Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

The Effect of Comb Architecture on Complex Coacervation

Brandon M. Johnston, ¹ Cameron W. Johnston, ¹ Rachel A. Letteri, ² Tyler K. Lytle, ³ Charles E. Sing, ⁴ Todd Emrick, ² Sarah L. Perry ^{1*}

¹Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA

²Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA

³Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 ⁴Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

*Correspondence Email: perrys@engin.umass.edu

Table S1. Polymerization data, and monomer:catalyst ratios used to synthesize LK5SB-X (X = mol% SB)

Polymer	Target mol% SB	[M]:[I]	[M] (M)	Conversion (%)	Incorporated mol% SB	M _{n,theo} ^a (g/mol)	M _n b (g/mol)	Ðь	Yield ^c (%)
LK5	0	50	0.07	62	0	31000	33400	1.30	60
<i>L</i> K5SB-26	20	62.5	0.09	73	26	38600	42900	1.35	48
LK5SB-44	40	83.3	0.12	77	44	50500	44500	1.45	47
<i>L</i> K5SB-65	60	125	0.5	88	65	68500	43900	1.52	24
<i>L</i> K5SB-88	80	250	0.5	N/A	88	126500	126000	1.77	22

 $[\]overline{^{a}M_{n,theo}}$ = ([monomer]:[initiator])*conversion*(molecular weight per repeat unit), assuming 100% conversion for LKSB-88

^bEstimated relative to PMMA standards by SEC eluting in TFE with 0.02 M sodium trifluoroacetate

^cYield = (conversion)(mixture of monomer and polymer used in deprotection, g)(average MW per repeat unit deprotected polymers, g/mol)/(average MW per repeat unit Boc-protected polymers, g/mol)

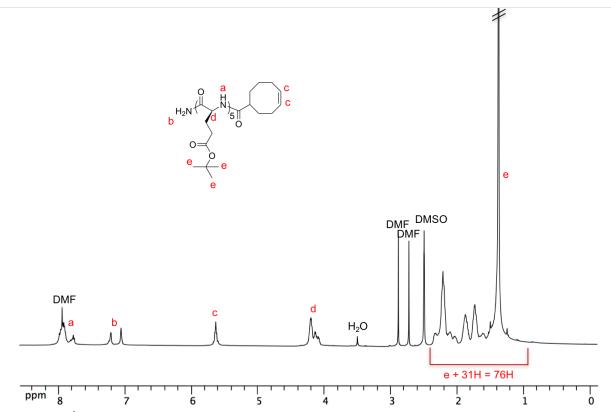


Figure S1. ¹H NMR spectrum (500 MHz) of *L*E5-COE in DMSO-d6

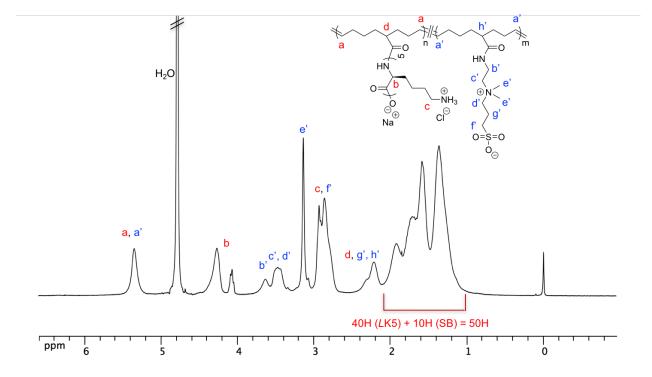


Figure S2. ¹H NMR spectrum (300 MHz) of *L*K5SB-44 in D₂O

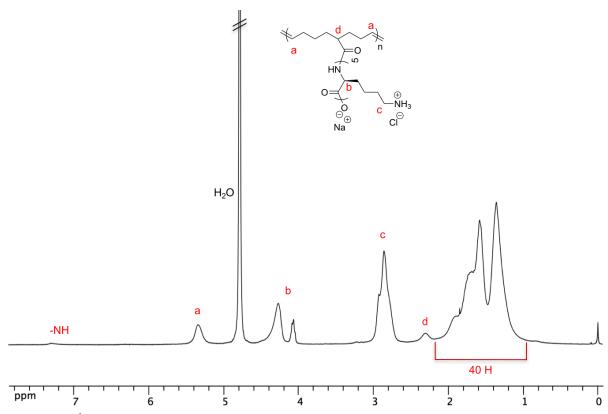


Figure S3. ¹H NMR spectrum (300 MHz) of *L*K5 in D₂O

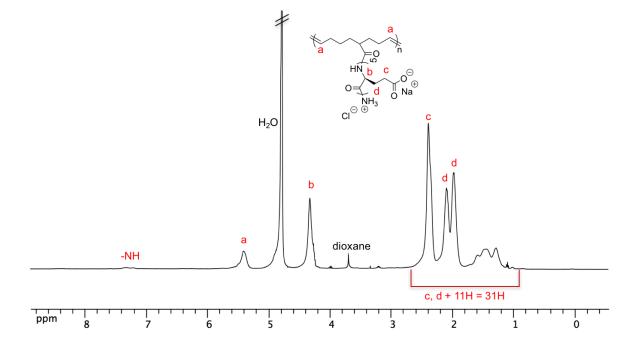
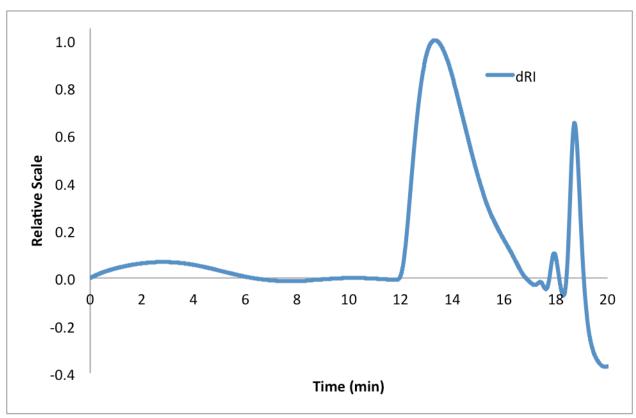




Figure S4. ¹H NMR spectrum (500 MHz) of *L*E5 in D₂O

Figure S5. SEC-MALS trace of **LE5** in aqueous solution with 5% ammonium phosphate and 3% acetonitrile

Figure S6. Plot of turbidity as a function of the mole fraction of cationic monomer comparing orders of addition during complex formation (polycation into polyanion or polyanion into polycation)