Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Excited State Intermolecular Proton Transfer Dependent on Substitution Pattern of Anthracene–Diurea Compounds involved in Fluorescent ON¹–OFF–ON² response by the Addition of Acetate Ions

Hisato Matsumoto, Yoshinobu Nishimura and Tatsuo Arai*

Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571 Japan. E-mail: arai@chem.tsukuba.ac.jp

Contents

1. ¹ H NMR spectrum	page 02
2. Fit curve for the association constants of BPUA s	page 05
3. Changes in the fluorescence spectra of 9,10BPUA	page 06
4. Fluorescence decay curves	page 07
5. Time-resolved fluorescence spectra	page 10
6. Evaluation of the emissive property of the complex	page 13
7. Fluorescence spectra of tautomers	page 15
8. Fluorescence spectra of BPUA s and PUA s	page 16

Fig. S1. ¹H NMR spectrum of **1,5-diaminoanthracene**.

Fig. S4. ¹H NMR spectrum of **2,6-diaminoanthracene**.

Fig. S6. Theoretical fits to estimate association constants of (a) **1,5BPUA** (b) **2,6BPUA** (c) **9,10BPUA** (K_{a1}) (d) **9,10BPUA** (K_{a2}).

Fig. S7. Changes in the fluorescence spectra of **9,10BPUA** (8.6×10^{-6} M) in the presence of TBAAc (1.8-91.8 mM).

Fig. S8. Fluorescence decay of **1,5BPUA** in the absence of TBAAc monitored at 450 nm.

Fig. S9. Fluorescence decay of **1,5BPUA** in the presence of TBAAc (3.0 mM) monitored at (a) 450 nm and (b) 630 nm.

Fig. S10. Fluorescence decay of **9,10BPUA** in the absence of TBAAc monitored at 450 nm.

Fig. S11. Fluorescence decay of **9,10BPUA** in the presence of TBAAc (0.8 mM) monitored at (a) 450 nm and (b) 600 nm.

Fig. S12. Fluorescence decay of **2,6BPUA** in the absence of TBAAc monitored at 450 nm.

Fig. S13. Fluorescence decay of **2,6BPUA** in the presence of TBAAc (8.1 mM) monitored at (a) 450 nm and (b) 600 nm.

Fig. S14. Time-resolved fluorescence spectra of **1,5BPUA** in the presence of TBAAc (3.0 mM) in DMSO. Spectra were normalized at maximum intensity.

Fig. S15. Time-resolved fluorescence spectra of **9,10BPUA** in the presence of TBAAc (0.8 mM) in DMSO. Spectra were normalized at maximum intensity.

Fig. S16. Time-resolved fluorescence spectra of **2,6BPUA** in the presence of TBAAc (8.1 mM) in DMSO. Spectra were normalized at maximum intensity.

Fig. S17. Evaluation of the emissive property of the complex of **1,5BPUA** with TBAAc.

Fig. S18. Evaluation of the emissive property of the complex of 2,6BPUA with TBAAc.

Fig. S19. Evaluation of the emissive property of the complex of **9,10BPUA** with TBAAc.

Fig. S20. Fluorescence spectra of tautomer of **1,5BPUA** (red line) separated by subtraction.

Fig. S21. Fluorescence spectra of **9,10BPUA** tautomer (red line) separated by subtraction.

Fig. S22. Fluorescence spectra of **1,5BPUA** and **1PUA** in the presence of TBAAc (3.0 and 1.0 mM, respectively)

Fig. S23. Fluorescence spectra of **2,6BPUA** and **2PUA** in the presence of TBAAc (8.1 and 1.0 mM, respectively)

Fig. S24. Fluorescence spectra of **9,10BPUA** and **9PUA** in the presence of TBAAc (0.8 and 1.0 mM, respectively)