Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Low pH-triggering Changes in Peptide Secondary Structures

Kaori Furukawa,^a Makoto Oba,^{*a} Kotomi Toyama,^a George Ouma Opiyo,^a Yosuke Demizu,^b Masaaki Kurihara,^c Mitsunobu Doi,^d Masakazu Tanaka^{*a}

^a Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan

E-mail: moba@nagasaki-u.ac.jp

E-mail: matanaka@nagasaki-u.ac.jp

^b National Institute of Health Sciences, Setagaya, Tokyo 158-8501, Japan

^c Department of Pharmaceutical Sciences, International University of Heath and Welfare, Ohtawara,

Tochigi 324-8501, Japan

^d Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan

Table of contents

General	S3
Abbreviations	S3
Synthesis of amino acids and peptides	S4
Figure S1	S11
Figure S2	S12
Figure S3	S13
Figure S4	S14
Table S1	S15
Table S2	S16
Table S3	S18
Figure S5	S19
NMR spectra	S19

General.

Optical rotations [α]^{rt}_D were measured with a Jasco DIP-370 polarimeter using a 0.5 dm cell. Infrared spectra (IR) were recorded on a Shimadzu IR Affinity-1 spectrometer for conventional measurement (KBr or neat), or using the solution (CDCl₃) method with a 0.1 mm path-length of NaCl cell. ¹H NMR and ¹³C NMR spectra were determined at JEOL AL 400 and Varian NMR System 500PS SN type spectrometers. FAB-MS spectra, DART-MS spectra, and MALDI-TOF-MS spectra were recorded with JEOL JMS-700N, JEOL JMS-T1000TD, and Bruker Ultrax spectrometers, respectively. X-ray crystallographic analyses were measured with Rigaku Varimax Saturn/1200S instrument.

Abbreviations.

Ac: acetyl; Cbz: benzyloxycarbonyl; dAA: α,α -disubstituted α -amino acid; *c*-Hex: cyclohexyl; CD: circular dichroism; dr: diastereomeric ratio; DIPEA: diisopropylamine; FTIR: Fourier transform infrared; HATU: *O*-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; HBTU: 1-[bis(dimethylamino)methylene]-1*H*-benzotriazolium 3-oxide hexafluorophosphate; HMDS: 1,1,1,3,3,3-hexamethyldisilazane; Hms: α -hydroxymethylserine; HOAt: 1-hydroxy-7-azabenzotriazole; HOBt: 1-hydroxybenzotriazole; Ipr: isopropyl; Leu: leucine; MALDI-TOF-MS: matrix-assisted laser desorption-ionization time-of-flight mass spectrometry; MCMM: Monte Carlo multiple minimum; Men: menthone; NOESY: nuclear Overhauser effect correlated spectroscopy; TFA: trifluoroacetic acid; TFE: 2,2,2-trifluoroethanol ; TMSOTf: trimethylsilyl trifluoromethanesulfonate

Synthesis of amino acids and peptides.

N-α-(Benzyloxcarbonyl)-*O*,*O*-cyclohexylidine-α-hydroxymethylserine Methyl Ester [Cbz-Hms(*c*-Hex)-OMe, 1b]. 1,1,1,3,3,3-Hexamethyldisilazane (HMDS; 1.2 mL, 18 mmol) and trimethylsilyl trifluoromethanesulfonate (TMSOTf; 101 µL, 1.8 mmol) were added to a stirred solution of **2** (0.80 g, 9.1 mmol) in THF (30 mL). The reaction mixture was stirred at 0 °C for 90 min. The mixture was then diluted with Et₂O, washed with ice-cold water, and dried with MgSO4. The solvent was removed to give crude **TMS-2** (1.2 g, 96 %), which was used in the next reaction without further purification.

TMSOTF (1.7 µL, 9.2 µmol) was added to a stirred solution of **TMS-2** (98 mg, 0.23 mmol) and cyclohexanone (28 µL, 0.25 mmol) in CH₂Cl₂ (5 mL) at -78 °C, and the mixture was stirred at -78 °C for 18 h. NaOH (2 % in MeOH; 3 mL) was then added, and the mixture was stirred at room temperature for 2 h. The mixture was diluted with ice-cold water, and extracted with Et₂O. The combined organic extracts were washed with H₂O and dried with MgSO₄. The solvent was removed, and the residue was purified by column chromatography (70 % EtOAc in hexane) to give Cbz-Hms(*c*-Hex)-OMe (**1b**) (43 mg, 52%) as colorless crystals. M.p. 85–86 °C; IR (KBr) 3314, 3203, 3156, 3136, 2928, 2886, 2847, 2704, 2430, 2372, 2345, 2207, 1994, 1925, 1898, 1528, 1450, 1377, 1342, 1234, 1196, 1169, 1119, 1072, 1030 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.37 (m, 5H), 5.76 (br s, 1H), 5.10 (s, 2H), 4.24 (d, *J* = 12 Hz, 2H), 3.93 (d, *J* = 12 Hz, 2H), 3.74 (s, 3H), 1.85–1.92 (m, 2H), 1.41–1.65 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 155.1, 136.0, 128.5, 128.2, 128.1, 98.9, 67.0, 63.0, 56.6, 52.6, 52.5, 37.4, 26.8, 25.4, 22.4, 22.3; HRMS (DART⁺) calcd for C₁₉H₂₆NO₆ [M + H]⁺ 364.1760, found 364.1757.

Cbz-Hms(Ipr)-(L-Leu)₂-OMe (4a). The amine H-(L-Leu)₂-OMe (65 mg, 0.10 mmol) was added to a stirred solution of carboxylic acid **5a** (51 mg, 0.16 mmol), HATU (49 mg, 0.13 mmol), HOAt

(18 mg, 0.13 mmol), and DIEA (52 µL, 0.31 mmol) in CH₂Cl₂ (20 mL). The mixture was stirred at room temperature for 48 h, then the solvent was evaporated. EtOAc was added, and the mixture was washed with saturated NaHCO₃ aqueous solution and brine, and dried with MgSO₄. Removal of the solvent gave a white solid, which was purified by column chromatography on silica gel (80% EtOAc in hexane) to geive tripeptide **4a** (80 mg, 86%) as colorless crystals. M.p 102–104 \degree C; $[\alpha]^{22}{}_{D} = -18.8$ (c 0.86 CHCl₃); IR (KBr) 3336, 3283, 3136, 3067, 3032, 2955, 2870, 2762, 2723, 2646, 2627, 2372, 2345, 2276, 2218, 1628, 1609, 1524, 1373, 1315, 1265, 1242, 1204, 1172, 1150, 1096, 1045, 1030, 976, 937, 833, 806, 741 cm⁻¹.; ¹H NMR (400 MHz, CDCl₃) 7.50 (d, *J* = 4 Hz, 1H), 7.32–7.38 (m, 5H), 6.86 (d, *J* = 4 Hz, 1H), 6.01 (br s, 1H), 5.09 (s, 2H), 4.58–4.63 (m, 2H), 4.49–4.52 (m, 2H), 3.95–3.99 (m, 2H), 3.70 (s, 3H), 1.63 (s, 3H), 1.53–1.82 (m, 6H), 1.49 (s, 3H), 0.91–0.96 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) 173.1, 171.5, 170.8, 155.1, 135.9, 128.6, 128.3, 127.9, 99.1, 66.9, 62.5, 62.2, 60.4, 53.9, 52.2, 50.6, 41.3, 40.1, 31.5, 24.9, 23.0, 22.6, 21.8, 21.6, 21.4, 21.0; HRMS (FAB⁺) calcd for C₂₈H₄₃N₃O₈ [M + H]⁺ 572.2948, found 572.2962.

Cbz-Hms(*c*-Hex)-(L-Leu)₂-OMe (4b). Tripeptide 4b was prepared from 3b and H-(L-Leu)₂-OMe in a manner similar to that described for the preparation of tripeptide 4a. Yield 94%. Colorless oil. $[\alpha]^{21}_{D} = -6.87$ (c 1.3 CHCl₃); IR (CDCl₃): 3367, 2956, 1734, 1683, 1558, 1314, 1155, 1099 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.1 Hz, 1H), 7.33–7.39 (m, 5H), 6.93 (d, *J* = 8.1 Hz, 1H), 6.08 (s, 1H), 5.09 (s, 2H), 4.57–4.66 (m, 2H), 4.48–4.53 (m, 2H), 3.91–3.95 (m, 2H), 3.71 (s, 3H), 1.44–1.81 (m, 16H), 0.91–0.96 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 171.4, 170.8, 154.9, 135.7, 128.3, 128.0, 127.6, 99.0, 66.6, 61.4, 61.2, 60.1, 53.9, 52.0, 50.3, 41.0, 40.5, 34.8, 29.6, 25.2, 24.7, 24.6, 22.8, 22.6, 22.3, 22.1, 21.6, 21.5; HRMS (FAB⁺) calcd for C₃₁H₄₇N₃O₈Na [M + Na]⁺ 612.3261, found 612.3216. Cbz-(L-Leu)₂-Hms(Ipr)-(L-Leu)₂-OMe (5a). A mixture of Cbz-Hms(Ipr)-(L-Leu)₂-OMe 4a (2.4 g, 4.4 mmol) and Pd/C (5%; 1.3 g) in MeOH (30 mL) was vigorously stirred for 3 h, the Pd/C catalyst was removed by filtration, and the filtrate was evaporated in vacuo to give crude 4a-amine (1.7 g, 96%). The crude 4a-amine (0.90 g, 2.2 mmol) was added to a stirred solution of carboxylic acid Cbz-(L-Leu)₂-OH (1.1 g, 3.0 mmol), HBTU (1.2 g, 3.3 mmol), HOBt (0.51 g, 3.8 mmol), and DIEA (1.1 mL, 6.6 mmol) in CH₂Cl₂ (30 mL). The mixture was stirred at room temperature for 48 h, then the solvent was evaporated. EtOAc was added, and the mixture was washed with saturated NaHCO₃ aqueous solution, and brine, and dried with MgSO₄. Removal of the solvent gave a white solid, which was purified by column chromatography on silica gel (50% EtOAc in hexane) to give pentapeptide **5a** (1.2 g, 74%) as colorless crystals. M.p. 100–102 °C; $[\alpha]^{22}_{D} = -226$ (c 1.05 CHCl₃); IR (KBr) 3329, 3036, 2959, 2870, 2766, 2723, 2646, 2608, 2573, 2372, 2345, 2276, 2203, 1994, 1636, 1524, 1439, 1373, 1265, 1227, 1204, 1169, 1123, 1096, 1042, 983, 937, 833, 756, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 6.9 Hz, 1H), 7.50 (d, J = 6.9 Hz, 1H), 7.27–7.40 (m, 6H), 7.20 (br s, 1H), 6.23 (br s, 1H), 5.11–5.22 (m, 2H), 4.39–4.49 (m, 2H), 4.29–4.37 (m, 2H), 4.09-4.21 (m, 2H), 3.94-4.04 (m, 2H), 3.63 (s, 3H), 1.55-1.86 (m, 12H), 1.50 (s, 3H), 1.37 (s, 3H), 0.79–1.00 (m, 24H); ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 174.3, 173.4, 173.1, 171.4, 157.2, 135.9, 128.5, 128.3, 128.2, 98.9, 67.5, 64.1, 62.3, 55.2, 54.1, 53.1, 52.4, 51.1, 40.2, 40.0, 39.7, 39.5, 24.9, 24.81, 24.75, 24.7, 23.2, 23.0, 22.9, 22.8, 21.8, 21.7, 21.6, 21.3, 21.0; HRMS (FAB⁺) calcd for $C_{40}H_{66}N_5O_{10}[M + H]^+$ 776.4804, found 776.4814.

Cbz-(L-Leu)₂-Hms(*c*-Hex)-(L-Leu)₂-OMe (5b). Pentapeptide 5b was prepared from tripeptide 4b and Cbz-(L-Leu)₂-OH in a manner similar to that described for the preparation of pentapeptide 5a. Yield 53%. Colorless crystals. M.p 150–152 °C; $[\alpha]^{21}_{D} = -55.4$ (c 0.42, CHCl₃); IR (CDCl₃): 3429, 3348, 2959, 1734, 1681, 1506, 1253, 1217 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ

7.34–7.39 (m, 6H), 7.22 (d, J = 8.3 Hz, 1H), 7.13 (br s, 1H), 6.68 (d, J = 5.8 Hz, 1H), 5.29 (d, J = 5.8 Hz, 1H), 5.15 (s, 2H), 4.52–4.54 (m, 1H), 4.39–4.43 (m, 2H), 4.07–4.27 (m, 5H), 3.68 (s, 3H), 1.40–1.93 (m, 22H), 0.87–0.96 (m, 24H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 172.5, 171.1, 170.1, 156.8, 135.8, 128.6, 128.5, 128.3, 98.8, 67.6, 63.1, 61.2, 56.9, 54.6, 53.8, 52.4, 52.1, 50.9, 40.4, 40.3, 40.2, 40.0, 29.8, 25.5, 25.0, 24.8, 24.73, 24.65, 23.3, 22.99, 22.93, 22.88, 22.81, 22.4, 21.9, 21.8, 21.7, 21.6, 21.2; HRMS (FAB⁺) calcd for C₄₃H₆₉N₅O₁₀Na [M⁺+Na] 838.4942, found 838.4948.

Cbz-Hms(Ipr)-(L-Leu)2-Hms(Ipr)-(L-Leu)2-OMe (6a). Α mixture of Cbz-(L-Leu)₂-Hms(Ipr)-(L-Leu)₂-OMe 5a (275 mg, 0.35 mmol) and Pd/C (10%; 132 mg) in MeOH (15 mL) was vigorously stirred for 2 h, the Pd/C catalyst was removed by filtration, and the filtrate was evaporated in vacuo to give crude 5a-amine (215 mg, 97%). The crude 5a-amine (65 mg, 0.10 mmol) was added to a stirred solution of carboxylic acid 3a (51 mg, 0.16 mmol), HATU (49 mg, 0.13 mmol), HOAt (18 mg, 0.13 mmol), and DIEA (52 µL, 0.31 mmol) in CH₂Cl₂ (20 mL). The mixture was stirred at room temperature for 48 h, then the solvent was evaporated. EtOAc was added, and the mixture was washed with saturated NaHCO₃ aqueous solution, and brine, and dried with MgSO₄. Removal of the solvent gave a white solid, which was purified by column chromatography on silica gel (80% EtOAc in hexane) to give hexapeptide 6a (80 mg, 86%) as colorless crystals. M.p. 102–104 °C; $[\alpha]^{22}_{D} = +9.79$ (c 1.32, CHCl₃); IR (KBr) 3336, 3283, 3136, 3067, 3032, 2955, 2870, 2762, 2723, 2646, 2627, 2372, 2345, 2276, 2218, 1628, 1609, 1524, 1373, 1315, 1265, 1242, 1204, 1172, 1150, 1096, 1045, 1030, 976, 937, 833, 806, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.34–7.41 (m, 7H), 7.21 (d, *J* = 7.0 Hz, 1H), 7.06 (s, 1H), 7.05 (brs, 1H), 6.00 (s, 1H), 5.10–5.21 (m, 2H), 4.48–4.52 (m, 2H), 4.34–4.40 (m, 2H), 4.00–4.28 (m, 6H), 3.93–3.98 (m, 1H), 3.86–3.91 (m, 1H), 3.68 (s, 3H), 1.59–1.88 (m, 12H), 1.51 (s, 6H), 1.47 (s, 3H), 1.32 (s, 3H),

0.86–0.98 (m, 24H); ¹³C NMR (100 MHz, CDCl₃): 174.11, 174.08, 174.0, 173.0, 171.4, 156.7, 135.4, 128.7, 128.5, 127.8, 99.3, 98.4, 67.6, 64.9, 64.7, 62.2, 61.6, 57.6, 52.9, 52.3, 51.1, 39.8, 39.3, 25.04, 25.01, 24.8, 24.6, 23.3, 23.1, 22.9, 22.7, 21.6, 21.4, 21.2, 21.0; HRMS (FAB⁺) calcd for $C_{47}H_{77}N_6O_{13}$ [M + H]⁺ 933.5543, found 933.5544.

Cbz-Hms(*c*-Hex)-(t-Leu)₂-Hms(*c*-Hex)-(t-Leu)₂-OMe (6b). Hexapeptide 6b was prepared from pentapeptide 5b and carboxylic acid 3b in a manner similar to that described for the preparation of hexapeptide 6a. Yield 40%. Colorless crystals. M.p 217–218 °C; $[\alpha]^{22}_{D} = -20.0$ (c 0.52, CHCl₃); IR (CDCl₃) 3336, 2958, 1749, 1670, 1521, 1256 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (brs, 1H), 7.33–7.41 (m, 6H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.19 (brs, 1H), 7.07 (s, 1H), 6.11 (s, 1H), 5.08–5.20 (m, 2H), 4.47–4.52 (m, 3H), 4.36–4.39 (m, 2H), 4.24–4.27 (m, 1H), 4.03–4.19 (m, 4H), 3.89–3.96 (m, 2H), 3.66 (s, 3H), 1.38–2.08 (m, 32H), 0.85–0.98 (m, 24H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 173.4, 173.1, 172.9, 156.4, 135.4, 128.6, 128.5, 127.6, 99.5, 98.2, 67.5, 64.2, 64.0, 61.4, 60.7, 58.2, 56.5, 54.9, 54.4, 52.3, 51.9, 51.0, 40.1, 40.0, 39.7, 39.4, 37.3, 27.6, 25.5, 25.3, 25.1, 25.0, 24.9, 24.5, 23.4, 23.1, 22.9, 22.7, 22.4, 22.33, 22.31, 21.6, 21.5, 21.2, 20.9; HRMS (FAB⁺) calcd for C₅₃H₈₄N₆O₁₃Na [M + Na]⁺ 1035.5994, found 1013.6174.

$Cbz-(L-Leu)_2-Hms(Ipr)-(L-Leu)_2-OMe$ (7).

Cbz-Hms(Ipr)-(L-Leu)₂-Hms(Ipr)-(L-Leu)₂-OMe **6a** (80 mg, 90 μ mol) and Pd/C (10%; 26 mg) in MeOH (5 mL) was vigorously stirred for 5 h, the Pd/C catalyst was removed by filtration, and the filtrate was evaporated in vacuo to give crude **6a**-amine (64 mg, 93%). The crude **6a**-amine (162 mg, 0.20 mmol) was added to a stirred solution of Cbz-(L-Leu)₂-OH (231 mg, 0.61 mmol), HATU (232 mg, 0.61 mmol), HOAt (83 mg, 0.61 mmol), and DIEA (106 μ L, 0.61 mmol) in CH₂Cl₂ (15 mL). The mixture was stirred at room temperature for 18 h, then the solvent was evaporated.

EtOAc was added, and the mixture was washed with saturated NaHCO₃ aqueous solution, and brine, and dried with MgSO₄. Removal of the solvent gave a white solid, which was purified by column chromatography on silica gel (X% EtOAc in hexane) to give octapeptide 7 (58 mg, 25%) as colorless crystals. M.p 232–234 °C; $[\alpha]^{22}_{D} = -1.85$ (c 1.26, CH₃OH); IR (CDCl₃) 3421, 3325, 2958, 1663, 1528, 1265 cm⁻¹; ¹H NMR (400 MHz, acetone-*d*₆) δ 8.30 (d, *J* = 5.9 Hz, 1H), 7.88 (d, *J* = 4.2 Hz, 1H), 7.60 (s, 1H), 7.55 (d, *J* = 5.9 Hz, 1H), 7.48–7.50 (m, 2H), 7.30–7.40 (m, 6H), 7.09 (d, *J* = 2.6 Hz, 1H), 5.09–5.24 (m, 2H), 3.93–4.53 (m, 14H), 3.62 (s, 3H), 1.50–2.02 (m, 18H), 1.47 (s, 3H), 1.44 (s, 3H), 1.33 (s, 3H), 1.32 (s, 3H), 0.78–1.08 (m, 36H); HRMS (FAB⁺) calcd for C₅₉H₉₈N₈O₁₅Na [M + Na]⁺ 1181.7049, found 1181.7061.

Ac-(L-Leu)₂-Hms(Ipr)-(L-Leu)₂-Hms(Ipr)-(L-Leu)₂-OMe (8). Octapeptide 8 was prepared from hexapeptide 6a and Ac-(L-Leu)₂-OH in a manner similar to that described for the preparation of octapeptide 7. Yield 20%. Colorless crystals. M.p 264–265 °C; $[\alpha]^{22}_{D} = -0.87$ (c 0.23, CH₃OH); IR (CDCl₃) 3429, 3321, 2959, 1723, 1658, 1535, 1253 cm⁻¹; ¹H NMR (400 MHz, acetone-*d*₆) δ 8.28 (br s, 1H), 7.96 (br s, 1H), 7.88 (d, *J* = 3.6 Hz, 1H), 7.65 (d, *J* = 5.6 Hz, 1H), 7.49–7.52 (m, 2H), 7.37-7.41 (m, 1H), 7.30 (br s, 1H), 3.91–4.49 (m, 14H), 3.63 (s, 3H), 1.29-1.90 (m, 33H), 0.83–1.00 (m, 36H); HRMS (FAB⁺) calcd for C₅₃H₉₄N₈O₁₄Na [M + Na]⁺ 1089.6787, found 1089.6787.

Cbz-(L-Leu)₂-Hms(*c*-Hex)-(L-Leu)₂-Hms(*c*-Hex)-(L-Leu)₂-OMe (9). Octapeptide 9 was prepared from hexapeptide 6b and Cbz-(L-Leu)₂-OH in a manner similar to that described for the preparation of octapeptide 7. Yield 12%. Colorless crystals. M.p 260–262 °C; $[\alpha]^{22}_{D} = -10.3$ (c 0.37, CH₃OH); IR (CDCl₃) 3429, 3337, 2959, 1659, 1531, 1261 cm⁻¹; ¹H NMR (400 MHz, acetone-*d*₆) δ 8.30 (d, *J* = 3.4 Hz, 1H), 7.93 (d, *J* = 5.4 Hz, 1H), 7.79 (s, 1H), 7.68 (d, *J* = 3.8 Hz,

1H), 7.61 (d, J = 7.5 Hz, 1H), 7.38–7.40 (m, 5H), 7.23 (d, J = 7.5 Hz, 1H), 7.19 (s, 1H), 7.12 (d, J = 3.8 Hz, 1H), 5.10–5.27 (m, 2H), 3.80–4.51 (m, 14H), 3.62 (s, 3H), 1.28–2.00 (m, 38H), 0.78–1.03 (m, 36H); HRMS (FAB⁺) calcd for C₆₅H₁₀₆N₈O₁₅Na [M + Na]⁺ 1261.7675, found 1261.7474.

Ac-(L-Leu)₂-Hms(*c*-Hex)-(L-Leu)₂-Hms(*c*-Hex)-(L-Leu)₂-OMe (10). Octapeptide 10 was prepared from hexapeptide **6b** and Ac-(L-Leu)₂-OH in a manner similar to that described for the preparation of octapeptide **7**. Yield 5%. Colorless crystals. M.p. 250–251 °C; $[\alpha]^{22}_{D}$ = +6.90 (c 1.3, CH₃OH); IR (CDCl₃) 3441, 3325, 2959, 1659, 1536, 1265 cm⁻¹; ¹H NMR (500 MHz, acetone-*d*₆) δ 8.32 (d, *J* = 4.9 Hz, 1H), 7.99 (d, *J* = 4.2 Hz, 1H), 7.96 (s, 1H), 7.88 (d, *J* = 4.4 Hz, 1H), 7.65 (d, *J* = 5.4 Hz, 1H), 7.50 (d, *J* = 5.9 Hz, 1H), 7.38 (d, *J* = 8.3 Hz, 1H), 7.31 (s, 1H), 3.90–4.48 (m, 14H), 3.62 (s, 3H), 1.29–2.01 (m, 41H), 0.84–0.99 (m, 36H); HRMS (FAB⁺) calcd for C₅₉H₁₀₂N₈O₁₄Na [M + Na]⁺ 1169.7413, found 1169.7430.

Ac-(L-Leu)₂-Hms-(L-Leu)₂-Hms-(L-Leu)₂-OMe (11). Octapeptide 8 (10.5 mg, 9 μmol) in 2 M HCl/MeOH (13.7 μL, 27 μmol) was stirred at room temperature for 30 min. Removal of the solvent gave a crude peptide, which was purified by HPLC (solvent A: 0.05% TFA in H₂O; solvent B: 0.05% in CH₃CN; from 95% to 5% solvent A over 30 min) to give octapeptide 11 (3.5 mg, 39%) as colorless crystals. M.p. 137–138 °C; $[\alpha]^{22}_{D} = -20.8$ (c 0.83, CH₃OH); IR (CDCl₃) 3630, 3421, 3356, 2959, 2360, 1670, 1203, 1172 cm⁻¹; ¹H NMR (500 MHz, CD₃OH) δ 8.36 (d, *J* = 5.6 Hz, 1H), 8.32 (d, *J* = 5.6 Hz, 1H), 8.06 (d, *J* = 6.7 Hz, 1H), 7.97 (d, *J* = 6.7 Hz, 1H), 7.82 (d, *J* = 5.0 Hz, 1H), 7.61 (s, 1H), 7.49(d, *J* = 7.4 Hz, 1H), 7.39 (s, 1H), 3.16–4.42 (m, 14H), 3.69 (s, 3H), 2.81–2.90 (m, 4H), 1.99–2.03 (m, 3H), 1.55–1.90 (m, 18H), 0.86–1.02 (m, 36H); HRMS (FAB⁺) calcd for C₄₇H₈₆N₈O₁₄Na [M + Na]⁺ 1009.6161, found 1009.6154.

Figure S1. Conversion of acetal **1** into diol **2** under the acidic conditions of pH 2.0 (solid line) or pH 3.0 (dash line) DCl-D₂O/CD₃OD (50/50) at 25°C. The concentration of acetal **1** was 10 mM.

Figure S2. Time-dependent MALDI-TOF-MS spectra of the Hms(Ipr) octapeptide 7 (a, b) and Hms(*c*-Hex) octapeptide 9 (c, d) in TFE/H₂O (50/50) at pH 7 (a, c) and pH 2 containing HCl (b, d). Diamonds: the Hms(Ipr) octapeptide 7; triangles: the Hms octapeptide 11; circles: the Hms(*c*-Hex) octapeptide 9; squares: an octapeptide containing one Hms and one Hms(*c*-Hex) (closed: Na⁺ salt; open: K⁺ salt). Peptide concentration: 50 μ M.

Figure S3. CD spectra of a) Hms(Ipr) octapeptides 7 and 8, and b) Hms(*c*-Hex) octapeptides 9 and 10. The peptide concentration was 0.1 mM in TFE.

Figure S4. CD spectra of Hms(Ipr) octapeptides 7 and Hms octapeptides 11. The peptide concentration was 0.1 mM in MeOH/H₂O (50/50).

empirical formula	$2(C_{59}H_{98}N_8O_{15}), 3(C_2H_6O)$
Mr	2457.12
crystal diameters [mm]	$0.25\times0.06\times0.02$
crystal system	triclinic
lattice parameters:	
a, b, c [Å]	11.908, 17.703, 17.953
α, β, γ [°]	84.06, 70.79, 86.23
V [Å ³]	3552.7
space group	P1
Z value	1
$D \operatorname{calc} [g/\mathrm{cm}^3]$	1.148
μ (MoK α) [cm ⁻¹]	0.083
no. of observations	12744 ($I > 2\sigma(I)$)
no. of variables	1559
R_1, R_w	0.0998, 0.3067
Solvent	EtOH/CHCl ₃

 Table S1.
 Crystal and diffraction parameters of the Hms(Ipr) octapeptide 7.

	Molecule A	Molecule B	
$\psi 0$	-173.3	179.8	
$\omega 0$	-167.5	-170.1	
$\phi 1$	-60.6	-60.1	
$\psi 1$	-46.2	-43.9	
ω1	-177.7	179.8	
<i>φ</i> 2	-54.3	-55.3	
$\psi 2$	-51.8	-51.6	
ω2	-178.7	-178.1	
<i>ø</i> 3	-56.2	-52.7	
ψ3	-47.9	-50.6	
ω3	-177.2	-179.1	
$\phi 4$	-62.0	-61.1	
ψ 4	-40.8	-44.9	
ω4	177.6	-178.9	
φ5	-64.8	-57.4	
ψ5	-37.4	-46.7	
ω5	177.7	-178.3	
$\phi 6$	-62.0	-62.2	
ψ6	-36.3	-28.1	
ω6	-179.3	-179.9	
ϕ 7	-81.8	-91.9	
ψ 7	-38.1	-19.0	
ω7	-172.5	-169.6	
$\phi 8$	-104.3	-116.2	
$\psi 8$	-96.3	-106.3	
$\omega 8$	173.7	177.5	
χ1	170.2	-179.2	
χ2	-175.7	-175.6	
χ3	66.0	64.2	
χ3'	-67.9	-64.9	
$\chi 4$	-65.7	-67.9	

Table S2. Selected torsion angles ω , ϕ , ψ , and χ [°] for the Hms(Ipr) octapeptide 7 as determined by an X-ray crystallographic analysis.

χ5	-70.9	178.3
χ6	61.7	67.8
χ6'	-60.8	-69.3
χ7	-59.8	-60.9
χ8	-63.2	-65.6

Peptide ^{a)}	Donor D–H	Acceptor A	Distance [Å] D…A	Angle [°] D−H…A	Symmetry operation
	N ₄₀ -H		3.09	167	X V Z
	N ₅₀ -H	O_{1a}	2.96	166	X V Z
	N _c _H		3.03	161	x, y, Z
	1 v _{6a} -11	O_{2a}	5.05	101	λ , y, Z
	N _{7a} –H	O_{3a}	3.17	150	x, y, z
	N _{8a} –H	O_{4a}	2.87	151	x, y, z
В	N _{4b} –H	O _{0b}	3.06	169	x, y, z
	N _{5b} –H	O _{1b}	2.83	167	x, y, z
	N _{6b} –H	O _{2b}	3.02	168	x, y, z
	N _{7b} –H	O _{3b}	3.24	139	x, y, z
	N _{7b} –H	O _{4b}	3.07	132	x, y, z
	N _{8b} –H	O _{4b}	2.94	124	x, y, z
	EtO-H (i)	O _{EtO-H (iii)} ,	2.75	148	x, -1+y, -1+z
	N _{1a} –H	O _{6b} ,	2.90	141	x, 1+y, 1+z
	EtO-H (ii)	O _{7b} ,	2.81	159	x, y, 1+z
	N _{1b} –H	O _{6a}	2.81	161	х, у, z
	N _{2b} -H	O _{7a}	2.92	151	x, y, z
	EtO-H (iii)	O _{6b}	2.77	132	х, у, z

 Table S3.
 Intra- and intermolecular H-bond parameters for the Hms(Ipr) octapeptide 7.

^{a)} The number of amino acid residues began at the N-terminus of the peptide chain.

Figure S5. The calculated minimum energies for α -helical structures of a) Hms(Ipr) octapeptide **8** and b) Hms(*c*-Hex) octapeptide **10**. Hms(Ipr) and Hms(*c*-Hex) residues are highlighted in green.

