Supporting Information

Synthesis of Fluorescent Heterocycles via a Knoevenagel/ [4+1]cycloaddition cascade using Acetyl Cyanide

Guillermo Martinez-Ariza^a Bereketab T. Mehari,^b Ludmila A. G. Pinho,^c Christopher Foley.^b Kendall Day,^a John C. Jewett,^b and Christopher Hulme^{*a,b}

^{a.} Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, BSW 351,1041 E. Lowell St., Tucson, AZ, 85721, USA.

^{b.} Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA.

^c Faculdade de Ciências da Saúde, University of Brasilia, Brasilia, DF, Brazil.

Table of contents:

1.	Table S1: Solvent optimization	S2
2.	Table S2: Base optimization.	S3
3.	Table S3: Stoichiometry optimization	
4.	Table S4: Cyanide source optimization	S5
5.	Table S5: Temperature optimization	S6
6.	General remarks	
7.	General procedure for the preparation of compounds 4a-4q	
8.	Analytical data of compounds 4a-4q	
9.	¹ H and ¹³ C NMR spectra for compounds 4a-4q	S13
10.	Fluorescent spectra for compounds 4a-4o	S47
11.	Table of full Spectral Data for compounds 4a-4o	S62

Table S1. Solvent optimization

Entry ^[a]	Solvent	Yield 4c ^[b] [%]	
1	n-BuOH	82	
2	TFE	13	
3	МеОН	95	
4	EtOH	87	
5	t-BuOH	nr	
6	2-EtO-EtOH	12	
7	<i>i</i> -PrOH	46	
8	THF	71	
9	DCE	nr	
10	DMF	91	
11	Dioxane	60	
12	DMSO	84	
13	1,2-DME	57	

 $^{[a]}$ Scale: 0.25 mmol $^{[b]}$ Reported % yields are 'Area under the Curve' of desired product (A%) as judged by LC/MS at UV 254 nm. nr = no reaction

Table S2. Base optimization

Entry ^[a]	Base	Yield 4c ^[b] [%]
1	DBU	95
2	TEA	nr
3	DIPEA	nr
4	DIPA	1
5	Cs_2CO_3	64
6	K ₂ CO ₃	67
7	KOAc	nr
8	NaH	nr
9	CsOH	90

^[a] Scale: 0.25 mmol ^[b] Reported % yields are 'Area under the Curve' of desired product (A%) as judged by LC/MS at UV 254 nm. nr = no reaction.

 Table S3. Stoichiometry optimization.

Entr	[a]	la eq.	2a eq.	3a eq.	DBU eq.	Yield 4c ^[b] [%]
1		1	1	1	0.2	95
2		1	1	1	0.5	94
3		1	1	1	1	93
4		1	1	1.3	0.2	92
5		1	1	2	0.2	90
6		1	1.3	1	0.2	78
7	,	1.3	1	1	0.2	87

Reported % yields are

'Area under the Curve' of desired product (A%) as judged by LC/MS at UV 254 nm

^[a] Scale: 0.25 mmol, ^[b]

Table S4. Cyanide source optimization.

^[a] Scale: 0.25 mmol, ^[b] Reported % yields are 'Area under the Curve' of desired product (A%) as judged by LC/MS at UV 254 nm

Table S5. Temperature optimization.

Entry ^{[a}]	Temperature	Time	Yield 4c ^[b] [%]
1	80 °C MW	20 min.	12
2	100 °C MW	20 min.	95
3	120 °C MW	20 min.	97
4	RT	overnight	82

^[a] Scale: 0.25 mmol, ^[b] Reported % yields are 'Area under the Curve' of desired product (A%) as judged by LC/MS at UV 254 nm

General procedure

All reagents and solvents were acquired from commercially available suppliers and used without further purification. The products were purified using an automated flash chromatography apparatus. Low resolution mass spectra were obtained using positive ESI methods in a mass spectrometer. High resolution mass spectra were obtained using positive ESI method for all the compounds, obtained in an Ion Cyclotron Resonance (ICR) spectrometer. ¹H and ¹³C NMR spectra were obtained on a Bruker NMR spectrometer at 400 and 100 MHz respectively. The data is reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet). Coupling constant are reported in Hertz (Hz) and were automatically generated using known NMR analyzer software (Mestrenova). All microwave irradiation experiments were carried out in a Biotage Initiator, operating at a frequency of 2.45GHz with continuous irradiation power from 0 to 300W with utilization of the standard absorbance level of 220W maximum power using an external sensor of temperature. The reactions were carried out in 5 mL microwave vials, sealed with Teflon septum and placed in the microwave cavity at the specified temperature without the use of inert conditions. Absorbance spectra were measured with an Agilent 8453 UV-vis spectrophotomer. Fluorescence spectra were measured with a QuantaMaster 400 Steady State Spectrofluormeter and PTRI fluorescence spectrophotometer. Quantum yield was calculated using coumarine 1511 and rhodamine² in absolute ethanol.

References:

- 1. The Journal of Physical Chemistry, 2001, 105, 1097-1106
- 2. Chemical Physics letters, 1996, 260, 115-118

General procedure for the preparation of compound 4a-4q

The corresponding 2-cyanomethyl pyridine (1, 1 eq., 0.5 mmol) was placed in a 5 mL microwave vial equipped with a magnetic stir bar. Subsequently, anhydrous MeOH (1 mL) was added followed by the addition of the corresponding aldehyde (2, 1 eq., 0.5 mmol) and DBU (0.2 eq., 0.1 mmol). Then, acetyl cyanide (3, 1 eq. 0.5 mmol) was added slowly through the wall of the vial (note: if acetyl cyanide is not added slowly the solvent mixture will splash outside of the vial). The reaction was heated via microwave irradiation for 20 minutes at 120 °C. After reaction completion (monitored by TLC and LC/MS), the solvent was removed *in vacuo* and the crude product was purified using a silica column by flash chromatography (0-30% AcOEt/Hexane) to afford title compounds, **4a-4q**.

Analytical data of compound 4a-4q

3-amino-2-(4-methoxyphenyl) indolizine-1-carbonitrile (4a)

Brown solid, 76 mg, 58% yield, m.p. 144-146 °C, ¹H NMR (400 MHz, DMSO-d₆) δ 8.23 – 8.21 (m, 1H), 7.58 – 7.57 (m, 2H), 7.56 – 7.55 (m, 1H), 7.08 – 7.06 (m, 2H), 7.00 – 6.97 (m,1H), 6.88 – 6.86 (m, 1H), 5.14 (s, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 148.6, 123.0, 120.0, 117.9, 115.1, 112.8, 110.5, 107.9, 106.7, 104.6, 102.5, 102.4, 67.6,

45.5; $[M+H]^+ = 264$; HRMS (ESI) m/z calculated for C₁₆H₁₄N₃O $[M+H]^+ = 264.11314$; found 264.11327; $\lambda_{ex} = 292$, 393 nm; $\lambda_{em} = 497$ nm.

3-amino-2-(4-bromophenyl) indolizine-1-carbonitrile (4b)

Light brown solid, 98 mg, 63%, m.p. 164-166 °C, ¹H NMR (400 MHz, DMSOd₆) δ 8.25 – 8.23 (m, 1H), 7.69– 7.67 (m, 2H), 7.59 – 7.57 (m, 2H), 7.01 (d, *J* = 8.9 Hz, 1H), 7.03 – 6.99 (m, 1H), 6.90 – 6.86 (m, 1H), 5.35 (br s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 133.0, 131.9, 131.7, 130.4, 128.4, 122.6, 120.7,

119.9, 117.3, 116.6, 112.4, 110.1, 77.0; [M] $^+$ = 312, 314; HRMS (ESI) m/z calculated for C₁₅H₁₁BrN₃ [M+H] $^+$ = 312.01309; found 312.01321, 314.01116; λ_{ex} = 282, 398 nm; λ_{em} = 493 nm.

3-amino-2-phenylindolizine-1-carbonitrile (4c)

Dark brown solid, 86 mg, 74% yield, m.p.128-130 °C, ¹H NMR (400 MHz, DMSOd₆) δ 8.27 – 8.25 (m, 1H), 7.68 – 7.51 (m, 6H), 7.02 – 6.85 (m, 2H), 5.29 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 132.9, 132.7, 128.8, 128.5, 126.7, 122.5, 120.4, 117.5, 116.6, 112.2, 111.6, 77.3; [M+H]⁺ = 234; HRMS (ESI) m/z calculated for

 $C_{15}H_{12}N_3 [M+H]^+= 234.10257$; found 234.10277; $\lambda_{ex} = 287$, 398 nm; $\lambda_{em} = 496$ nm.

3-amino-2-(naphthalen-2-yl) indolizine-1-carbonitrile (4d)

Brown solid, 79 mg, 56% yield, m.p. 146-148 °C, ¹H NMR (400 MHz, DMSOd⁶) δ 8.30 – 8.27 (m,1H), 8.14 – 8.13 (m, 1H), 8.04 – 8.02 (m, 1H), 7.96 – 7.95 (m, 2H), 7.83 – 7.80 (m, 1H), 7.58 – 7.50 (m, 3H), 7.04 – 7.00 (m, 1H), 6.92 – 6.88 (m, 1H), 5.43 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 149.5, 137.4, 128.1, 127.9, 127.5, 127.0, 126.7, 126.3, 126.0, 122.6, 120.5, 116.6, 112.3, 112.2, 77.5; $[M + H]^+ = 284$; HRMS (ESI) m/z calculated for C₁₉H₁₃N₃Na $[M + Na]^+ = 306.10017$; found 306.10019; $\lambda_{ex} = 292$, 398 nm; $\lambda_{em} = 505$ nm.

3-amino-2-(naphthalen-1-yl) indolizine-1-carbonitrile (4e)

Brown solid, 96 mg, 67%, 142-144 °C, ¹H NMR (400 MHz, DMSO-d₆) δ 8.25 – 8.23 (m, 1H), 8.04 – 7.99 (m, 2H), 7.74 – 7.72 (m, 1H), 7.66 – 7.62 (m,1H), 7.59 – 7.49 (m, 4H), 7.06 – 7.02 (m,1H), 6.94 – 6.90 (m,1H), 5.08 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 133.5, 132.4, 131.5, 129.8, 129.2, 128.9, 128.3, 128.0, 126.0, 125.8, 125.6, 122.5, 120.2, 117.2, 116.6, 112.2, 109.7, 79.8; [M+H]⁺ = 284; HRMS (ESI)

m/z calculated for C₁₉H₁₃N₃Na [M+Na]⁺= 306.10017; found 306.10013; $\lambda_{ex} = 297, 397$ nm; $\lambda_{em} = 512$ nm.

3-amino-2-(4-phenoxyphenyl) indolizine-1-carbonitrile (4f)

Brown oil, 71 mg, 43%, ¹H NMR (400 MHz, DMSO-d6) δ 8.24 – 8.22 (m, 1H), 7.66 – 7.62 (m, 2H), 7.52 – 7.50 (m, 1H), 7.44 – 7.40 (m, 3H), 7.18 – 7.07 (m, 5H), 7.02 – 6.97 (m, 1H), 6.89– 6.85 (m, 1H), 5.24 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 156.5, 155.6, 151.3, 149.5, 137.4, 132.8, 130.2, 130.1, 128.0, 127.7, 122.5, 120.4, 118.9, 118.8,

117.5, 116.5, 112.3, 111.2, 77.2; $[M+H]^+ = 326$; HRMS (ESI) m/z calculated for C₂₁H₁₅ N₃O $[M+H]^+ = 326.12879$, found 326.12877; $\lambda_{ex} = 300$, 400 nm; $\lambda_{em} = 494$ nm.

2-([1,1'-biphenyl]-4-yl)-3-aminoindolizine-1-carbonitrile (4g)

Beige solid, 85 mg, 55% yield, 160-62 °C, 1H NMR (400 MHz, DMSO-d₆) δ 8.27 – 8.25 (m, 1H), 7.82 – 7.72(m, 6H), 7.55 – 7.47 (m, 3H), 7.40 – 7.36 (m, 1H), 7.03 – 6.99 (m, 1H), 6.90 – 6.87 (m, 1H), 5.36 (s, 2H);); ¹³C NMR (100 MHz, DMSO-d₆) δ 139.7, 138.4, 133.0, 131.8, 129.0, 128.9, 128.4, 127.5, 127.0, 126.5, 122.5, 120.5, 117.6,

116.6, 112.3, 111.0, 77.1; $[M + H]^+ = 310$; HRMS (ESI) m/z calculated for C₂₁H₁₅ N₃ $[M + H]^+ = 310.13387$, found 310.131387; $\lambda_{ex} = 292$, 398 nm; $\lambda_{em} = 496$ nm.

3-amino-2-(9H-fluoren-2-yl)indolizine-1-carbonitrile (4h)

Brown solid, 113 mg, 70% yield, m.p. 156-158 °C, ¹H NMR (400 MHz, DMSO-d₆) δ 8.26 – 8.24 (m, 1H), 8.02 – 8.00 (m, 1H), 7.94– 7.92 (m, 1H), 7.85– 7.81(m, 1H), 7.66 – 7.52 (m, 3H), 7.42 – 7.30 (m, 2H), 7.01– 6.98 (m, 1H), 6.90 – 6.86 (m, 1H), 5.35 (s, 2H), 3.99 (s, 2H); ¹³C NMR

(100 MHz, DMSO-d₆) δ 143.5, 143.1, 140.8, 139.7, 137.4, 132.9, 131.1, 128.3, 127.2, 126.83, 126.79, 125.2, 122.5, 120.35, 120.30 120.0, 117.6, 116.6, 112.3, 111.8, 77.3, 36.5; [M +H] ⁺ = 322; HRMS (ESI) m/z calculated for C₂₂H₁₄ N₃ [M - H] ⁺ = 320.11822, found 320.11847; $\lambda_{ex} = 300$, 398 nm; $\lambda_{em} = 490$ nm.

3-amino-2-(1H-indazol-3-yl)indolizine-1-carbonitrile (4i)

Brown solid, 61 mg, 44% yield, m.p. 140-142 °C, ¹H NMR (400 MHz, DMSO-d₆) δ 13.32 (s, 1H), 8.22 – 8.20 (m, 1 H), 8.07 –8.05 (m, 1H), 7.62 –7.57 (m, 2H), 7.44 –7.40 (m, 1H), 7.20 –7.17 (m, 1H), 7.04 –7.00 (m, 1H), 6.93 –6.89 (m, 1H), 5.67 (s, 2H);); ¹³C NMR (100 MHz, DMSO-d₆) δ 144.6, 141.0, 137.8, 133.0, 130.1, 126.4, 122.5, 121.3, 121.0, 120.29, 120.27, 117.9, 116.7, 112.4, 110.4, 102.9,

90.9, 76.8; $[M +H]^+ = 274$; HRMS (ESI) m/z calculated for $C_{16}H_{12}N_5$ $[M+H]^+ = 274.10872$, found 274.10890; $\lambda_{ex} = 299$, 399 nm; $\lambda_{em} = 493$ nm.

1-amino-2-(4-isopropylphenyl)benzo[d]pyrrolo[2,1-b]thiazole-3-carbonitrile (4j)

Light brown solid, 102 mg, 62% yield, m.p. 186-188 °C, ¹H NMR (400 MHz, DMSO-d₆) δ 8.39 – 8.37 (m, 1H), 7.98 – 7.96 (m, 1H), 7.53 – 7.47 (m, 3H), 7.42 – 7.34 (m, 3H), 4.97 (s, 2H), 2.97 – (m, 1H), 1.26 (s, 3H), 1.24 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 146.8, 134.2, 131.0, 130.5, 129.9, 129.6, 128.2, 126.7, 126.2, 124.9, 124.3, 116.5, 115.2,

114.6, 80.3, 33.2, 23.9; $[M+H]^+ = 332$; HRMS (ESI) m/z calculated for C₂₀H₁₇N₃SNa $[M+Na]^+ = 354.10354$; found 354.10373; $\lambda_{ex} = 313$, 392 nm; $\lambda_{em} = 498$ nm.

3-amino-2-(2-hydroxyphenyl)indolizine-1-carbonitrile (4k)

Brown solid, 36 mg, 29% yield, m.p. 180-182 °C, ¹H NMR (400 MHz, DMSOd₆) δ 9.96 (s, 1H), 8.19 –8.17 (m, 1H), 7.52 –7.50 (m, 1H), 7.34 –7.32 (m, 1H), 7.24 –7.20 (m, 1H), 7.02 –6.84 (m, 4H), 4.98 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 134.8, 113.2, 111.9, 109.1, 108.7, 102.7, 100.4, 99.85, 99.81, 98.0, 97.0, 96.6, 92.5, 90.5, 59.1; $[M + H]^+ = 250$; HRMS (ESI) m/z calculated for C₁₅H₁₁N₃ONa $[M + Na]^+ = 272.07943$, found 272.07946; $\lambda_{ex} = 291$, 392 nm; $\lambda_{em} = 494$ nm.

3-amino-2-(phenylethynyl)indolizine-1-carbonitrile (41)

Dark brown solid, 44 mg, 35% yield, m.p. 158-160 °C, ¹H NMR (400 MHz, DMSO-d₆) δ 8.41 –8.39 (m, 1H), 7.77 –7.74 (m, 1H), 7.56 –7.49 (m, 1H), 7.38 –7.30 (m, 3H), 7.26 –7.23 (m, 2H), 7.10 –7.07 (m, 1H), 4.51 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 153.6, 137.2, 135.4, 132.6, 128.9, 128.2,

127.2, 125.9, 125.4, 123.8, 117.7, 115.3, 113.8, 113.4, 98.3, 81.9, 29.9; $[M + H]^+ = 258$; HRMS (ESI) m/z calculated for C₁₇H₁₂N₃ $[M + H]^+ = 258.10257$, found 258.10268; $\lambda_{ex} = 304$, 348 nm; $\lambda_{em} = 404$ nm.

3-amino-2-(benzofuran-2-yl)indolizine-1-carbonitrile (4m)

Brown oil, 40 mg, 29% yield, ¹H NMR (400 MHz, DMSO-d₆) δ 8.26 – 8.24 (m, 1H), 7.67 – 7.61 (m, 2H), 7.53 – 7.50 (m, 1H), 7.31 – 7.23 (m, 2H), 7.20 – 7.19 (m, 1H), 7.04 – 6.99 (m, 1H), 6.90 – 6.86 (m, 1H), 6.09 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 153.3, 150.4, 133.4, 130.5, 128.6, 123.8, 123.2, 122.5, 121.2,

120.5, 117.1, 116.7, 112.6, 111.0, 100.7, 98.3, 74.8; $[M+H]^+ = 274$; HRMS (ESI) m/z calculated for $C_{17}H_{12}N_3O [M+H]^+ = 274.09749$; found 274.09763; $\lambda_{ex} = 294$, 332, 373 nm; $\lambda_{em} = 476$ nm.

3-amino-2-(2-fluorophenyl)indolizine-1-carbonitrile (4n)

Beige solid, 91 mg, 73% yield, m.p. 128-130 °C, ¹H NMR (400 MHz, DMSO-d₆) δ 8.21 – 8.18 (m, 1H), 7.56 – 7.50 (m, 2H), 7.48 – 7.42 (m, 1H), 7.38 – 7.31 (m, 2H), 7.03 – 6.98 (m, 1H), 6.90 – 6.86 (m, 1H), 5.25 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 161.1, 158.7, 133.0, 132.4, 130.0, 129.7, 125.1, 120.9, 120.4, 117.4, 117.1, 112.7, 105.5, 79.0; [M +H] ⁺ = 252; HRMS (ESI) m/z calculated for

 $C_{15}H_{11}FN_3 [M+H]^+= 252.09315$; found 252.09333; $\lambda_{ex} = 280$, 323, 383 nm; $\lambda_{em} = 493$ nm.

6-amino-7-phenylpyrrolo[1,2-a]pyrazine-8-carbonitrile (40)

Light brown solid, 86 mg, 74% yield, m.p. 172-174 °C, ¹H NMR (400 MHz, DMSO-d₆) δ 8.82 (s, 1H), 8.17– 8.15 (m, 1H), 7.72 – 7.70 (m, 1H), 7.64 – 7.61 (m, 2H), 7.55 – 7.51 (m, 2H), 7.42 – 7.38 (m, 1H), 5.92 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 142.2, 131.5, 130.9, 129.0, 128.9, 128.6, 127.5, 125.9, 115.7,

114.4, 112.8, 82.0; $[M+H]^+ = 235$; HRMS (ESI) m/z calculated for C₁₄H₁₁N₄ $[M+H]^+ = 235.09784$; found 235.09782; $\lambda_{ex} = 295$, 399 nm; $\lambda_{em} = 494$ nm.

3-amino-2-phenethylindolizine-1-carbonitril (4p)

3-amino-2-pentylindolizine-1-carbonitrile (4q)

117.4, 116.1, 113.3, 111.5, 30.9, 29.5, 23.8, 22.0, 13.9; $[M + H]^+ = 228$; HRMS (ESI) m/z calculated for $C_{14}H_{18}N_3 [M + H]^+ = 228.14952$; found 228.14971.

NMR spectra for compounds 4a-4q

¹H NMR for compound **4a** (400 MHz, DMSO-d₆)

¹³C NMR for compound **4a** (100 MHz, DMSO-d₆)

¹H NMR for compound **4b** (400 MHz, DMSO-d₆)

¹³C NMR for compound **4b** (100 MHz, DMSO-d₆)

¹H NMR for compound **4c** (400 MHz, DMSO-d₆)

¹³C NMR for compound **4c** (100 MHz, DMSO-d₆)

¹H NMR for compound **4d** (400 MHz, DMSO-d₆)

¹H NMR for compound **4e** (400 MHz, DMSO-d₆)

¹³C NMR for compound **4e** (100 MHz, DMSO-d₆)

¹H NMR for compound **4f** (400 MHz, DMSO-d₆)

¹³C NMR for compound **4f** (100 MHz, DMSO-d₆)

¹H NMR for compound **4g** (400 MHz, DMSO-d₆)

¹³C NMR for compound **4g** (100 MHz, DMSO-d₆)

¹H NMR for compound **4h** (400 MHz, DMSO-d₆)

¹³C NMR for compound **4h** (100 MHz, DMSO-d₆)

¹H NMR for compound **4i** (400 MHz, DMSO-d₆)

¹H NMR for compound **4i** (100 MHz, DMSO-d₆)

¹H NMR for compound **4j** (400 MHz, DMSO-d₆)

¹³C NMR for compound **4j** (100 MHz, DMSO-d₆)

¹H NMR for compound **4k** (400 MHz, DMSO-d₆)

¹³C NMR for compound **4k** (100 MHz, DMSO-d₆)

$^1\mathrm{H}$ NMR for compound 4l (400 MHz, DMSO-d_6)

¹³C NMR for compound **4l** (100 MHz, DMSO-d₆)

¹H NMR for compound 4m (400 MHz, DMSO-d₆)

¹³C NMR for compound **4m** (100 MHz, DMSO-d₆)

¹H NMR for compound 4n (400 MHz, DMSO-d₆)

¹³C NMR for compound **4n** (100 MHz, DMSO-d₆)

¹H NMR for compound **40** (400 MHz, DMSO-d₆)

¹³C NMR for compound **40** (100 MHz, DMSO-d₆)

¹H NMR for compound 4p (400 MHz, DMSO-d₆)

¹³C NMR for compound **4p** (100 MHz, DMSO-d₆)

¹H NMR for compound **4q** (400 MHz, DMSO-d₆)

¹³C NMR for compound **4q** (100 MHz, DMSO-d₆)

Fluorescent spectra for compounds 4a-4o

Fluorescent spectra for compound 4a (10 μ M, DMF, λ ex = 292, 393 nm; λ em = 497 nm)

Fluorescent spectra for compound **4b** (10 μ M, DMF, λ ex = 282, 398 nm; λ em = 493 nm)

Fluorescent spectra for compound 4c (10 μ M, DMF, λ ex = 287, 398 nm; λ em = 496 nm)

Fluorescent spectra for compound 4d (10 μ M, DMF, λ ex =292, 398 nm; λ em = 505 nm)

Fluorescent spectra for compound 4e (10 μ M, DMF, λ ex = 297, 397 nm; λ em = 512 nm)

Fluorescent spectra for compound **4f** (10 μ M, DMF, λ ex = 300, 400 nm; λ em = 494 nm)

Fluorescent spectra for compound 4g (10 μ M, DMF, λ ex = 292, 398 nm; λ em = 496 nm)

Fluorescent spectra for compound **4h** (10 μ M, DMF, λ ex = 300, 398 nm; λ em = 490 nm)

Fluorescent spectra for compound 4i (10 μ M, DMF, λ ex = 299, 399 nm; λ em = 493 nm)

Fluorescent spectra for compound 4j (10 μ M, DMF, λ ex = 313, 392 nm; λ em = 498 nm)

Fluorescent spectra for compound 4k (10 μ M, DMF, λ ex = 291, 392 nm; λ em = 494 nm)

Fluorescent spectra for compound **4**I (10 μ M, DMF, λ ex = 304, 348 nm; λ em = 404 nm)

Fluorescent spectra for compound **4m** (10 μ M, DMF, λ ex = 294, 332, 373 nm; λ em = 476 nm)

Fluorescent spectra for compound **4n** (10 μ M, DMF, λ ex = 280, 323, 383 nm; λ em = 493 nm)

Fluorescent spectra for compound **40** (10 μ M, DMF, λ ex = 295, 399 nm; λ em = 494 nm)

Data for Compounds 4a-4o

Compound	Structure	Quantum yield	Molar	λex	λem
Number		(φ _f) in DMF	Absorbitivity(M ⁻	(nm)	(nm)
	<u> </u>	0.00	[⊥] cm ^{-⊥})	202 202	407
4a	H ₂ N Owe	0.03	5525	292, 393	497
		0.01	6305	282 398	103
40	N Br	0.01	0355	202, 570	400
	CN			207.200	
4c	H ₂ N N CN	0.02	4128	287, 398	496
4d	H ₂ N	0.02	8147	292, 398	505
4e	H ₂ N	0.05	4920	297, 397	512
4f	H ₂ N OPh	0.05	3613	300, 400	494
4g	H ₂ N Ph	0.02	7634	292, 398	496
4h		0.10	4358	300, 398	490
	H ₂ N				
	CN CN				
4i	NH ₂	0.07	6096	299, 399	493
	NH				
	CN CN				
4k	H ₂ N	0.03	4267	291, 392	494
	CN OH				
41	H ₂ N Ph	0.24	4938	304, 348	404

4m	NH2 0 N CN	0.06	7465	294, 332, 373	476
4n	H ₂ N N CN F	0.09	6449	280, 323, 383	493
40	H ₂ N N CN	0.22	8100	295, 399	494

(Reference coumarine 151 in ethanol)