Sophopterocarpan A, a novel pterocarpine derivative with a benzotetrahydrofuran-fused bicyclo [3.3.1] nonane from *Sophora flavescens*

Hui Zhu,[§] Ya-Nan Yang,[§] Kuo Xu, Jing Xie, Zi-Ming Feng, Jian-Shuang Jiang, and Pei-Cheng Zhang*

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

Supporting information

No	Content	Page
1	Experimental Section.	S1
2	Table S1. NMR Assignments for 1 in CD ₃ OD.	S2
3	Figure S1. Compound 1 inhibited MCF-7 cells growth.	S4
4	Table S2. Energies of the conformers with Boltzmann distribution over 1%.	S7
5	Figure S2. ¹ H NMR spectrum of compound 1 (500 MHz, CD ₃ OD).	S 8
6	Figure S3. The expansion for the ¹ H NMR spectrum of compound 1 (δ : 3.50–4.30).	S 8
7	Figure S4. The expansion for the ¹ H NMR spectrum of compound 1 (δ : 4.80–5.45).	S9
8	Figure S5. The expansion for the ¹ H NMR spectrum of compound 1 (δ : 6.18–6.82).	S9
9	Figure S6. The expansion for the ¹ H NMR spectrum of compound 1 (δ : 3.01–3.18).	S10
10	Figure S7. ¹³ C NMR spectrum of compound 1 (125 MHz, CD ₃ OD).	S10
11	Figure S8. HSQC spectrum of compound 1.	S11
12	Figure S9. HMBC spectrum of compound 1.	S11
13	Figure S0. ¹ H- ¹ H COSY spectrum of compound 1 .	S12
14	Figure S11. ROESY spectrum of compound 1.	S12
15	Figure S12. HRESIMS spectrum of compound 1.	S13
16	Figure S13. IR spectrum of compound 1.	S13
17	Figure S14. UV spectrum of compound 1.	S14
18	Figure S15. ECD spectrum of compound 1 (in MeOH).	S14

The List of Contents

EXPERIMENTAL SECTION

General Experimental Procedures Optical rotation was measured by a JASCO P-2000 polarimeter (JASCO, Easton, MD, USA). UV spectrum was obtained on a JASCO V-650 spectrophotometer (JASCO). ECD spectra were measured on JASCO J-815 spectrometer (JASCO). IR spectrum was recorded on a Nicolet 5700 spectrometer with an FT-IR microscope transmission method (Thermo Scientific, Waltham, MA, USA). NMR spectra measurements were performed on Bruker 500 MHz spectrometer (Bruker-Biospin, Billerica, MA, USA) in CD₃OD. High-resolution electrospray ionization mass spectrometry (HRESIMS) was performed on an Agilent 6520 HPLC-Q-TOF (Agilent Technologies, Waldbronn, Germany). Column chromatography was performed with macroporous resin (Diaion HP-20, Mitsubishi Chemical Corp., Tokyo, Japan), Rp-18 (50 μm, YMC, Kyoto, Japan), and silica gel (100–200 mesh, Qingdao Marine Chemical Inc. Qingdao, People's Republic of China). Preparative HPLC was carried out on a Shimadzu LC-6AD instrument (Shimadzu Corp., Tokyo, Japan) with an SPD-20A detector (UV-detector), using a YMC-Pack ODS-A column (250 × 20 mm, 5 μm, Japan). HPLC-DAD analysis was performed using an Agilent 1260 series system (Agilent Technologies) with an Apollo C18 column (250 × 4.6 mm, 5 μm, Grace Davison).

Plant Material The roots of *S. flavescens* were purchased from Beijing PushengLin pharmaceutical company, grew in Hebei. The plant was authenticated by Professor Lin Ma, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. A voucher specimen (ID-5-2438) was deposited at the Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China.

Extraction and Isolation The dried roots of *S. flavescens* (39.0 kg) were extracted with 95% EtOH (200 L) under reflux ($2 \times 2h$). After filtration, the residual was extracted one more time with 70% EtOH for 2 h. Then, the extracts were merged and concentrated in vacuo, to obtain the crude extracts (8.4 kg), which were suspended in water and then liquid-liquid extracted, to get four extractions, including petroleum ether extraction, ethyl acetate (EtOAc) extraction, *n*-Butyl alcohol extraction and water extraction. The EtOAc extraction was separated into seven fractions (Fr. A–G) by silica gel column chromatography eluting with PE, PE/EtOAc (1:1), EtOAc, EtOAc/acetone (1:1), acetone, acetone/methanol (1:1), methanol. Among above seven fractions, Fr. C was further separated by silica gel column chromatography eluting with a CH₂Cl₂/MeOH (40:1-2:1) to afford 15 fractions (Fr. C-1–Fr. C-15). Furthermore, fraction Fr. C-5 (4.3 g) was chromatographed over a reverse-phase C₁₈ silica gel columns eluting with MeOH/H₂O (40-100%, with 10% stepwise increase of MeOH) to get seven subfractions. Subfraction 2 (185 mg) was purified by preparative HPLC using MeOH/H₂O (40:60, *v*/*v*) at 5 mL/min to yield **1** (35.2 mg, $t_R = 43.0$ min).

Sophopterocarpan A: white powder; [α]20 D 33.9 (*c* 0.10 MeOH); UV (MeOH) λ_{max} 287 (3.17) nm; IR (KBr) v_{max} : 3284, 2968, 1670, 1598, 1499, 1467, 1429, 1271, 1088, 925, 816, 663 cm⁻¹; (+)-HRESIMS *m*/*z* 305.1022 [M + H]⁺ (calcd for C₁₆H₁₇O₆, 305.1020).

Formononetin: ¹H NMR (500 MHz, DMSO-*d*₆) δ: 8.30 (1H, s, H-2), 7.92 (1H, d, *J* = 8.5, Hz, H-5), 6.90 (1H, dd, *J* = 2.0, 8.5 Hz, H-6), 6.80 (1H, d, *J* = 2.0 Hz, H-8), 7.50 (1H, d, *J* = 8.0 Hz, H-2', H-6'), 6.97 (1H, d, *J* = 8.0 Hz, H-3', H-5'), 3.77 (3H, s, 4'-OCH₃); ¹³C NMR (125 MHz, DMSO-*d*₆) δ: 153.0 (C-2), 124.3 (C-3), 174.6 (C-4), 127.7 (C-5), 115.5 (C-6), 158.9 (C-7), 102.1 (C-8), 157.5 (C-9), 116.1 (C-10), 123.1 (C-1'), 130.1 (C-2', 6'), 113.6 (C-3', 5'), 163.6 (C-4'), 55.2 (4'-OCH₃).

No.	$\delta_{ m H}$	$\delta_{ m C}$	$HMBC^{b}$	¹ H- ¹ H COSY ^c	$ROESY^d$
1		199.			
		4			
2	5.40, dd (1.0,	129.	1,4,5,8	3	
	10.0)	6			
3	6.66, d (10.0)	155.	1,5,8,9	2	
		2			
4		75.4			
5	5.17, d (9.0)	87.2	3,4,6,7,9,1',6'	6	6
6	4.02, dd (1.0, 9.0)	50.3	4,5,7,8,1',2',4',5',6'	5,7	5
7	4.20, br s	70.0	1,5,6,8,9,6'	8	5'
8	3.07, m	57.1	1,2,4,6,7,9	9	
9	4.08, d (4.0)	75.7	1,3,4,5,7,8	8	2,3
1′		161.			
		5			
2'	6.26, d (2.0)	97.6	1',3',4',6'		
3'		162.			
		4			
4′	6.27, dd (2.0, 8.5)	106.	6,2',6'	5'	
		8			
5'	6.74, dd (1.0, 8.5)	123.	6,1',2',3',4',6'	4'	7
		8			

Table S1	NMR Assignments	for	Sophopterocarpan	А	in CD ₃ OD ^a
			- r - r r r		- 5-

6'	122.	
	4	
3'-OCH ₃ 3.64, s	55.8	3

^{*a*1}H NMR (500 MHz) (δ in ppm, *J* in Hz), ¹³C NMR (125 MHz). ^{*b*}HMBC correlations are from the proton(s) to the indicated carbon(s). ^{*c*1}H-¹H COSY correlations are from the proton(s) to the indicated proton(s). ^{*d*}ROESY correlations are from the proton(s) to the indicated proton(s).

,

X-ray crystallography analysis. Colorless plate crystals of compound **1** were obtained from the system of MeOH-acetone (1:1). A crystal (0.380 mm × 0.200 mm × 0.090 mm) was separated and mounted on a glass fiber which data was collected by Rigaku MicroMax 002+ CCD detector equipped with a graphite monochromator and *CuKa* radiation. Crystal data as follows: C₁₆H₁₆O₈, M = 304.29, space group orthorhombic, P2₁; unit cell dimensions, a = 7.0259 (3) Å, b = 6.8005 (3) Å, and c = 14.1172 (6) Å; V = 673 (5) Å³, Z = 2, $\rho_{calcd} = 1.502$ mg/mm³, F (000) = 320. The 4433 measurements yielded 2228 independent reflections after equivalent data were averaged and Lorentz and polarization corrections were applied. Using the SHELXS-97 program the structure was solved by direct methods and expanded using difference Fourier techniques, and refined by the program SHELXL-97 and full-matrix least-squares calculations. The final refinement gave $R_1 = 0.0364$, $wR_2 = 0.0944$. The flack parameters was 0.0(2). The crystallographic data have been deposited at The Cambridge Crystallographic Data Centre (deposition number CCDC 1496284). The data is available free of charge via www.ccdc.cam.ac.uk/products/csd/ request.

In vitro cytotoxic activity. Sophopterocarpan A was screened for its antitumor activity against several human tumor cell lines including hepatoma (HepG2), breast cancer (MCF-7), and lung carcinoma (A549) cell lines using the standard MTT assay.¹ Each experiment was carried out in triplicates using curcumin as a positive control.

Autophagy Modulator Screening. Chinese hamster ovary (CHO) cells stably expressing green fluorescent protein-LC3 (GFP-LC3) was maintained in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum (FBS) and 800 μ g/mL geneticin. Stable GFP-LC3 cells were incubated with compound **1** or curcumin at a concentration of 20 μ M (DMSO) for 6 h. Cells were harvested with trypsin, washed with phosphate buffer saline (PBS) and then PBS containing 0.05% saponin and finally suspended in 1 ml of PBS. GFP-LC3 fluorescence was measured using a flow cytometer (Partec, Muenster, Germany) with more than 10,000 events, and the data was analyzed using flow cytometry software (FCS) Express 5. Each experiment was carried out in

S3

triplicates.

Figure S1. Compound 1 inhibited MCF-7 cells growth.

Determination of the absolute configuration of Sophopterocarpan A (1) by measurement of the electronic circular dichroism (ECD) spectrum and by comparison with calculated ECD data. Compound 1 has only one pair of enantiomers (1a: 4R, 5R, 6R, 7R, 8S, 9R and 1b: 4S, 5S, 6S, 7S, 8R, 9S). Conformational analysis of 1a was performed by using the MMFF94 molecular mechanics force field. The molecule of 1a showed two lowest energy conformers (Table S1). The conformers were further optimized at the B3LYP/6-311+G(d,p) level. ECD spectra of different conformers were simulated using a Gaussian function with a half-bandwidth of 0.4 eV. The overall theoretical ECD spectra were obtained according to the Boltzmann weighting of each conformers. The theoretically calculated ECD spectrum of 1a (Figure S2) were in good agreement with the experimental ECD spectrum of 1, which allowed the assignment of the absolute configuration of 1 as 4R, 5R, 6R, 7R, 8S, 9R.

Cartesian coordinate of low-energy optimized conformers of 1a-C1 optimized: no imaginary frequency Zero-point correction= 0.302763 (Hartree/Particle) 0.320825 Thermal correction to Energy= Thermal correction to Enthalpy= 0.321769 Thermal correction to Gibbs Free Energy= 0.257762 -1070.327673 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= -1070.309611 Sum of electronic and thermal Enthalpies= -1070.308666 Sum of electronic and thermal Free Energies= -1070.372673 Standard orientation: Center Atomic Coordinates (Angstroms) Atomic Number Number Type Х Y Ζ

¹ X. R. Lu, X. Pan, Y. Yang, M. Ji, X. G. Chen, Z. Y. Xiao, and Z. Z. Liu, *Eur. J. Med. Chem.*, 2017, **135**, 260–269.

1	6	0	0.795768	-0.590460	-0.871259
2	6	0	1.379466	0.652968	-0.638987
3	6	0	2.711168	0.823718	-0.279923
4	6	0	3.486416	-0.341710	-0.152394
5	6	0	2.923584	-1.609236	-0.381799
6	6	0	1.582079	-1.732591	-0.749856
7	6	0	-0.628296	-0.361074	-1.340371
8	6	0	-0.831900	1.128281	-0.936518
9	8	0	0.503194	1.699599	-0.808253
10	6	0	-1.733312	-1.356020	-0.891453
11	6	0	-2.432316	-0.969502	0.443728
12	6	0	-1.601805	1.374871	0.388812
13	6	0	-0.771706	1.064620	1.618496
14	6	0	-0.769555	-0.138610	2.213634
15	6	0	-1.538314	-1.264157	1.652590
16	8	0	-1.454163	-2.400108	2.104417
17	6	0	-2.863056	0.500896	0.429177
18	1	0	-0.643533	-0.417877	-2.436885
19	8	0	4.804727	-0.339242	0.198913
20	6	0	5.438129	0.912646	0.449546
21	1	0	-1.280820	-2.344534	-0.765111
22	1	0	-3.414826	0.746864	1.346422
23	8	0	-3.694579	0.735439	-0.708350
24	1	0	-1.342453	1.697082	-1.714831
25	1	0	-3.308540	-1.618582	0.534048
26	8	0	-2.709006	-1.519767	-1.916158
27	8	0	-2.059353	2.728644	0.434741
28	1	0	3.111113	1.814255	-0.104271
29	1	0	3.556137	-2.483930	-0.271542
30	1	0	1.166535	-2.719454	-0.935978
31	1	0	-0.172746	1.881032	2.013570
32	1	0	-0.173080	-0.343139	3.098130
33	1	0	6.472466	0.677354	0.704408
34	1	0	5.419092	1.555616	-0.438653
35	1	0	4.966863	1.438174	1.288943
36	1	0	-3.817772	1.698993	-0.772596
37	1	0	-3.231800	-0.695069	-1.919426
38	1	0	-1.311303	3.308863	0.210752

Cartesian coordinate of low-energy optimized conformers of **1a-C2** optimized: no imaginary frequency

Zero-point correction=0.302767 (Hartree/Particle)Thermal correction to Energy=0.320823

Thermal correction to Enthalpy=	0.321767
Thermal correction to Gibbs Free Energy=	0.257819
Sum of electronic and zero-point Energies=	-1070.327770
Sum of electronic and thermal Energies=	-1070.309714
Sum of electronic and thermal Enthalpies=	-1070.308770
Sum of electronic and thermal Free Energies=	-1070.372717

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.840623	-0.267471	-0.897329	
2	6	0	1.254934	1.018661	-0.534201	
3	6	0	2.547788	1.314472	-0.143877	
4	6	0	3.474455	0.253173	-0.116610	
5	6	0	3.088441	-1.046510	-0.473299	
6	6	0	1.765937	-1.298775	-0.874184	
7	6	0	-0.600368	-0.180399	-1.362761	
8	6	0	-1.001398	1.219845	-0.814751	
9	8	0	0.244780	1.948483	-0.614454	
10	6	0	-1.563486	-1.353813	-1.034792	
11	6	0	-2.311458	-1.202036	0.321334	
12	6	0	-1.796304	1.224059	0.518640	
13	6	0	-0.931077	0.898815	1.719792	
14	6	0	-0.771632	-0.348746	2.188918	
15	6	0	-1.389073	-1.500878	1.507853	
16	8	0	-1.160838	-2.656424	1.845887	
17	6	0	-2.931347	0.193012	0.450970	
18	1	0	-0.604013	-0.125241	-2.459326	
19	8	0	4.732926	0.599709	0.281645	
20	6	0	5.726140	-0.420512	0.350041	
21	1	0	-0.983666	-2.281422	-1.001269	
22	1	0	-3.511655	0.268484	1.380472	
23	8	0	-3.785828	0.432248	-0.668505	
24	1	0	-1.584898	1.790587	-1.538455	
25	1	0	-3.094706	-1.965863	0.330422	
26	8	0	-2.505905	-1.540784	-2.086289	
27	8	0	-2.428657	2.493665	0.698080	
28	1	0	2.852983	2.315557	0.139999	
29	1	0	3.799325	-1.862959	-0.450440	
30	1	0	1.484801	-2.308421	-1.162212	
31	1	0	-0.442355	1.740940	2.202889	
32	1	0	-0.152311	-0.563558	3.055077	
33	1	0	5.903213	-0.873130	-0.632981	

Standard orientation:

34	1	0	6.636960	0.073870	0.690950	
35	1	0	5.446234	-1.203325	1.065187	
36	1	0	-4.034818	1.372867	-0.636102	
37	1	0	-3.135863	-0.798382	-2.014670	
38	1	0	-1.764111	3.187441	0.545074	

Table S2. Conformational Analysis of 1a.

No.	Conformer	Population
la-Cl		0.52
la-C2		0.48

$\begin{array}{c} 6.743\\ 6.725\\ 6.728\\ 6.728\\ 6.229\\ 6.269\\ 6.$

Figure S3. The expansion for the ¹H NMR spectrum of compound 1 (δ : 3.50–4.30).

Figure S5. The expansion for the ¹H NMR spectrum of compound 1 (δ : 6.18–6.82).

Figure S6. The expansion for the ¹H NMR spectrum of compound 1 (δ : 3.01–3.18).

S10

Figure S9. HMBC spectrum of compound 1.

Figure S11. ROESY spectrum of compound 1.

Figure S12. HRESIMS spectrum of compound 1.

Figure S13. IR spectrum of compound 1.

Figure S14. UV spectrum of compound 1.

Figure S15. ECD spectrum of compound 1 (in MeOH).