacetamide (DMA) (30 mL) was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($1.96 \mathrm{mg}, 6.0 \mathrm{mmol}, 1.2$ equiv) and tetrahydro- 2 H -pyran- 4 -amine ($606 \mathrm{mg}, 6.0 \mathrm{mmol}, 1.2$ equiv) at room temperature. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ overnight. After filtration and concentration, the residue was purified by pre-packed silica gel column (Hexane: $\mathrm{EtOAc}=1: 1$) to afford the desired product 2q ($765 \mathrm{mg}, 49 \%$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{br}, 1 \mathrm{H}), 4.82(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.51\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.78-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 1 \mathrm{H})$, 1.59-1.49 (m, 2H), 0.83-0.78 (m, 2H), 0.59-0.55 (m, 2H); ${ }^{13}$ C NMR (100 MHz, DMSO-D $_{6}$): 160.1, 159.1155 .9 , 155.8, 66.2, 47.1, 32.5, 24.0, 6.3; IR (neat, cm^{-1}): 3418.2, 3308.3, 3251.4, 2953.5, 2839.7, 1575.6, 1524.5, 1484.9, 1352.8, 1237.1, 1138.8, 781.0; HRMS-ESI (m/z): Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BrN}_{4} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 313.0659; found: 313.0659.

III. Optimization of Reaction Conditions

Compound 1a and $\mathbf{2 a}$ were used to optimize the reaction conditions. All the reactions were conducted at 0.2 mmol scale (1a) and the yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of crude reaction mixtures with DMF $(15 \mu \mathrm{~L})$ as the internal standard. All the starting materials, catalysts, ligands, base and solvents were purchased from Sigma Aldrich.

Table 1. Ligands screening

${ }^{a}$ Aldrich, anhydrous BuOH.

Table 2. Bases screening

${ }^{a}$ Aldrich, anhydrous BuOH .

Table 3. Solvents screening

		 0.	ol	 2a	$\frac{\mathrm{Pd} / \text { Ligand, }(\mathrm{OR})_{2} \mathrm{~B}-\mathrm{B}(\mathrm{OR})_{2}}{\text { Base, solvent, } \mathrm{T}, 10 \mathrm{~h}}$		 a		
Entry	$\begin{gathered} \text { 1a } \\ \text { (equiv) } \end{gathered}$	$\underset{\text { (equiv) }}{\text { 2a }}$	$\mathrm{Pd}(\%)$	Ligand (\%)	$\begin{aligned} & (\mathrm{OR})_{2} \mathrm{~B}-\mathrm{B}(\mathrm{OR})_{2} \\ & \text { (equiv) } \end{aligned}$	Base (equiv)	Solvent	T(${ }^{\circ} \mathrm{C}$)	yield(\%)
1	1.0	1.0	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4)$	PCy_{3} (10)	(Pin)B-B(Pin) (1.2)	$\mathrm{K}_{3} \mathrm{PO}_{4}(2.0)$	n-BuOH(99.4\%)	100	57
2	1.0	1.0	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4)$	$\mathrm{PCy}_{3}(10)$	(Pin)B-B(Pin) (1.2)	$\mathrm{K}_{3} \mathrm{PO}_{4}(2.0)$	$i-\mathrm{BuOH}^{\text {a }}$	100	48
3	1.0	1.0	Pd $\mathrm{d}_{2}(\mathrm{dba})_{3}(4)$	$\mathrm{PCy}_{3}(10)$	(Pin)B-B(Pin) (1.2)	$K_{3} \mathrm{PO}_{4}(2.0)$	2-ethoxylethnol ${ }^{\text {b }}$	100	76
4	1.0	1.0	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4)$	PCy_{3} (10)	(Pin)B-B(Pin) (1.2)	$\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0)	1-PrOH ${ }^{\text {a }}$	100	57
5	1.0	1.0	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4)$	$\mathrm{PCy}_{3}(10)$	(Pin)B-B(Pin) (1.2)	$\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0)	Dioxane ${ }^{\text {a }}$	100	35
6	1.0	1.0	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4)$	$\mathrm{PCy}_{3}(10)$	(Pin)B-B(Pin) (1.2)	$\mathrm{K}_{3} \mathrm{PO}_{4}(2.0)$	Dioxane/n-BuOH (4:1) ${ }^{\text {a }}$	100	36
7	1.0	1.0	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4)$	PCy_{3} (10)	(Pin)B-B(Pin) (1.2)	$\mathrm{K}_{3} \mathrm{PO}_{4}(2.0)$	Dioxane/ $/ \mathrm{H}_{2} \mathrm{O}$ (10:1)	100	50
8	1.0	1.0	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4)$	$\mathrm{PCy}_{3}(10)$	(Pin)B-B(Pin) (1.2)	$\mathrm{K}_{3} \mathrm{PO}_{4}(2.0)$	DMF ${ }^{\text {a }}$	100	43
9	1.0	1.0	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4)$	$\mathrm{PCy}_{3}(10)$	(Pin)B-B(Pin) (1.2)	$\mathrm{K}_{3} \mathrm{PO}_{4}(2.0)$	DMSO ${ }^{\text {a }}$	100	35

${ }^{a}$ Aldrich, anhydrous solvents; ${ }^{b}$ Aldrich, 99%.

Table 3. Pd catalysts screening

${ }^{a}$ Aldrich, 99.4\%.

Table 5. Catalyst loading, substrate ration and reducing reagent loading screening

${ }^{a}$ Aldrich, 99%.

Table 6. Diboronic reagents screening

${ }^{a}$ Aldrich, 99%.

$\underset{\mathrm{Me}}{\mathrm{Me}} \mathrm{Me}$		
(Pin)B-B(Pin)	(Neo) $\mathrm{B}-\mathrm{B}(\mathrm{Neo}$)	$(\mathrm{OH})_{2} \mathrm{~B}-\mathrm{B}(\mathrm{OH})_{2}$

General procedure A. To a mixture of $\mathbf{1}(1.3 \mathrm{mmol}, 1.3$ equiv), $\mathbf{2}(1.0 \mathrm{mmol}, 1.0$ equiv), bis(pinacolato)diboron (1.5 mmol , 1.5 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}\left(3.0 \mathrm{mmol}, 3.0\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(36.6 \mathrm{mg}, 4 \mathrm{~mol} \%)$ and РСуз ($28 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added 2-ethoxyethan-1-ol ($10 \mathrm{~mL}, 0.1 \mathrm{M}$) at rt under N_{2} atmosphere. The reaction mixture was quickly heated to $100^{\circ} \mathrm{C}$ for 30 min to 5 h and then cooled to room temperature. The reaction mixture was diluted with $\mathrm{EtOAc}(100 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL}), \mathrm{NaOH}(2.0 \mathrm{M} \mathrm{aq} .20 \mathrm{~mL} \times 2)$, and brine $(20 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. After filtration and concentration under reduced pressure, the residue was purified by a prepacked silica gel column (Hexane: EtOAc $=10: 1-7: 3$) to afford the desired product 3 .

General Procedure B. The reactions were conducted under the same conditions as general procedure A with 0.5 mmol of 2 (1.0 equiv).

3-Methylphenanthridin-6(5H)-one (3aa) ${ }^{1}$: The title compound ($152 \mathrm{mg}, 73 \%$ yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D}_{6}$): $\delta 11.61(\mathrm{~s}, 1 \mathrm{H})$, $8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.

4-Methylphenanthridin-6(5H)-one ($\mathbf{3 a b})^{2}$: The title compound ($164 \mathrm{mg}, 78 \%$ yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 10.68(\mathrm{~s}, 1 \mathrm{H})$, $8.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85\left(\mathrm{dd}, \mathrm{J}_{1}=8.0 \mathrm{~Hz}, \mathrm{~J}_{2}\right.$ $=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$.

3 ac

[^0](S)-N-(1-Methoxypropan-2-yl)-6-oxo-5,6-dihydrophenanthridine-2-carboxamide (3ac): The title compound ($206 \mathrm{mg}, 66 \%$ yield) was prepared according to the general procedure A as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.82(\mathrm{br}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{br}, 1 \mathrm{H}), 4.45-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.56$ (dd, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.48\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (100 MHz , DMSO-D ${ }_{6}$) 166.2, 160.8, 136.4, 135.6, 133.6, 132.9, 128.6, 127.5, 126.1, 123.22, 123.20, 120.5, 119.6, 115.8, 75.0, 58.1, 44.6, 17.3; IR (neat, cm^{-1}) 3268.8, 2871.5, 2821.4, 1673.0, 1632.7, 1546.6, 1357.6, 1137.8, 890.0; HRMS-ESI (m/z) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 311.1390; found: 311.1391; m.p. $245^{\circ} \mathrm{C}$.

2-(2-(1,3-Dioxolan-2-yl)ethoxy)phenanthridin-6(5H)-one (3ad): The title compound (188 mg , 60% yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.43$ (br, 1H), $8.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.91$ (m, 2H), 2.25-2.20 (m, 2H); ${ }^{13}$ C NMR (100 MHz , DMSO-D6) 161.1, 159.4, 138.0, 134.5, 132.8, 127.4, 126.8, $124.8,124.3,122.0,111.2,110.4,109.6,101.1,100.1,64.3,63.7,33.2$; IR (neat, cm^{-1}) 2949.6, 2885.0, 1360.4, 1658.5, 16103, 1146.5, 764.6; HRMS-ESI (m/z) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 312.1230$; found: 312.1233; m.p. $160^{\circ} \mathrm{C}$.

3ae

2-Fluorophenanthridin-6(5H)-one (3ae) ${ }^{3}$: The title compound ($112 \mathrm{mg}, 53 \%$ yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{D}_{6}$) $\delta 11.73(\mathrm{~s}, 1 \mathrm{H})$, $8.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.68\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H})$.

3af

4-Chlorophenanthridin-6(5H)-one (3af): The title compound ($66 \mathrm{mg}, 29 \%$ yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO-D ${ }_{6}$) $\delta 10.77(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.71(\mathrm{t}, J$

[^1]```
= 8.0 Hz,1H),7.67(d,J=8.0 Hz,1H),7.30(t,J=8.0 Hz,1H).
```



3-(Trifluoromethyl)phenanthridin-6(5H)-one (3ag) ${ }^{3}$ : The title compound ( $100 \mathrm{mg}, 38 \%$ yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D}_{6}\right) \delta 12.01$ $(\mathrm{s}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.90\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=\right.$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.72\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H})$.


Phenanthridin-6(5H)-one (3ai) ${ }^{5}$ : The title compound ( $98 \mathrm{mg}, 50 \%$ yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D} 6$ ) $\delta 11.68(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.64\left(\mathrm{dd}, J_{1}=8.0\right.$ $\left.\mathrm{Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$.


5-Methylphenanthridin-6(5H)-one (3aj) ${ }^{6}$ : The title compound ( $85 \mathrm{mg}, 81 \%$ yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.31$8.27(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$.

$3 a k$

5-Isopentylphenanthridin-6(5H)-one (3ak): The title compound ( $247 \mathrm{mg}, 93 \%$ yield) was prepared according to the general procedure A as a gel. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32-$ $8.28(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $161.2,137.0,133.5,132.3,129.5,128.7,127.9,125.5,123.4,122.2,121.5,119.5,115.0,41.4,36.0,26.6,22.6$; IR (neat, $\mathrm{cm}^{-1}$ ) 3074.0, 2956.3, 2922.6, 2868.6, 1648.8, 1587.1, 1437.7, 1364.7, 1335.5, 1177.3 1116.6, 747.3; HRMSESI (m/z) Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 266.1545; found: 266.1537 .

[^2]

3al

5-Cyclohexylphenanthridin-6(5H)-one (3al) ${ }^{7}$ : The title compound ( $244 \mathrm{mg}, 88 \%$ yield) was prepared according to the general procedure A as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.28-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.75(\mathrm{~m}$, $1 \mathrm{H}), 1.55-1.36(\mathrm{~m}, 3 \mathrm{H})$.


5-(3-((tert-Butyldimethylsilyl)oxy)propyl)phenanthridin-6(5H)-one (3am): The title compound ( 125 mg , $68 \%$ yield) was prepared according to the general procedure A as a colorless oil. However, 3am was not stable under weak acidic conditions, thus unprotected 3am' was prepared for the characterization.

5-(3-Hydroxypropyl)phenanthridin-6(5H)-one (3am'): ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.56$ (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.35-8.29(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-D ${ }_{6}$ ) 162.7, 136.7, 133.7, 132.8, 129.7, 129.0, 128.1, 124.8, 123.6, 122.9, 121.6, 120.0, 115.2, 58.2, 39.2, 30.3; IR (neat, $\mathrm{cm}^{-1}$ ) 3403.7, 2948.6, 1631.5, 1608.3, 1584.2, 1438.6, 1370.2, 1334.5, 1056.8,



3 an

Benzo[c][1,7]naphthyridin-6(5H)-one (3an) ${ }^{8}$ : The title compound ( $90 \mathrm{mg}, 63 \%$ yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D}_{6}$ ) $\delta 12.03(\mathrm{~s}, 1 \mathrm{H})$, $8.71(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47-8.46(\mathrm{~m}, 2 \mathrm{H}), 8.39\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.97\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.83\left(\mathrm{td}, \mathrm{dd}, \mathrm{J}_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$.


Benzo[c][1,8]naphthyridin-6(5H)-one (3ao) ${ }^{9}$ : The title compound ( $124 \mathrm{mg}, 63 \%$ yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D}_{6}$ ) $\delta 12.03(\mathrm{~s}, 1 \mathrm{H})$,

[^3]$8.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.70\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H})$.


5-Cyclopropyl-3-((tetrahydro-2H-pyran-4-yl)amino)pyrimido[4,5-c]isoquinolin-6(5H)-one (3ap): The title compound ( $160 \mathrm{mg}, 66 \%$ yield) was prepared according to the general procedure A as a yellow solid. ${ }^{1}{ }^{H}$ NMR $\left.\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.06(\mathrm{br}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.77 \mathrm{~m}, 2 \mathrm{H}\right), 7.61(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.99-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.07(\mathrm{~m}$, 2H), 1.92-1.86 (m, 2H), 1.37-1.32 (m, 2H), 0.94-0.90 (m, 2H); ${ }^{13}$ C NMR ( 100 MHz, DMSO-D 6 ) 163.1, 159.3, 158.1, 156.2, 153.2, 133.2, 131.8, 127.8, 126.7, 123.3, 120.3, 66.2, 53.1, 32.3, 25.3, 9.5; IR (neat, $\mathrm{cm}^{-1}$ ) 3069.2, 2962.1, 2926.5, 2855.1, 1697.1, 1643.1, 1430.9, 1276.7, 1188.9, 1133.0, 786.8; HRMS-ESI (m/z) Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 337.1659$; found: 337.1661 ; m.p. $210^{\circ} \mathrm{C}$.


8-Methoxy-5-methylphenanthridin-6(5H)-one (3bj) ${ }^{6}$ : The title compound ( $99 \mathrm{mg}, 83 \%$ yield) was prepared according to the general procedure B as a white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-8.20$ $(\mathrm{m}, 2 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H})$.


8-chloro-5-methylphenanthridin-6(5H)-one (3cj): The title compound ( $73 \mathrm{mg}, 60 \%$ yield) was prepared according to the general procedure B as a light yellow solid. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.53(\mathrm{~s}, 1 \mathrm{H})$, $8.25-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 1 H ), 3.82 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) 155.8, 133.6, 129.4, 128.1, 127.6, 125.5, 123.6, 122.5, 119.2, 118.8, 118.1, 113.9, 110.7, 25.4; IR (neat, $\mathrm{cm}^{-1}$ ) 3084.6, 1690.3, 1645.0, 1207.2, 1141.7, 746.3; HRMS-ESI (m/z) Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClNO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 244.0524$; found: 244.0526 . m.p. $158^{\circ} \mathrm{C}$.


3dj

5,8-Dimethylphenanthridin-6(5H)-one (3dj) ${ }^{10}$ : The title compound ( $92 \mathrm{mg}, 82 \%$ yield) was prepared according to the general procedure B as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~m}, 1 \mathrm{H}), 8.26(\mathrm{~d}$,

[^4]$J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H})$.


3ej
8-Amino-5-methylphenanthridin-6(5H)-one (3ej): The title compound ( $82 \mathrm{mg}, 73 \%$ yield) was prepared according to the general procedure B as a yellow solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.17(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO-D6) 160.3, 146.5, 136.1, 127.9, 126.1, 124.2, 123.8, 122.4, 122.2, 121.8, 119.2, 115.4, 112.3, 29.7; IR (neat, $\mathrm{cm}^{-1}$ ) 3356.5, 2977.6, 2606.3, 1682.6, 1633.4, 1586.2, 1361.5, 1203.4, 1135.9, 755.0; HRMS-ESI (m/z) Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 225.1022; found: $225.1023 ;$ m.p. $180^{\circ} \mathrm{C}$.


2-Ethoxyethyl 5-methyl-6-oxo-5,6-dihydrophenanthridine-8-carboxylate ( $\mathbf{3 f j}$ ): The title compound (125 $\mathrm{mg}, 77 \%$ yield) was prepared according to the general procedure B as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.83(\mathrm{~m}, 5 \mathrm{H}), 3.83$ ( $\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) 166.2, 159.7, 137.8, 133.3, 133.2, 130.6, 128.9, 127.9, 127.7, 123.6, 123.4, 122.9, 117.7, 115.8, 67.6, 66.6, 64.7, 29.9, 15.1; IR (neat, $\mathrm{cm}^{-1}$ ) 3296.7, 2975.6, 2877.3, 1721.2, 1642.1, 1422.2, 1348.0, 1287.3, 1257.4, 1105.0, 1032.7, 743.4; HRMS-ESI (m/z) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 326.1387$; found: 326.1385 ; m.p. $115^{\circ} \mathrm{C}$.


3hj
8,9-Dimethoxy-5-methylphenanthridin-6(5H)-one (3hj) ${ }^{6}$ : The title compound ( $101 \mathrm{mg}, 75 \%$ yield) was prepared according to the general procedure B as a white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.09(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.


5-Methyl-[1,3]dioxolo[4,5-j]phenanthridin-6(5H)-one (3ij, $N$-methylcrinasiadine) $)^{6}$ : The title compound ( $115 \mathrm{mg}, 74 \%$ yield) was prepared according to the general procedure B as a white solid. ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$.


5-Methyl-5,7-dihydro-6H-indolo[2,3-c]quinolin-6-one (3ji) ${ }^{11}$ : The title compound ( $110 \mathrm{mg}, 89 \%$ yield) was prepared according to the general procedure $B$ as a yellow solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.89$ (br, 1H), $8.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $155.3,139.0,135.9,127.0$, 126.4, 125.7, 123.5, 122.7, 122.5, 122.1, 120.8, 118.9, 117.0, 115.7, 113.1, 29.3; HRMS-ESI (m/z) Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 249.1022$; found: 249.1024.


5,7-Dimethyl-5,7-dihydro-6H-indolo[2,3-c]quinolin-6-one (3kj): The title compound ( $125 \mathrm{mg}, 95 \%$ yield) was prepared according to the general procedure B as a white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 8.50$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO-D $_{6}$ ) 155.9, 140.3, 135.9, 126.5, 126.0, 125.6, 123.5, 122.7, 122.6, 121.2, 121.0 118.6, 117.6, 115.6, 111.2, 31.4, 29.2; IR (neat, $\mathrm{cm}^{-1}$ ) 3047.0, 1648.8, 1296.9, 1200.5, 726.1; HRMS-ESI (m/z) Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 263.1179$; found: 263.1181 ; m.p. $234^{\circ} \mathrm{C}$.


5-Methyl-7,8,9,10-tetrahydrophenanthridin-6(5H)-one (31j): A solution of methyl 2-oxocyclohexane-1carboxylate (S-7, $1.56 \mathrm{~g}, 10.0 \mathrm{mmol}$, 1.0 equiv) in anhydrous DCM ( 50 mL ) was added $\mathrm{NaH}(60 \mathrm{wt} \%, 440$ $\mathrm{mg}, 11.0 \mathrm{mmol}, 1.1$ equiv) in portions at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , then was added trifluoromethanesulfonic anhydride ( $\mathrm{Tf}_{2} \mathrm{O}, 2.82 \mathrm{~g}, 1.69 \mathrm{~mL}, 10.0 \mathrm{mmol}$, 1.0 equiv) dropwise. The resulting mixture was warmed to rt and stirred overnight, quenched with $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{~mL})$, diluted with $\mathrm{DCM}(150 \mathrm{~mL})$, washed with a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( $50 \mathrm{~mL} \times 2$ ) and brine ( 50 mL ), and dried $\left(\mathrm{MgSO}_{4}\right)$. After filtration and concentration to provide the crude product 11 $(2.6 \mathrm{~g})$ as a green-dark liquid and used as such in next step. The title compound $\mathbf{3 i j}$ ( $33 \mathrm{mg}, 31 \%$ yield) was prepared according to the general procedure B from $\mathbf{1 1}$ and $\mathbf{2 j}$ as a white solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 162.2, 141.7, 138.1, 129.0, 128.5, 123.5, 121.7, 121.2, 114.0, 29.6, 25.4, 24.6, 21.97, 21.96; IR (neat, $\mathrm{cm}^{-1}$ ) $3074.0,2956.3$, 2868.6, 1648.8, 1608.3, 1587.1, 1437.7, 1364.7, 1335.5, 1313.3, 1177.3, 747.3; HRMS-ESI (m/z) Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$214.1226; found: 214.1228.

[^5]

4,5-Dihydro-7H-pyrrolo[3,2,1-de]phenanthridin-7-one (3aq) ${ }^{12}$ : The title compound ( $165 \mathrm{mg}, 75 \%$ yield) was prepared according to the general procedure A as a white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.


5-Isopentyl-[1,3]dioxolo[4,5-j]phenanthridin-6(5H)-one (3ik) ${ }^{6}$ : The title compound ( $114 \mathrm{mg}, 74 \%$ yield) was prepared according to the general procedure B as a white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.


4,5-Dihydro-7H-[1,3]dioxolo[4,5-j]pyrrolo[3,2,1-de]phenanthridin-7-one (3iq) ${ }^{11}$ : The title compound (46 $\mathrm{mg}, 35 \%$ yield) was prepared according to the general procedure B as a white solid. ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.14(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.


5-Methyl-5,11-dihydro-6H-indolo[3,2-c]quinolin-6-one (3mj) ${ }^{13}$ : The title compound ( $110 \mathrm{mg}, 89 \%$ yield) was prepared according to the general procedure $B$ as a light yellow solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.89(\mathrm{br}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.43-$ $7.33(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-D6) 159.0, 139.6, 138.7, 137.7, 129.6, 124.6, 124.1, $122.6,121.7,121.1120 .8,115.7,112.9,111.7,105.9,28.5$.


4ni

7,12-Dihydrobenzo[2,3]azepino[4,5-b]indol-6(5H)-one (4ni) ${ }^{14}$ : The title compound ( $79 \mathrm{mg}, 64 \%$ yield)

[^6]was prepared according to the general procedure B as a light yellow solid. ${ }^{1} \mathbf{H}$ NMR ( 400 MHz , DMSOD6) $\delta 11.57(\mathrm{~s}, 1 \mathrm{H}), 10.08(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.44(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}$, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.07\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.50(\mathrm{~s}, 3 \mathrm{H})$.

## V. Mechanism study

## Part A: Control experiments

## Control experiment A:



To a mixture of $\mathbf{1 a}$ ( $1.3 \mathrm{mmol}, 1.3$ equiv), $\mathbf{2 a}\left(1.0 \mathrm{mmol}, 1.0\right.$ equiv), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ( $3.0 \mathrm{mmol}, 3.0$ equiv) was added 2-ethoxyethan-1-ol $(10 \mathrm{~mL})$ at rt under $\mathrm{N}_{2}$ atmosphere. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ (monitored by TLC and LC-MS). No desired product 5 was observed after 24 h .

## Control experiment B:



To a mixture of $6^{15}(1.0 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(4 \mathrm{~mol} \%), \mathrm{PCy}_{3}(10 \mathrm{~mol} \%), \mathrm{B}_{2}(\mathrm{Pin})_{2}$ ( 1.3 equiv), and $\mathrm{K}_{3} \mathrm{PO}_{4}(3.0$ equiv) was added 2-ethoxyethan-1-ol $(10 \mathrm{~mL})$ at rt under $\mathrm{N}_{2}$ atmosphere. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ overnight. No desired product 3ah was observed on LC-MS spectra, instead the reduced product 7 (pale yellow solid, $58 \mathrm{mg}, 59 \%$ yield) was isolated as the major product. Minor dimer and trace amount of trimmer were also observed on LC-MS spectra.
$N$-Phenylbenzamide (7, pale yellow solid, $58 \mathrm{mg}, 59 \%$ yield $)^{16}$ : ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{br}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.47\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}\right.$, $\left.J_{2}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.36\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.14\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$.

## Control experiment C:


$N$-Isopropyl-2'-(methylamino)-[1,1'-biphenyl]-2-carboxamide (8): To a mixture of $\mathbf{1 q}$ ( $0.5 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 j}$ ( $0.65 \mathrm{mmol}, 1.3$ equiv), bis(pinacolato)diboron ( 0.75 mmol , 1.5 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}(1.5 \mathrm{mmol}, 3.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4 \mathrm{~mol} \%)$ and $\mathrm{PCy3}(10 \mathrm{~mol} \%)$ was added 2-ethoxyethan-1-ol $(5.0 \mathrm{~mL}, 0.1 \mathrm{M})$ at rt under $\mathrm{N}_{2}$ atmosphere. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 1.5 h , diluted with EtOAc ( 10 mL ) at rt, filtrated through a pad of celite, and concentrated. The residue was purified by a prepacked silica gel

[^7]column (Hexane: $\mathrm{EtOAc}=10: 1-5: 1)$ to afford the desired product $8\left(36 \mathrm{mg}, 27 \%\right.$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.91\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, \mathrm{~J}_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.52-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.92(\mathrm{br}, 1 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{br}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 167.1, 146.3, 136.3, 135.9, 130.84, 130.75, 129.8, 129.5, 129.4, 128.3, 126.4, 117.4, 109.9, 41.3, 30.3, 22.0, 21.9; IR (neat, $\mathrm{cm}^{-1}$ ) 3368.1, 3299.6, 3057.6, 2966.0, 1639.2, 1513.9, 1460.8, 1315.2, 1289.2, 1168.7, 746.3; HRMS-ESI (m/z) Calcd for ( $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}^{+}$) ([M+H]+): 269.1648; found: 269.1648; m.p. $109^{\circ} \mathrm{C}$.

## Control experiment D



To a mixture of $\mathbf{1 q}$ ( $0.5 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}\left(0.65 \mathrm{mmol}, 1.3\right.$ equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}\left(1.5 \mathrm{mmol}, 3.0\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (a: $4 \mathrm{~mol} \%$; b: 1.0 equiv), and РСуз (a: $10 \mathrm{~mol} \%$, b: 2.0 equiv) was added 2-ethoxyethan- $1-\mathrm{ol}(5.0 \mathrm{~mL} 0,1 \mathrm{M}$ ) at rt under $\mathrm{N}_{2}$ atmosphere. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ overnight. No desired product 3aa was observed by LC-MS spectra.

## Part B: Kinetic study



A kinetic study of the cascade reactions was also conducted at 0.2 mmol scale with substrates $\mathbf{1 e}$ and $\mathbf{2 j}$ which had strong signals in UV spectra and could be easily monitored by LC-MS spectra. Since the UV absorption was distinquisable for these compounds, we used a $1: 1$ mixture of $\mathbf{1 e}$ and $\mathbf{2 j}$ (ref 1) and a 1:1 mixture of $\mathbf{3 e j}$ and home coupling product $\mathbf{9}$ of $\mathbf{2 j}$ (ref 2 ) as references as shown in Scheme 7. After the reaction initiated, an aliquot was quenched by MeOH after $2,5,10$, and 20 min and was detected by LCMS. Interestingly, $\mathbf{1 e}$ was partially converted to the boronic ester $\mathbf{1 0}$ after 2 min as shown in Scheme 2 . The desired product $3 \mathbf{e j}$ and side product 9 started to be observed at 5 min . At the same time, a small amount of $\mathbf{1 1}$, the reduced product of $\mathbf{1 e}$, appeared in the reaction. At 20 min , both starting material $\mathbf{1 e}$ and $\mathbf{2 j}$ were consumed and the reaction was complete. Surprisingly, we didn't observed any homo-coupling product of $\mathbf{1 e}$ and the boronic ester of $\mathbf{2 j}$ although the homo-coupling product $\mathbf{9}$ of $\mathbf{2} \mathbf{j}$ was gradually formed starting at 5 min . In addition, the direct product of the cross coupling reaction was not observed. This indicates that the ring closure reaction was not the rate-determining step. Instead the initial coupling intermediate was converted to the final product $\mathbf{3 e j}^{\mathbf{j}}$ spontaneously and did not accumulate.


Scheme 2. Kinetic study of the reaction mechanism.


2c




2c


| 1 |  | 1 | 1 |  | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 |  |  | 1 | 1 | 1 | 1 | 1 |  | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |





2d


00286_092_PROTON_001





00286_121B_PROTON_001




|  | 1 | 1 |  | 1 |  | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 |  | 1 |  | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |




| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1( |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



3ac

00286_120A_PROTON_004

J0286_120A_PROTON_004






3ad
00286_120B_CARB2N_002』

$-122.04$






3ak

00286_106B_PROTON_003




3ak

| T | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
|  |  |  |  |  |  |  |  |  |  | f1 (pp |  |  |  |  |  |  |  |  |  |  |

CZL00286_151_PROTON_001




3am'





4 H

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
|  |  |  |  |  |  |  |  |  |  | f1（ |  |  |  |  |  |  |  |  |  |  |





3cj



3ej


00286_13ß_B_CARBON_0ө1
 $\stackrel{|l| l \mid}{\text { ล }}$




| 1 | 1 | 12 |  | 12 |  | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | 128 | 127 | 126 | 125 | 124 | 123 | 122 | 121 | 120 |
|  |  |  |  | f1 (p |  |  |  |  |  |



| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 |  | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{aligned} & 100 \\ & (\mathrm{ppm}) \end{aligned}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |



3fj



3fj



00286_149A_PROTON_002



3jj



$$
66 \text { 8II — }
$$

$$
\begin{aligned}
& \stackrel{\sim}{\mathrm{N}} \stackrel{\mathrm{~N}}{\mathrm{~N}} \\
& \stackrel{7}{7}
\end{aligned}
$$



3jj



| T | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | T | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
|  |  |  |  |  |  |  |  |  |  | f1 (p |  |  |  |  |  |  |  |  |  |  |



00286_133B_PROTON_001




3kj



 mumpunm




00286_172A_PROTON_002





31j

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | T | 1 | 1 | 1 | 1 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
|  |  |  |  |  |  |  |  |  |  | f1（p |  |  |  |  |  |  |  |  |  |  |





8




[^0]:    ${ }^{1}$ Bhakuni, B. S.; Kumar, A.; Balkrishna, S. J.; Sheikh, J. A.; Konar, S.; Kumar, S. Org. Lett. 2012, 2838-2841.
    ${ }^{2}$ Ferraccioli, R.; Carenzi, D.; Rombola, O.; Catellani, M. Org. Lett. 2004, 6, 4759-4762.

[^1]:    ${ }^{3}$ Yuan, M.; Chen, L.; Wang, J.; Chen, S.; Wang, K.; Xue, Y.; Yao, G.; Luo, Z.; Zhang, Y.; Yuan, M.; Chen, L.; Wang, J.; Chen, S.; Wang, K.; Xue, Y.; Yao, G.; Luo, Z.; Zhang, Y.; Org. Lett. 2015, 17, 346-349.
    ${ }^{4}$ Dubost, E.; Magnelli, R.; Cailly, T.; Legay, R.; Fabis, F.; Rault, S. Tetrahedron, 2010, 66, 5008-5016.

[^2]:    ${ }^{5}$ Bhakuni, B. S.; Kumar, A.; Balkrishna, S. J.; Sheikh, J. A.; Konar, S.; Kumar, S. Org. Lett. 2012, 2838-2841.
    ${ }^{6}$ Feng, M.; Tang, B.; Xu, H-X.; Jiang, X. Org. Lett. 2016, 18, 4352-4355

[^3]:    ${ }^{7}$ Lu, C.; Dubrovskiy, A. V.; Larock, R. C. J. Org. Chem. 2012, 77, 8648-8656
    ${ }^{8}$ Rocca, P.; Cochennec, C.; Marsais, F.; Thomas-dit-Dumont, L.; Mallet, M.; Godard, A.; Queguiner, G. J. Org. Chem. 1993, 58, 7832-7838.
    ${ }^{9}$ Ferraris, D.; Ko, Y-S.; Pahutski, T.; Ficco, R. P.; Serdyuk, L.; Alemu, C.; Bradford, C.; Chiou, T.; Hoover, R.; Huang, S.; Lautar, S.; Liang, S.; Lin, Q.; Lu, M. X.-C.; Mooney, M.; Morgan, L.; Qian, Y.; Tran, S.; Williams, L.R.; Wu, Q. Y.; Zhang, J.; Zou, Y.; Kalish, V. J. Med. Chem. 2003, 46, 3138-3151.

[^4]:    ${ }^{10}$ Iwasaki, H.; Eguchi, T.; Tsutsui, N.; Ohno, H.; Tanaka, T. J. Org. Chem. 2008, 73, 7145-7152

[^5]:    ${ }^{11}$ Li, Z.; Wang, W.; Zhang, X.; Hu, C.; Zhang, W. Synlett, 2013, 24, 73-78.

[^6]:    ${ }^{12}$ S. De,; S. Ghosh,; S. Bhunia,; J. A. Sheikh,; A. Bisai, Org. Lett. 2012. 14, 4466-4469.
    ${ }^{13}$ Shi, Z.; Ren, Y.; Li, B.; Lu, S.; Zhang, W. Chem. Comm. 2010, 46, 3973-3975
    ${ }^{14}$ Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132. 18326-18339

[^7]:    ${ }^{15}$ Compound 6 was prepared according to reported literature: Lu, J.; Gong, X.; Yang, H.; Fu, H. Chem.Comm. 2010, 46, 4172-4174
    ${ }^{16}$ Zultanski, S. L.; Zhao, J.; Stahl, S. S. J. Am. Chem. Soc. 2016, 138, 6416-6419.

