Supporting Information for

A bis(pyridyl)-N-alkylamine/ Cu(l) catalyst system for aerobic alcohol oxidation

Lindie Marais, ^a Jordi Bures Amat, ^b Johan H.L. Jordaan, ^a Selwyn Mapolie ^c and Andrew J. Swarts ^{a*}

- ^a Catalysis and Synthesis Research Group, Focus Area for Chemical Resource Beneficiation, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa.
- ^b School of Chemistry, The University of Manchester, Oxford Road, Manchester M139PL, United Kingdom.
- ^c Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa.

*Andrew.Swarts@nwu.ac.za

Table of ContentsF			
	I.	General considerations	S1
	II.	Optimisation of catalyst system	S2
	III.	Kinetic Studies	S4
	IV.	Conversion and characterisation of aldehyde products, Table 2	S7
	V.	NMR spectral data of converted aldehyde products.	S11
	VI.	MALDI-MS spectral data for 2-pyridinemethanol	S20
	VII.	References	S21

I. General considerations

¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker 600 MHz Ultrashield Plus spectrometer at 400 MHz and 150 MHz respectively. The chemical shifts (δ) are given in parts per million (ppm) and externally referenced according to the residual protons of the deuterated solvent signal [1]. Coupling constants are reported in Hz. GC analyses were performed on an Agilent 6890 Series GC System with a HP 5 column, 30 m in length, 0.320 mm internal diameter and 0.25 mm film thickness. N₂ served as the carrier gas, acetonitrile (MeCN) and dichloromethane (DCM) were used as the rinsing solutions and cyclohexanone as the internal standard. ESI-MS (positive ion mode) and MALDI-MS spectra were recorded on Bruker microTOF-Q II and Autoflex II spectrometers, by direct injection of the sample or employing DCTB (trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile) as matrix . Aldehyde products were isolated as described below.

II. Optimisation of the catalyst system

We evaluated different bis(pyridyl)-*N*-alkylamine ligands, **L1-L5** (Figure S1), in the oxidation of 1-octanol under previously reported reaction conditions [2]. The following trend in the initial rate was observed: **L1** (0.33 mM·min⁻¹) > **L3** (0.29 mM·min⁻¹) > **L2** (0.27 mM·min⁻¹) > **L4** (0.22 mM·min⁻¹) > **L5** (0.15 mM·min⁻¹).

Figure S1: Observed catalytic activity of the different bis(pyridyl)-*N*-alkylamine ligands (L1-5) in the oxidation of alcohols. (1) L1, 2,2'-dipyridyl-*N*-methylamine; (2) L2, 2,2'-dipyridyl-*N*-benzylamine; (3) L3, 2,2'-dipyridyl-*N*-methylcyclohexylamine; (4) L4, 2,2'-dipyridyl-*N*-neopentylamine; (5) L5, (6,6'-dimethyl-2,2'-dipyridyl)-*N*-methylamine and (6) 2,2'-bipyridine (bpy).

Next, we investigated various Cu^I- and Cu^{II}-precursors and also different imidazole bases in the aerobic alcohol oxidation of 1-octanol (Table S1 and Figure S2).

Entry	Ligand	Comment	Time (h)	k _{initial} (mM⋅min⁻¹)⁰	Standard deviation
1	L3	[Cu(MeCN) ₄]OTf	2.5	0.294	0.042
2	L3	CuBr	3.0	0.177	0.078
3	L3	CuCl	3.0	<mark>0.123</mark>	<mark>0.022</mark>
4	L3	CuOTf ₂	2.5	0.015	0.053
5	L3	CuOAc ₂ ·2H ₂ O	2.5	0.038	0.016
6 ^b	L3	N-methylimidazole	2.5	0.294	0.042
7 ^b	L3	N-tert-butylimidazole	2.5	0.366	0.040
8 ^b	L3	1-acetylimidazole	2.5	0.043	0.094

 Table S1: Evaluation of different Cu^I-/Cu^{II}-precursors and imidazole bases in the aerobic alcohol oxidation.^a

^a alcohol (1.0 mmol, 0.2 M in MeCN), Cu(MeCN)₄OTf (5 mol %, 0.01 M in MeCN), L (5 mol %, 0.01 M in MeCN), TEMPO (5 mol %, 0.01 M in MeCN), NMI (10 mol %, 0.02 M in MeCN), 30 °C ± 2 °C.
^b The same base conditions, as described above in (a), were used during the evaluation of various bases.

^c The oxidation reactions were done in duplicate to determine an average initial rate value for each reaction.

Figure S2: Initial rate data obtained for various *N*-substituted imidazole bases in the aerobic alcohol oxidation of 1-octanol to 1-octanal.

III. Kinetic studies

With the optimised conditions in hand, we conducted a kinetic assessment of our catalyst system under synthetically relevant conditions i.e. under ambient air. The initial rate data were generated for each component except $[O_2]$. The aerobic alcohol oxidation reaction is performed under O_2 limiting conditions.

Varying [1-octanol]: saturation dependence

The rate of oxidation of 1-octanol exhibits saturation dependence а (Figure S3 and Table S2) on the alcohol substrate concentration. Our observation differs from those of Koskinen et al. [3] and Miyazawa et al. [4] where they found second-order dependence at low [alcohol] and first-order dependence on [alcohol] (mediated by TEMPO+ as the reactive intermediate), respectively. The problem is that although there is a high concentration of alcohol present, the catalyst system is limited in [L3Cu] and [NMI] which limits the amount of alkoxide species present in the reaction and the system becomes saturated at higher alcohol concentrations.

Figure S3: Kinetic data from the oxidation of 1-octanol by (L3)Cu(MeCN)₄OTf/TEMPO/NMI assessing the kinetic dependence on [1-octanol]. Standard reaction conditions: varying [1-octanol], 10 mM (L3)Cu^I, 10 mM TEMPO, 20 mM NMI, 5 mL MeCN, 30 °C ± 2 °C, air. The initial rates and standard deviations are summarised in Table S2.

Table S2: Kinetic data from the oxidation of 1-octanol by (L3)Cu(MeCN)₄OTf/TEMPO/NMI assessing the kinetic dependence on [1-octanol]. Standard reaction conditions: varying [1-octanol], 10 mM (L3)Cu^I, 10 mM TEMPO, 20 mM NMI, 5 mL MeCN, 30 °C ± 2 °C, air.

Concentration (M)	k _{initial} (mM·min⁻¹)	Standard deviation
0.1	0.114	0.021
0.15	0.20	0.057
0.2	0.294	0.042
0.3	0.361	0.042
0.4	0.434	0.028
0.5	0.408	0.014
0.6	0.443	0.042

Varying [TEMPO]: saturation dependence

Table S3: Kinetic data from the oxidation of 1-octanol by (L3)Cu(MeCN)₄OTf/TEMPO assessing the kinetic dependence on [TEMPO]. Standard reaction conditions: 0.2 M 1-octanol, 10 mM (L3)Cu^I, varying [TEMPO], 20 mM NMI, 5 mL MeCN, 30 °C ± 2 °C, air.

Concentration (mM)	k _{initial} (mM⋅min⁻¹)	Standard deviation
1.25	0.014	0.020
2.5	0.123	0.025
5	0.199	0.066
10	0.294	0.041
20	0.467	0.029
30	0.506	0.029
40	0.598	0.061
50	0.571	0.034
60	0.662	0.015

Varying [NMI]: saturation dependence

Table S4: Kinetic data from the oxidation of 1-octanol by (L3)Cu(MeCN)₄OTf/TEMPO assessing the kinetic dependence on [NMI]. Standard reaction conditions: 0.2 M 1-octanol, 10 mM (L3)Cu^I, 10 mM TEMPO, varying [NMI], 5 mL MeCN, 30 °C ± 2 °C, air.

Concentration (mM)	k _{initial} (mM⋅min⁻¹)	Standard deviation
2.5	0.101	0.056
10	0.216	0.020
20	0294	0.041
40	0.436	0.073
50	0.448	0.044

Varying [L3Cu]: saturation dependence

Table S5: Kinetic data from the oxidation of 1-octanol by (L3)Cu(MeCN)₄OTf/TEMPO assessing the kinetic dependence on [LCu]. Standard reaction conditions: 0.2 M 1-octanol, varying [(L3)Cuⁱ], 10 mM TEMPO, 20 mM NMI, 5 mL MeCN, 30 °C ± 2 °C, air.

Concentration (mM)	k _{initial} (mM⋅min⁻¹)	Standard deviation
1.25	0.0002	0.036
2.5	0.116	0.016
5	0.212	0.003
10	0.294	0.041
20	0.542	0.003
40	0.610	0.118
50	0.595	0.025

IV. Conversion and characterisation of aldehyde products, Table 2

All alcohols were obtained from Sigma-Aldrich and used as received and the converted aldehydes were isolated by column chromatography. The ¹H and ¹³C{¹H} NMR spectra data were compared to those previously reported in literature.

Geranial

The reaction was performed in a conventional test tube open to air. The reaction was monitored by TLC which showed complete conversion to the aldehyde after 3 h of reaction. After the allotted time the reaction solvent was removed *in vacuo* and the green oil obtained purified by column chromatography: Hexane/EtOAc (2:1) as eluent using 5 g Silica gel. R_f (aldehyde) = 0.95, R_f (ligand) = 0.46. The aldehyde was isolated as a lightly coloured oil. Yield = 144 mg, 95 %. ¹H NMR (400 MHz, CDCl₃): δ 9.99-10.0 (d, ³ J_{H-H} = 8, 1H *H*C=O), δ 5.88-5.89 (d, J = 8, 1H, C=C*H*), δ 5.06-5.08 (m, 1H, C=C*H*), δ 2.19-2.24 (m, 4H, 2C*H*₂), δ 2.17 (s, 3H, C*H*₃), δ 1.69 (s, 3H, C*H*₃), δ 1.61 (s, 3H, C*H*₃). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 191.38 (HC=O), δ 163.94 (R₂C=C), δ 132.97 (R₂C=C), δ 127.45 (C=C), δ 122.59 (C=C(H)R), δ 40.65 (C*H*₂), δ 25.67 (C*H*₂), δ 25.70 (C*H*₂), δ 17.77 (C*H*₃), δ 17.63 (C*H*₃). Spectral properties are consistent with literature values [5].

Cinnamaldehyde

The reaction was performed in a conventional test tube open to air. The reaction was monitored by TLC which showed complete conversion to the aldehyde after 2 h of reaction. After the allotted time the reaction solvent was removed *in vacuo* and the red oil obtained purified by column chromatography: Hexane/EtOAc (2:1) as eluent using 5 g Silica gel. R_f (aldehyde) = 0.72, R_f (ligand) = 0.27. The aldehyde was isolated as a pale-yellow oil. Yield = 129 mg, 98 %. ¹H NMR (400 MHz, CDCl₃): δ 9.64-9.65 (d, 1H, ³ J_{H-H} = 7.53 *H*C=O); δ 7.50-7.51 (m, 2H, H_{Ar} and C=C*H*); δ 7.37-7.42 (m, 4H, H_{Ar}); δ 6.64-6.68 (dd, 1H, ³ J_{H-H} = 16.15, 7.91, C=C*H*). ¹³C{¹H} (150 MHz, CDCl₃): δ 193.47 (HC=O); δ 152.53 (C_{C=C}); δ 133.68 (C_{Ar}); δ 130.99 (C_{Ar}); δ 128.96 (C_{C=C}); δ 128.81 (C_{Ar}); δ 128.23 (C_{Ar}). Spectral features are consistent with those reported previously [2].

Benzaldehyde

The reaction was performed in a conventional test tube open to air. The reaction was monitored by TLC which showed complete conversion to the aldehyde after 2 h of reaction. After the allotted time the reaction solvent was removed *in vacuo* and the green oil obtained purified by column chromatography: Hexane/EtOAc (3:1) as eluent using 5 g Silica gel. R_f (aldehyde) = 0.87, R_f (ligand) = 0.40. The aldehyde was isolated as a pale-orange oil. Yield = 97 mg, 92 %. ¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H, *H*C=O); δ 7.90-7.91 (d, 2H, ³J_{H-H} = 7.15, H_{Ar}); δ 7.64-7.67 (t, 1H, ³J_{H-H} = 7.15, H_{Ar}); δ 7.54-7.56 (t, 2H, ³J_{H-H} = 7.15, H_{Ar}). ¹³C{¹H} (150 MHz, CDCl₃): δ 192.23 (HC=O), δ 136.22 (C_{Ar}); δ 134.30 (C_{Ar}); δ 129.58 (C_{Ar}); δ 128.84 (C_{Ar}).Spectral features are consistent with those reported previously [5].

3-phenylpropanal

The reaction was performed in a conventional test tube open to air. The reaction was monitored by TLC which showed complete conversion to the aldehyde after 7 h of reaction. After the allotted time the reaction solvent was removed *in vacuo* and the green oil obtained purified by column chromatography: Hexane/EtOAc (9:1) as eluent using 5 g Silica gel. R_f (aldehyde) = 0.40, R_f (ligand) = 0.17. The aldehyde was isolated as a colourless oil. Yield: 127 mg, 95 %. ¹H NMR (400 MHz, CDCl₃): δ 9.82 (s, 1H, *H*C=O); δ 7.31-7.34 (t, 2H, ³J_{H-H} = 7.45, H_{Ar}); δ 7.22-7.24 (m, 3H, H_{Ar}); δ 2.97-2.99 (t, 2H, ³J_{H-H} = 7.45, *CH*₂); δ 2.78-2.81 (t, 2H ³J_{H-H} = 7.45, *CH*₂). ¹³C{¹H} (150 MHz, CDCl₃): δ 201.54 (HC=O), δ 140.24 (C_{Ar}); δ 128.49 (C_{Ar}); δ 128.19 (C_{Ar}); δ 126.18 (C_{Ar}); δ 46.14 (CH₂); δ 27.98 (CH₂). Spectral features are consistent with those reported previously [6].

4-methoxybenzaldehyde

The reaction was performed in a conventional test tube open to air. The reaction was monitored by TLC which showed complete conversion to the aldehyde after 2.5 h of reaction. After the allotted time the reaction solvent was removed *in vacuo* and the red oil obtained purified by column chromatography: Hexane/EtOAc (3:1) as eluent using 5 g Silica

gel. R_f (aldehyde) = 0.38, R_f (ligand) = 0.21. The aldehyde was isolated as a pale-yellow oil. Yield = 225 mg, 90 %.¹H NMR (400 MHz, CDCl₃): δ 9.86 (s, 1H, *H*C=O); δ 7.81-7.82 (d, 2H, ³J_{H-H} = 8.66, H_{Ar}); δ 6.98-6.99 (d, 2H, ³J_{H-H} = 8.66, H_{Ar}); δ 3.86 (s, 3H, CH₃). ¹³C{¹H} (150 MHz, CDCl₃): δ 190.20 (HC=O), δ 163.99 (C_{Ar}); δ 131.37 (C_{Ar}); δ 129.30 (C_{Ar}); δ 113.71 (C_{Ar}); δ 55.01 (C_{Me}). Spectral features are consistent with those reported previously [5].

2-aminobenzaldehyde

The reaction was performed in a conventional test tube open to air. The reaction was monitored by TLC which showed complete conversion to the aldehyde after 3 h of reaction. After the allotted time the reaction solvent was removed *in vacuo* and the red oil obtained purified by column chromatography: Hexane/EtOAc (3:1) as eluent using 5 g Silica gel. R_f (aldehyde) = 0.56, R_f (ligand) = 0.39. The aldehyde was isolated as a yellow oil. Yield = 109 mg, 90 %. ¹H NMR (400 MHz, CDCl₃): δ 9.85 (s, 1H, *H*C=O); δ 7.46-7.47 (d, 1H, ³ J_{H-H} = 7.91, H_{Ar}); δ 7.28-7.31 (t, 1H, ³ J_{H-H} = 7.15, H_{Ar}); δ 6.72-76.74 (t, 1H, ³ J_{H-H} = 7.15, H_{Ar}); δ 6.63-6.64 (d, 1H, ³ J_{H-H} = 8.28, H_{Ar}); δ 6.13 (br. s, 2H, NH₂). ¹³C{¹H} (150 MHz, CDCl₃): δ 193.97 (HC=O), δ 149.79 (C_{Ar}); δ 135.61 (C_{Ar}); δ 135.09 (C_{Ar}); δ 118.67 (C_{Ar}); δ 116.23 (C_{Ar}); δ 115.91 (C_{Ar}). Spectral features are consistent with those reported previously [7].

2-iodobenzaldehyde

The reaction was performed in a conventional test tube open to air. The reaction was monitored by TLC which showed complete conversion to the aldehyde after 3 h of reaction. After the allotted time the reaction solvent was removed *in vacuo* and the red oil obtained purified by column chromatography: Hexane/EtOAc (3:1) as eluent using 5 g Silica gel. R_f (aldehyde) = 0.48, R_f (ligand) = 0.29. The aldehyde was isolated as a pale-yellow oil. Yield = 225 mg, 97 %. ¹H NMR (400 MHz, CDCl₃): δ 10.08 (s, 1H, *H*C=O); δ 7.96-7.97 (d, 1H, ³*J*_{H-H} = 7.53, H_{Ar}); δ 7.89-7.90 (d, 1H, ³*J*_{H-H} = 7.53, H_{Ar}); δ 7.47-7.49 (t, 1H, ³*J*_{H-H} = 7.53, H_{Ar}); δ 7.29-7.32 (t, 1H, ³*J*_{H-H} = 7.15, H_{Ar}). ¹³C{¹H} (150 MHz, CDCl₃): δ 194.45 (HC=O), δ 139.42 (C_{Ar}); δ 134.32 (C_{Ar}); δ 129.01 (C_{Ar}); δ 127.63 (C_{Ar}); δ 99.71 (C_{Ar}). Spectral features are consistent with those reported previously [8].

4-hydroxybenzaldehyde

но

The reaction was performed in a conventional test tube open to air, employing DMF:MeCN (2 ml: 3 ml) as reaction solvent. The reaction was monitored by TLC which showed complete conversion to the aldehyde after 23 h of reaction. After the allotted time the reaction solvent was removed *in vacuo* and the green oily residue was taken up in Et₂O (10 ml) and extracted with water (3 x 50 ml) portions. The organic layer was separated, dried over MgSO₄ and the solvent removed. R_f (aldehyde) = 0.54, R_f (ligand) = 0.27. The pale yellow-brown solid (aldehyde) was washed with hexane and filtered as a pale yellow solid. Yield = 122 mg, 92 %. ¹H NMR (400 MHz, CDCl₃): δ 9.86 (s, 1H, HC=O); δ 7.81-7.82 (d, 2H, ${}^{3}J_{H-H}$ = 8.83, H_{Ar}); δ 6.97-6.98 (d, 2H, ${}^{3}J_{H-H}$ = 8.83, H_{Ar}); δ 130.00 (C_{Ar}); δ 116.21 (C_{Ar}). Spectral features are consistent with those reported previously.[9]

Furfural

The reaction was run in a round bottom flask, fitted with a septum, under oxygen. The reaction was monitored by TLC which showed complete conversion to the aldehyde after 3 h (100 % Methanol). After the allotted time the reaction mixture was purified by aqueous workup (Purification Method 2). R_f (aldehyde) = 0.74, R_f (ligand) = 0.33. The aldehyde was isolated as a brown oil. Yield = 32.1 mg, 33 %. ¹H NMR (400 MHz, CDCl₃): δ 9.69 (s, 1 H, HC=O), δ 7.72 (m, 1 H), δ 7.28-7.29 (d, 1H, $^3J_{H-H}$ = 3.56, H_{Ar}), δ 6.63-6.64 (dd, 1H, $^3J_{H-H}$ = 3.57, 1.92, H_{Ar}). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 177.997 (HC=O), δ 153.05 (C_{Ar}); δ 148.26 (C_{Ar}); δ 121.14 (C_{Ar}); δ 112.72 (C_{Ar}). Spectral features are consistent with those reported previously [5].

V. NMR spectral data of converted aldehyde products

Figure S6: ¹³C{¹H} NMR spectrum for Geranial in CDCI₃.

Figure S7: ¹H NMR spectrum for Cinnamaldehyde in CDCI₃.

Figure S8: ¹³C{¹H} NMR spectrum for Cinnamaldehyde in CDCI₃.

Figure S9: ¹H NMR spectrum of Benzaldehyde in CDCI₃.

Figure S10: ¹³C{¹H} NMR spectrum of Benzaldehyde in CDCl₃.

Figure S11: ¹H NMR spectrum of 3-phenylpropanol in CDCI₃.

Figure S12: ¹³C{¹H} NMR spectrum for **3-phenylpropanol** in CDCl₃.

Figure S13: ¹H NMR spectrum for 4-methoxybenzaldehyde in CDCI₃.

Figure S14: ¹³C{¹H} NMR spectrum for 4-methoxybenzaldehyde in CDCI₃.

Figure S15: ¹H NMR spectrum for 2-aminobenzaldehyde in CDCI₃.

Figure S16: ¹³C{¹H} NMR spectrum of 2-aminobenzaldehyde in CDCI₃.

Figure S17: ¹H NMR spectrum of 2-iodobenzaldehyde in CDCI₃.

Figure S18: ¹³C{¹H} NMR spectrum of **2-iodobenzaldehyde** in CDCI₃.

Figure S19: ¹H NMR spectrum for 4-hydroxybenzaldehyde in CDCI₃.

Figure S20: ¹³C{¹H} NMR spectrum for 4-hydroxybenzaldehyde in CDCl₃.

Figure S21: ¹H NMR spectrum for Furfural in CDCI₃.

Figure S22: ¹³C{¹H} NMR spectrum for Furfural in CDCI₃.

VI. MALDI-MS spectral data for 2-pyridinemethanol

Figure S23: MALDI-MS spectrum of the oxidation reaction employing pyridinemethanol as substrate.

VII. References

- [1] H.E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem., 62 (1997) 7512-7515.
- [2] J.M. Hoover, S.S. Stahl, J. Am. Chem. Soc., 133 (2011) 16901-16910.
- [3] E.T. Kumpulainen, A.M. Koskinen, Chem. Eur. J., 15 (2009) 10901-10911.
- [4] T. Miyazawa, T. Endo, S. Shiihashi, M. Okawara, J. Org. Chem., 50 (1985) 1332-1334.
- [5] S. Velusamy, M. Ahamed, T. Punniyamurthy, Org. Lett., 6 (2004) 4821-4824.
- [6] G.A. Olah, M. Arvanaghi, Org. Synth., 64 (1990) 114-115.
- [7] M.R. Maddani, S.K. Moorthy, K.R. Prabhu, Tetrahedron, 66 (2010) 329-333.
- [8] R.M. Acheson, H.C.M. Lee, J. Chem. Soc., Perkin Trans. 1, (1987) 2321-2328.
- [9] H. Kim, J. Ralph, F. Lu, S.A. Ralph, A.-M. Boudet, J.J. MacKay, R.R. Sederoff, T. Ito, S. Kawai, H. Ohashi, Org. Biomol. Chem., 1 (2003) 268-281.