SUPPLEMENTARY INFORMATION

Effect of Ligand Sequence-Specific Modification on DNA Hybrid Catalysis

H. Zhou,^a D. Chen,^a J. K. Bai,^a X. L. Sun,^a C. Li^{*a} and R. Z. Qiao^{*ab}

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

^b State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100083, P. R. China

Correspondence: Prof. Renzhong Qiao, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China E-mail: <u>qiao_group@163.com</u> Prof. Chao Li, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China E-mail: lichao@mail.buct.edu.cn Fax: 86-010-64416428

Contents

1.	NMR and HRMS spectra of <i>hmbpy</i>	1
2.	NMR and HRMS spectra of Py4-dmbpy	2
3.	¹ H NMR spectra of 1a-d	3
4.	Preparation and characteristics of racemic Friedel-Crafts alkylation products 3a-3g	5
5.	Preparation and HPLC analysis of enantioselective Friedel-Crafts alkylation products 3a-3g	13
6.	HPLC analysis of product 3d catalyzed by oligonucleotides/ Py4-dmbpy-Cu^{II}	20
7.	Basis spectra of SVD analysis	24
8.	UV-Vis titration spectra of Py₄-dmbpy-Cu^{II} with alternative oligonucleotides	24

NMR and HRMS spectra of hmbpy

NMR and HRMS spectra of Py₄-dmbpy

¹H NMR spectra of 1a-d

(E)-1-(1-methyl-1H-imidazol-2-yl)-3-phenylprop-2-en-1-one (1a)

¹H-NMR(400 MHz, CDCl₃) *δ*/ppm= 4.11 (s, 3H), 7.09 (s, 1H), 7.24 (s, 1H), 7.39-7.41 (m, 3H), 7.70-7.72 (m, 2H), 7.82 (d, 1H, *J*=16 Hz), 8.10 (d, 1H, *J*=16 Hz)

(E)-3-(4-methoxyphenyl)-1-(1-methyl-1H-imidazol-2-yl)prop-2-en-1-one (1b)

¹H-NMR(400MHz, CDCl₃) δ/ppm=3.84 (s, 3H), 4.09 (s, 3H), 6.92 (d, 2H, *J* = 8.8 Hz), 7.07 (s, 1H), 7.21 (s, 1H), 7.65 (d, 2H, *J* = 8.8 Hz), 7.80 (d, 1H, *J* = 16.0 Hz), 7.95 (d, 1H, *J* = 16.0 Hz)

¹H-NMR (400 MHz, DMSO-*d*₆) δ/ppm=3.96 (s, 3H), 7.16 (s, 1H), 7.34 (m, 1H), 7.42 (m, 1H), 7.53 (s, 1H), 7.66 (dd, 1H, *J* = 1.1 Hz, *J* = 6.9 Hz), 7.90 (dd, 1H, *J* = 1.2 Hz, *J* = 6.4 Hz), 7.95 (d, 1H, *J* = 15.5 Hz).

(E)-1-(1-methyl-1H-imidazol-2-yl)but-2-en-1-one (1d)

¹H-NMR (400 MHz, CDCl₃) δ/ppm=1.99 (dd, 3H, *J* = 8.0 Hz, *J* = 8.0 Hz), 4.04 (s, 3H), 7.05 (s, 1H), 7.12 (dq, 1H), 7.16 (dq, 1H), 7.43 (dd, 1H, *J* = 16.0 Hz, *J* = 16.0 Hz).

Preparation and characteristics of racemic Friedel-Crafts alkylation products 3a-3g

Preparation of a 500 mL 30 mM MOPS buffer (pH 6.5)

3.1389 g (15 mmol) of 3-(*N*-morpholino) propanesulfonic acid (MOPS, MW = 209.26 g/mol) were dissolved in 100 mL of ultrapure water which is tracked by pH meter. A 0.1 M solution of NaOH (MW = 40.00 g/mol) in ultrapure water was added to adjust pH value to 6.5. Transfer this solution to a 500 mM volumetric flask, then dilute with ultrapure water to volume and mix.

General procedure A

An oven-dried 500 mL round-bottomed flask was charged with $Cu(NO_3)_2 \cdot 3H_2O$ (0.8 mmol, 2.0 equiv) in 50 mL pH = 6.5 MOPS buffer. Then the α , β -unsaturated substrate (0.40 mmol, 1.0 equiv) and the desired indole (2.0 mmol, 5 equiv) were added. The solution was stirred at r.t. for 3 d. The reaction was eventually extracted with Et₂O (3 x 25 mL). The combined organic layer dried over anhydrous Na₂SO₄, gravity filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography over silica gel.

Following the general procedure A: **1a** (84.9 mg, 0.40 mmol), **2a** (262.4 mg, 2.0 mmol), Cu(NO₃)₂·3H₂O (193 mg, 0.80 mmol). The title compound (molecular formula: C₂₂H₂₁N₃O, MW = 343.43 g/mol, 110 mg) was isolated as a brown solid in 80% yield. ¹H NMR (CD₃OD, 400 MHz): δ /ppm=3.68 (s, 3H), 3.82-3.88 (m, 4H), 4.00 (dd, *J* = 15.9 Hz, *J* = 7.5 Hz,1H), 5.04 (t, *J* = 7.8 Hz, 1H), 6.93 (s, 1H), 6.96-7.00 (m, 2H), 7.13 (s, 3H), 7.22 (t, *J* =8.0 Hz, 3H), 7.38 (d, *J* =7.3 Hz, 2H), 7.47 (d, *J* =7.9 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ /ppm= 32.9 (q), 36.3 (q), 38.3 (d), 45.7 (t), 109.2 (d), 118.1 (s), 118.9 (d), 119.8 (d), 121.7 (d), 126.3 (d), 126.4 (d), 127.1 (d), 128.1 (s), 128.5 (d), 129.1 (d), 137.4 (s), 143.4 (s), 144.8 (s), 191.3 (s). HRMS (ESI) calcd. for C₂₂H₂₂N₃O: 344.1763 ([M+H])⁺, found 344.1759 ([M+H])⁺.

Following the general procedure A: **1b** (96.9 mg, 0.40 mmol), **2b** (294.4 mg, 2.0 mmol), Cu(NO₃)₂·3H₂O (193 mg, 0.80 mmol). The title compound (molecular formula: C₂₃H₂₃N₃O₃, MW = 389.46 g/mol, 133.0 mg) was isolated as a brown solid in 85% yield. ¹H NMR (CDCl₃, 400 MHz): δ /ppm=3.70 (s, 3H), 3.75 (s, 3H), 3.82 (dd, *J* =8.3Hz, *J* =8.1Hz, 1H), 3.87 (s, 3H), 3.93 (dd, *J* = 15.7 Hz, *J* = 7.6 Hz, 1H), 4.94(t, *J* =7.5 Hz, 1H), 6.73-6.77 (m, 3H), 6.91 (s, 1H), 6.96 (s, 1H), 7.02 (s, 1H), 7.13-7.15 (m, 2H), 7.25(d, *J* = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ /ppm= 36.4 (q), 37.7 (d), 45.7 (t), 55.4 (q), 56.0 (q), 101.7 (d), 111.8 (d), 112.3 (d), 113.9 (d), 119.7 (s), 122.3 (d), 127.1 (s), 127.4 (d), 129.1 (d), 131.9 (s), 136.7 (s), 143.4 (s), 154.0 (s), 158.1 (s), 191.5 (s). HRMS (ESI) calcd. for C₂₃H₂₄N₃O₃: 390.1818 ([M+H])⁺, found 390.1809 ([M+H])⁺.

Following the general procedure A: **1c** (116.5 mg, 0.40 mmol), **2a** (262.4 mg, 2.0 mmol), Cu(NO₃)₂·3H₂O (193 mg, 0.80 mmol). The title compound (molecular formula: C₂₂H₂₀N₃OBr, MW = 422.33 g/mol, 93.0 mg) was isolated as a brown solid in 55% yield. ¹H NMR (CDCl₃, 400 MHz): δ /ppm=3.57 (dd, *J* = 5.6 Hz, *J* = 10.6 Hz, 1H), 3.72 (s, 3H), 3.94 (s, 3H), 4.23 (dd, *J* = 9.0 Hz, *J* = 7.6 Hz, 1H), 5.54 (dd, *J* = 6.0 Hz, *J* = 2.8 Hz, 1H), 7.02 (m, 4H), 7.14 (m, 3H), 7.24 (m, 1H), 7.28 (m, 1H), 7.52 (d, *J* = 7.9 Hz, 2H), 7.58 (dd, *J* = 1.2 Hz, *J* = 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ /ppm= 33.0 (q), 36.4 (q), 37.4 (t),44.7 (d), 109.2 (d), 116.8 (s), 119.1 (d), 120.0 (d), 121.9 (d), 124.4 (s), 126.9 (d), 127.2 (d), 127.5 (s), 127.7 (d), 127.9 (d), 129.1 (d), 129.7 (d),133.0 (d), 137.5 (s), 143.3 (s),143.7 (s), 190.7 (s). HRMS (ESI) calcd. for C₂₂H₂₁N₃OBr: 422.0868 ([M+H])⁺, found 422.0865 ([M+H])⁺.

Following the general procedure A: **1d** (60.0 mg, 0.40 mmol), **2b** (294.4 mg, 2.0 mmol), Cu(NO₃)₂·3H₂O (193 mg, 0.80 mmol). The title compound (molecular formula: C₁₇H₁₉N₃O₂, MW = 297.36 g/mol, 107.0 mg) was isolated as a brown solid in 90% yield. ¹H NMR (CDCl₃, 400 MHz): δ /ppm=1.42 (d, *J* = 6.9 Hz, 3H), 3.41 (dd, *J* = 8.3 Hz, *J* = 15.6 Hz, 1H), 3.58 (dd, *J* = 6.2, *J* = 15.6 Hz, 1H), 3.77 – 3.83 (m, 1H), 3.88 (s, 3H), 3.95 (s, 3H), 6.83 (dd, *J* = 2.5 Hz, *J* = 8.8 Hz, 1H), 7.00 (s, 1H), 7.18-7.22 (m, 3H), 8.50 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ /ppm= 21.8 (q), 27.6 (q), 36.5 (d), 47.3 (q), 56.2 (t), 101.2 (d), 112.0 (d), 112.4 (d), 121.2 (d), 121.4 (d), 126.9 (s), 127.1 (d), 128.0 (s), 131.7 (s), 142.6 (s), 154.0 (s), 192.1 (s). HRMS (ESI) calcd. for C₁₇H₂₀N₃O₂: 298.1556 ([M+H])⁺, found 298.1559 ([M+H])⁺.

3-(1H-indol-3-yl)-1-(1-methyl-1H-imidazol-2-yl)butan-1-one (3e)

Following the general procedure A: **1d** (60.0 mg, 0.40 mmol), **2c** (234.3 mg, 2.0 mmol), Cu(NO₃)₂·3H₂O (193 mg, 0.80 mmol). The title compound (molecular formula: C₁₆H₁₇N₃O, MW = 267.33 g/mol, 80.0 mg) was isolated as a brown solid in 74% yield. ¹H NMR (CDCl₃, 400 MHz): δ /ppm=1.40 (d, *J* = 6.9 Hz, 3H), 3.51 (m, 2H), 3.84 (m, 1H), 3.92 (s, 3H), 7.00 (t, *J* = 7.1 Hz, 2H), 7.07 (t, *J* = 8.2 Hz, 1H), 7.14(m, 2H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 8.42(s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ /ppm= 21.9 (q), 27.3 (t), 36.4 (d), 47.0 (q), 111.3 (d), 119.3 (d), 119.4 (d), 120.4 (d), 121.6 (s), 122.0 (d), 126.8 (s), 127.1 (d), 129.0 (d), 136.6 (s), 143.5 (s), 192.5 (s). HRMS (ESI) calcd. for C₁₆H₁₈N₃O: 268.1450 ([M+H])⁺, found 268.1451 ([M+H])⁺.

Following the general procedure A: **1d** (60.0 mg, 0.40 mmol), **2a** (262.4 mg, 2.0 mmol), Cu(NO₃)₂·3H₂O (193 mg, 0.80 mmol). The title compound (molecular formula: C₁₇H₁₉N₃O, MW = 281.36 g/mol, 99.0 mg) was isolated as a brown solid in 88% yield. ¹H NMR (CDCl₃, 400 MHz): δ /ppm=1.41 (d, *J* = 6.9, 3H), 3.45 (dd, *J* = 2.2 Hz, *J* = 8.00 Hz, 1H), 3.60 (dd, *J* = 6.5 Hz, 1H), 3.72 (s, 3H), 3.83 (dd, *J* = 7.0 Hz, *J* = 7.2 Hz, 1H), 3.92 (s, 3H), 6.93 (s, 1H), 6.98 (s, 1H), 7.27 (s, 1H), 7.07 (m, 1H), 7.14 (s, 1H), 7.19 (t, *J* = 7.0 Hz, 1H), 7.24 (s, 1H), 7.65(d, *J* = 7.7 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ /ppm= 22.2 (q), 27.4 (d), 32.8 (q), 36.4 (q), 47.2 (t), 109.3 (d), 118.8 (d), 119.6 (d), 121.6 (d), 125.4 (d), 126.9 (d), 128.8 (d),137.2 (s), 143.5 (s), 192.4 (s). HRMS (ESI) calcd. for C₁₇H₂₀N₃O: 282.1606 ([M+H])⁺, found 282.1601 ([M+H])⁺.

Following the general procedure A: **1d** (60.0 mg, 0.40 mmol), **2d** (303.2 mg, 2.0 mmol), Cu(NO₃)₂·3H₂O (193 mg, 0.80 mmol). The title compound (molecular formula: C₁₇H₁₈ClN₃O, MW = 315.80 g/mol, 91.0 mg) was isolated as a brown solid in 72% yield. ¹H NMR (CDCl₃, 400 MHz): δ /ppm=1.40 (d, *J* = 6.9 Hz, 3H), 3.47 (m, 2H), 3.77 (m, 1H), 3.92 (s, 3H), 7.01 (s, 1H), 7.08(d, *J* = 9.5 Hz, 2H), 7.16 (s, 1H), 7.21 (d, *J* = 8.6Hz, 2H), 7.54 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ /ppm= 21.8 (q), 27.4 (d), 36.4 (q), 47.3 (t), 112.3 (d), 118.9 (d), 121.4 (s), 121.9 (d), 122.3 (d), 125.1 (s), 127.1 (d), 127.9 (s), 128.7 (d), 134.9 (s), 143.1 (s), 192.0 (s). HRMS (ESI) calcd. for C₁₇H₁₉ClN₃O: 302.1060 ([M+H])⁺, found 302.1056 ([M+H])⁺.

Preparation and HPLC analysis of enantioselective Friedel-Crafts alkylation products 3a-3g

Preparation of a 0.9 mM stock solution of [Py4-dmbpy-Cu²⁺]

To a solution of Py_4 -dmbpy (294.5 mg, 0.41 mmol) in methanol was added Cu(NO₃)₂·3H₂O (100.0 mg, 0.41 mmol), dissolved in methanol. The solution was stirred for 24 h. The bright green solid was filtered and washed with methanol. Yield: 213.43 mg, 59%.

General procedure B

To a 3 mM base pair solution of DNA in a 30 mM MOPS buffer (10 mL, prepared 24 h in advance) was added a 0.9 mM solution of **Py₄-dmbpy-Cu^{II}** or **dmbpy-Cu^{II}** in a 5 mL ultrapure water. The resulting DNA solution (2 mM base pair, 15 mL) was cooled to 5 °C. To the cold mixture was added a 0.75 M solution of enone in DMSO (20 μ L), followed by a 3.75 M solution of substituted indole in DMSO (20 μ L). The reaction was stirred at 5 °C. After 10 h, the mixture was warmed to r.t. and extracted with Et₂O (3×15 mL). The combined organic layers were dried over Na₂SO₄, filtered through a plug of silica gel and concentrated under reduced pressure, to give the crude product which was subjected to HPLC analysis without further purification.

HPLC figure caption

- (a) standard sample of start materials 1.
- (b) racemic products 3 catalyzed by Cu(NO₃)₂, were purified as standards.
- (c) Friedel-Crafts reaction catalyzed by st-DNA/Py₄-dmbpy-Cu^{II}.

Calculation formula of the conversion

Conversions of **1** were calculated using the following formula^[1,2]:

Conv. (%) =
$$\frac{A(3)}{A(3) + A(1) \times f} \times 100\%$$

Where A(3) is the total peak area of the products of the reaction, A(1) is the peak area of the starting material (α , β -unsaturated substrates) and f is the correction factor determined from a calibration curve, and the results are shown in Table S1.

Entry	Starting materials	Products	f	R^2
1	1a	3a	0.1735	0.9907
2	1b	3b	0.3849	0.9945
3	1c	3c	1.4153	0.9521
4	1d	3d	0.8735	0.9807
5	1d	3e	0.3180	0.9946
6	1d	3f	0.6593	0.9895
7	1d	3g	0.5201	0.9937

Table S1. The correction factor *f* of products 3a-g.

Take the correction factor f of 3a as an example:

The HPLC ratios of peak areas A(3)/A(1) were determined with the standard molar ratios (n_3/n_1) of 1, 10, 20, 30, 40, 50. The correction factor (f = 0.1735) was estimated from the fitting curve ($R^2 = 0.9907$). The HPLC chromatograms of the various molar ratios (n_3/n_1) are shown below.

10:1 mixture of products 3a and substrate 1a

Ŀ	ndex	Name	Time (min)	Area (%)
	1	3a	28.946	31.742
	2	1a	33.426	36.911
	3	3a	37.509	31.346
1	[otal			100

Index	Name	Time (min)	Area (%)
1	3a	28.817	37.622
2	1a	33.468	24.766
3	3a	37.302	37.612
Total			100

Index	Name	Time (min)	Area (%)
1	3a	28.750	41.304
2	1a	33.571	17.340
3	3a	37.200	41.357
Total			100

 $40{:}1\ mixture \ of products \ \mathbf{3a}$ and substrate $\mathbf{1a}$

Index	Name	Time (min)	Area (%)
1	3a	28.812	43.320
2	1a	33.752	13.270
3	3a	37.286	43.410
Total			100

50:1 mixture of products 3a and substrate 1a

Index	Name	Time (min)	Area (%)
1	3a	28.635	44.891
2	1a	33.602	10.118
3	3a	37.014	44.991
Total			100

1-(1-methyl-1*H*-imidazol-2-yl)-3-(1-methyl-1*H*-indol-3-yl)-3-phenylpropan-1-one (3a)

Following the general procedure B: st-DNA (2 mM base pair), **1a** (1 mM), **2a** (5 mM), **Py₄-dmbpy-Cu^{II}** (0.3 mM) and MOPS buffer (20 mM, pH 6.5); HPLC analysis of the crude residue indicated an enantiomeric excess of (+)17%. Daicel Chiralcel OD-H column; hexane/iPrOH 85:15, flow: 0.5 mL/min.; $\lambda = 254$ nm]. Retention times: major enantiomer $t_R = 27.963$ min; minor enantiomer $t_R = 35.901$ min.

3-(5-methoxy-1H-indol-3-yl)-3-(4-methoxyphenyl)-1-(1-methyl-1H-imidazol-2-yl) propan-1-one (3b)

Following the general procedure B: st-DNA (2 mM base pair), **1b** (1 mM), **2b** (5 mM), **Py₄-dmbpy-Cu^{II}** (0.3 mM) and MOPS buffer (20 mM, pH 6.5); HPLC analysis of the crude residue indicated an enantiomeric excess of (-)8.0%. Daicel Chiralcel OD-H column; hexane/iPrOH 80:20, flow: 0.5 mL/min.; $\lambda = 254$ nm. Retention times: major enantiomer $t_{\rm R} = 45.581$ min; minor enantiomer $t_{\rm R} = 41.917$ min.

3-(2-Bromophenyl)-1-(1-methyl-1H-imidazol-2-yl)-3-(1-methyl-1H-indol-3-yl) propan-1-one (3c)

Following the general procedure B: st-DNA (2 mM base pair), **1c** (1 mM), **2a** (5 mM), **Py₄-dmbpy-Cu^{II}** (0.3 mM) and MOPS buffer (20 mM, pH 6.5); HPLC analysis of the crude residue indicated an enantiomeric excess of (-)32%. Daicel Chiralcel AD-H column; hexane/iPrOH 90:10, flow: 1.0 mL/min.; $\lambda = 254$ nm. Retention times: major enantiomer $t_{\rm R} = 21.938$ min; minor enantiomer $t_{\rm R} = 16.937$ min.

3-(5-Methoxy-1H-indol-3-yl)-1-(1-methyl-1H-imidazol-2-yl) butan-1-one (3d)

Following the general procedure B: st-DNA (2 mM base pair), 1d (1 mM), 2b (5 mM), Py₄-dmbpy-Cu^{II} (0.3 mM) and MOPS buffer (20 mM, pH 6.5); HPLC analysis of the crude residue indicated an enantiomeric excess of (-)15.0%. Daicel Chiralcel OD-H column; hexane/iPrOH 90:10, flow: 1.0 mL/min.; $\lambda = 254$ nm. Retention times: major enantiomer $t_R = 41.177$ min; minor enantiomer $t_R = 34.240$ min.

1	8.355	1d	792.6		
2	34.240	3d	358.0	-15	55
3	41.177	3d	480.4		

<u>3-(1*H*-indol-3-yl)-1-(1-methyl-1*H*-imidazol-2-yl)butan-1-one (3e)</u>

Following the general procedure B: st-DNA (2 mM base pair), **1d** (1 mM), **2c** (5 mM), **Py4-dmbpy-Cu**^{II} (0.3 mM) and MOPS buffer (20 mM, pH 6.5); HPLC analysis of the crude residue indicated an enantiomeric excess of (-)17%. Daicel Chiralcel OD-H column; hexane/iPrOH 80:20, flow: 0.5 mL/min.; $\lambda = 254$ nm. Retention times: major enantiomer $t_R = 27.409$ min; minor enantiomer $t_R = 24.884$ min.

1-(1-methyl-1H-imidazol-2-yl)-3-(1-methyl-1H-indol-3-yl) butan-1-one (3f)

Following the general procedure B: st-DNA (2 mM base pair), 1d (1 mM), 2a (5 mM), Py₄-dmbpy-Cu^{II} (0.3 mM) and MOPS buffer (20 mM, pH 6.5); HPLC analysis of the crude residue indicated an enantiomeric excess of (-)21%. Daicel Chiralcel OD-H column; hexane/iPrOH 80:20, flow: 0.5 mL/min.; $\lambda = 254$ nm. Retention times: major enantiomer $t_R = 23.709$ min; minor enantiomer $t_R = 21.838$ min.

1 12.755 1d 1482.2 2 21.838 3f 816.7 -21.4 6	Index	Retention time(min)	Compound	Area	ee (%)	Conversion(%)
2 21.838 3f 816.7 -21.4 6	1	12.755	1d	1482.2		
	2	21.838	3 f	816.7	-21.4	68
3 23.709 3f 1262.4	3	23.709	3 f	1262.4		

3-(5-chloro-1H-indol-3-yl)-1-(1-methyl-1H-imidazol-2-yl)butan-1-one (3g)

Following the general procedure B: st-DNA (2 mM base pair), **1d** (1 mM), **2d** (5 mM), **Py₄-dmbpy-Cu^{II}** (0.3 mM) and MOPS buffer (20 mM, pH 6.5); HPLC analysis of the crude residue indicated an enantiomeric excess of (-)32.0%. Daicel Chiralcel AD-H column; hexane/iPrOH 90:10, flow: 1.0 mL/min.; $\lambda = 254$ nm. Retention times: major enantiomer $t_R = 33.066$ min; minor enantiomer $t_R = 25.090$ min.

HPLC analysis of product 3d catalyzed by oligonucleotides/Py4-dmbpy-Cu^{II}

ODN: d(GACTGACTAGTCAGTC)₂

ODN: d(TCAGGGCCCTGA)₂

ODN: d(TCGGGGGCCCCGA)2

Index	Retention time (min)	Compound	Area	ee (%)	Conversion (%)
1	9.152	1d	4039.4		
2	34.101	3d	8275.5	48	76
3	41.567	3d	2913.3		

3d

2651.9

ODN: d(TCAGTGCACTGA)2

3

41.736

Index	Retention time (min)	Compound	Area	ee (%)	Conversion (%)
1	9.165	1d	4475.0	6	72
2	34.416	3d	4907.4	0	75

3	41.321	3d	5534.6	
---	--------	----	--------	--

ODN: d(GCATGATCATGC)2

Index	Retention time (min)	Compound	Area	ee (%)	Conversion (%)
1	9.170	1d	1188.9		
2	34.293	3d	4135.4	-13	90
3	41.216	3d	5310.9		

ODN: d(GCGCGCGCGCGC)2

Index	Retention time (min)	Compound	Area	ee (%)	Conversion (%)
1	9.101	1d	10359.1		
2	34.09	3d	6079.6	29.0	51
3	41.277	3d	3345.3		

ODN: d(ATATATATATAT)2

Index	Retention time (min)	Compound	Area	ee (%)	Conversion (%)
1	9.185	1d	1792.1		
2	34.316	3d	7781.2	-2.5	91
3	41.222	3d	7397.7		

Basis spectra of SVD analysis

Fig. S1 Basis spectra produced by SVD analysis of (a) Py_4 -dmbpy-Cu^{II}/GC-rich ODN d(TCGGGGCCCCGA)₂ and (B) Py_4 -dmbpy-Cu^{II}/AT-rich ODN d(ATATATATAT)₂ titrations that shown in Figure 2c-d. The most significant basis spectra, as judged by the magnitude of the singular values, correspond to spectral intensity.

UV-Vis titration spectra of Py₄-dmbpy-Cu^{II} with alternative oligonucleotides

Fig. S2 UV-Vis titration spectra of **Py₄-dmbpy-Cu^{II}** with (a) AT-rich d(ATATATATATATAT)₂ (r = 0.0.02 from black line to red line) and (b) GC-rich d(TCGGGGGCCCCGA)₂ (r = 0.0.015 from black line to red line) sequences in MOPS buffer (20mM, pH=6.5). t = 25 °C. The insert figure represents the least squares linear fit of the data. $r = ODN/Py_4$ -dmbpy-Cu^{II}).

References

- [1] N. S. Oltra, G. Roelfes, *Chem. Commun.* **2008**, 6039-6041.
- [2] J. J. Marek, R. P. Singh, A. Heuer, U. Hennecke, *Chem. Eur. J.* 2017, 23, 6004–6008.