Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Catching chloride: searching for non-Hofmeister selectivity behavior

in systematically varied polyamide macrocyclic receptors

Kajetan Dabrowa, Filip Ulatowski, Dawid Lichosyt, and Janusz Jurczak*

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. Contact e-mail: jurczak group@icho.edu.pl

Contents

1. BINDING DATA ANALYSIS	2
2. CRYSTAL DATA	3
2.1 Diffractometer and data collection	3
2.2 Structure refinement	3
2.3 Crystallographic data	3
3. VISUALIZATION AND CARTESIAN COORDINATES OF CALCULATED STRUCTURES	5
4. REFERENCES	6

1. Binding data analysis

Table S1 . Binding data for the studied receptors gathered from	າ the literat	ure ^[a]
--	---------------	--------------------

		Ding-		Titration	Sol	vent mixt	ture	-	Ka, anic	n (M ⁻¹)		K _{rel} =	log (<i>K</i> a, cr-	/ K _{anion})	
Entry	Host	size	Linker	method ^[b]	#1	#2	%#2 (v/v)	Cl-	H₂PO₄⁻	MeCO ₂ -	PhCO ₂ -	H₂PO₄⁻	MeCO ₂ -	PhCO ₂ -	Ref.
1	Ac1	-	-	Α	DMSO-de	-	0	12	-	45	-	n/a	-0.57	n/a	1
2	Ac2	-	-	A	DMSO-d ₆	-	0	45	285	162	-	-0.80	-0.55	n/a	2
3	Ac3	-	-	А	DMSO-d ₆	-	0	14	60	130	-	-0.63	-0.97	n/a	3
4	Ac4	-	-	А	DMSO-d ₆	H ₂ O	5	5	150	-	13	-1.48	n/a	-0.41	4
5	Ac4	-	-	А	DMSO-d ₆	MeOH	10	5	93	-	10	-1.27	n/a	-0.30	4
6	Ac5	-	-	В	MeCN	-	0	540000	31000	630000	-	1.24	-0.07	n/a	5
7	Ac5	-	-	В	DMSO	-	0	710	4200	2200	-	-0.77	-0.49	n/a	5
8	Ac6 ^[c]	-	-	А	MeCN	-	0	1540	120	2410	-	1.11	-0.19	n/a	6
9	Ac7	-	-	Α	Acetone	-	0	12000	-	4300	-	n/a	0.45	n/a	7
10	Ac8			В	MeCN	-	0	19000000	660000	-	-	1.46	n/a	n/a	8
11	M1	18	2	А	DMSO-d ₆	-	0	65	1680	2640	-	-1.41	-1.61	n/a	1
12	M2	18	2	А	DMSO-d ₆	-	0	390.5	2226	6331	-	-0.76	-1.21	n/a	9
13	M3	20	2	A	DMSO-d ₆	-	0	204	617	-	260	-0.48	n/a	-0.11	10
14	M4	20	2	A	DMSO-d ₆	-	0	29	327	-	-	-1.05	n/a	n/a	10
15	M5	18	2	A	DMSO-d ₆	-	0	1100	3900	14000	-	-0.55	-1.10	n/a	11
16	M6	20	3	A	DMSO-d ₆	-	0	1930	7410	3240	2283	-0.58	-0.22	-0.07	12
1/	M6	20	3	A	DMSO-d ₆	H ₂ O	5	3/3	5/5	-	292	-0.19	n/a	0.11	12
18	M7	20	3	A	DMSO- a_6	-	0	3/8	- [0]	3130	160	n/a	-0.92	n/a	13
20	MQ	20	2	A	DMSO d		5	90	25000	-	12000	-1.15	11/d	-0.24	13
20	MO	20	2	A		MEON	10	2140	23000	-	2010	-2.45	n/a	-2.15	4
21	M9	20	3	A		-	0	2148	8000	-	3612	-0.57	n/a	-0.23	14
22	M9	20	3	A	DMSO-d ₆	H ₂ O	5	555	2680	-	666	-0.68	n/a	-0.08	14
23	M10	20	3	A	DMSO-d ₆	H ₂ O	5	280	-	-	3/00	n/a	n/a	-1.12	4
24	MIU	20	3	A		MeOH	10	270	4800	-	1/00	-1.25	n/a	-0.80	4
25	M12	22	4	A	DMSO d	-	0	190	5/3	210	302	-0.29	-0.27	-0.01	3
20	M12	24	5	A	DMSO- d	-	0	10	- [d]	205	301	-1.40	-1.24	-1.22	12
27	M14	24	2	A	DMSO- d_6		0	40 25	= [0] 830	203	-	-1 52	-0.05	-0.25	15
20	M15	21	2	Δ	DMSO- d_c		0	490	11000	-	-	-1 35	n/a	n/a	15-16
30	M16	30	-	A	DMSO- <i>d</i> ₅	-	0	28	1000	88	35	-1.55	-0.50	-0.10	17
31	M17	24	-	В	DMSO	-	0	4000	24000	3300	26300	-0.78	0.08	-0.82	18
32	M18	24	-	В	DMSO	-	0	19000	21000	43700	145000	-0.04	-0.36	-0.88	18
33	M19	22	-	В	MeCN		0	2000	342000	38000	64000	-2.23	-1.28	-1.51	19
34	M20	22	-	В	MeCN	-	0	116000	15500	67000	47000	0.87	0.24	0.39	20
35	M21 [e]	16	-	А	DMSO-d ₆	-	0	100000	1400	140	-	1.85	2.85	n/a	21
36	M22 [e]	16	-	А	DMSO-d ₆	-	0	270	15000	77000	-	-1.74	-2.46	n/a	21
37	M23	22	-	В	MeCN	-	0	11900000	4390000	15900000	-	0.43	-0.13	n/a	22
38	M23	22	-	В	MeCN	H_2O	5	995000	-	5430	-	n/a	2.26	n/a	22
39	M24	16	-	А	CD_2Cl_2	-	0	350	97	668	196	0.56	-0.28	0.25	23
40	M24 [e]	16	-	С	MeCN	-	0	140000	-	290000	115000	-	-0.31	0.09	24
41	M24 [e]	16	-	С	DMSO	-	0	1300	5100	6100	-	-0.59	-0.67	-	25
42	M25 [e]	16	-	С	MeCN	-	0	530000	-	1900000	1200000	-	-0.55	-0.35	25
43	M25 [e]	16	-	С	DMSO	-	0	1500	17000	48000	-	-1.05	-1.51	-	25
44	Uc1	22	2	А	DMSO-d ₆	H_2O	0.5	96	_ [d]	_ [d]	95	n/a	n/a	0.00	26
45	Uc2	24	3	А	DMSO-d ₆	H_2O	0.5	484	_ [d]	490	269	n/a	-0.01	0.26	26
46	Uc3	24	3	Α	DMSO-d ₆	H_2O	0.5	778	1268	642	162	-0.21	0.08	0.68	26
47	Uc4	26	4	А	DMSO-d ₆	H ₂ O	0.5	11	7286	191	128	-2.82	-1.24	-1.07	26
48	Uc5	26	4	A	DMSO-d ₆	H ₂ O	0.5	9	1738	262	251	-2.29	-1.46	-1.45	27
49	Cr1	24	-	A	CD ₂ Cl ₂	CD ₃ CN	75	40	25	770	-	0.20	-1.28	n/a	28
50	Cr2	24	2	A	DMSO-d ₆	-	0	820	_ [d]	46	-	n/a	1.25	n/a	29
51	Cr3	24	2	A		-	0	2950	2040	2400	-	0.16	0.09	n/a	29, 30
52	Cr4	24	2	A	DMSO- <i>d</i> 6	-	0	35	2512	13000	-	-1.86	-2.5/	n/a	30
53	Cr5	28	2	A	DMSO- d_6	-	0	180	1/0	130	-	0.02	0.14	n/a	31, 32

Table S1. Continuation.

Entry	Heat	Ring-	Linkor	Titration	Solv	ent mix	ture		K _{a. anic}	_n (M ⁻¹)		$K_{\rm rel} = \log (K_{\rm a. Cl} - / K_{\rm anion})$				
Entry	HUSL	size	LINKE	method ^[b]	#1	#2	%#2 (v/v)	Cl-	$H_2PO_4^-$	MeCO ₂ -	PhCO ₂ -	$H_2PO_4^-$	MeCO ₂ -	PhCO ₂ -	Rel.	
55	Cr6	24.33	-	Α	DMSO-d ₆	-	0	350	_ [d]	380	-	n/a	-0.04	n/a	31	
56	Cr7	24.30	-	А	DMSO-d ₆	-	0	10	740	100	-	-1.87	-1.00	n/a	32	
57	Cr8	36	2	А	DMSO-d ₆	-	0	850	760	1380	-	0.05	-0.21	n/a	33	
58	Cr9 [e]	16.22	3	С	DMSO	H_2O	20	26000	10	10	-	3.41	3.41	n/a	34	
59	Cr10 [e]	16.22	5	С	MeCN	-	0	2600000	2800	1600	6000	2.97	3.21	2.64	35	
60	Cr11 [e]	16.22	3	С	MeCN	-	0	3500000	7700	-	2700	2.66	n/a	3.11	35	
61	Cr12 [e]	16.23	4	С	MeCN	-	0	8700000	50000	-	55000	2.24	n/a	2.20	35	
62	Cr13 [e]	16.24	5	С	MeCN	-	0	4000000	20000	280000	53000	2.30	1.15	1.88	35	

[a] All titration experiments were conducted at 298K, if not otherwise stated; [b] A: ^{1}H NMR, B: UV-Vis, C: ITC; [c] temperature was not reported; [d] complex binding mode; [e] T = 303 K.

2. Crystal Data

2.1 Diffractometer and data collection

The x-ray measurements of $Uc1 \cdot H_2O$ and $Uc1 \cdot TBACI$ were performed at 100(2) K on a KM4CCD κ -axis diffractometer with graphite-monochromated MoK_{α}. The corresponding crystal was positioned at 62 mm from the CCD camera. 1200 (Uc1) or 750 (Uc1 \cdot TBACI) frames were measured at 1° intervals with a counting time of 11 or 9 sec for Uc1 and Uc1 \cdot TBACI, respectively. The data were corrected for Lorentz and polarization effects. Empirical correction for absorption was applied.³⁶ Data reduction and analysis were carried out with the Oxford Diffraction programs.³⁶⁻³⁷

2.2 Structure refinement

The structure was solved by direct methods³⁸ and refined using WinGX³⁹ and SHELXL Software Package.⁴⁰

The refinement was based on F² for all reflections except those with very negative F². Weighted R factors wR and all goodness-of-fit S values are based on F². Conventional R factors are based on F with F set to zero for negative F². The $F_0^2 > 2\sigma(F_0^2)$ criterion was used only for calculating R factors and is not relevant to the choice of reflections for the refinement. The R factors based on F² are about twice as large as those based on F. All hydrogen atoms were located geometrically and their position and temperature factors were not refined except those engaged in hydrogen bonds. Scattering factors were taken from Tables 6.1.1.4 and 4.2.4.2 in Ref. ⁴¹. The H-bonds in crystal structure were determined according to IUPAC recommendation.⁴²

The crystal structure of **Uc1** contains disordered *p*-nitrophenyl substituent and partially occupied solvent molecules such as disordered *n*-pentan, water, and methanol molecules. All of the oxygen-containing solvent molecules, except the water molecule located within macrocyclic cavity, were refinement without the hydrogen atoms. It is noteworthy that, the exact dimensions and cell volume should be probably doubled (i.e.: a = 8.214 Å, b = 19.363 Å, c = 23.930 Å, $\alpha = 109.07^{\circ}$, $\beta = 97.28^{\circ}$, $\gamma = 93.34^{\circ}$, V = 3547.71 Å³) as compared to the data mentioned in the cif file. However, since the reflections proving this assumption were weak, the final structure was refinement as the average from two smaller elemental cells.

The crystal structure of Uc1 TBACl contains water molecule which is dislocated between two adjacent macrocycles. This results in incomplete hydrogen bond saturation of the water molecule which is engaged in just two, albeit strong, hydrogen bonds with the oxygen carbonyl atoms of the adjacent macrocyclic molecules.

2.3 Crystallographic data

The structures discussed in this paper have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(0)-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk].

Tab. S2 Crystal data and structure refinement detail	s for solvate (left	t) and TBACl complex	(right) of Uc1.
--	---------------------	----------------------	-----------------

Compound	Uc1	·H ₂ O	Uc1·TBACl·H ₂ O				
Structure							
Empirical formula	C ₃₀ H _{33.2}	25N7O13.1	C ₄₄ H ₆₅ C	ClN ₈ O ₁₀			
Moiety formula	C ₂₈ H ₂₇ N	₇ O ₈ ·H ₂ O	$C_{28}H_{27}N_7O_8 \cdot C_1$	₁₆ H ₃₆ NCl·H ₂ O			
Formula weight	701	1.49	901	.49			
CCDC No.	1534	4255	1534	-256			
Temperature		10	0 K				
Wavelength		0.71073	Å (Mo K_{α})				
Crystal system	Tric	linic	Mono	clinic			
Space group	P	-1	P2	l/c			
	$a = 8.2136(7) \text{ Å}$ $\alpha = 85.572(7) ^{\circ}$		<i>a</i> = 9.9445(6) Å	$\alpha = 90.00$ °			
Unit cell dimensions	<i>b</i> = 10.2940(9) Å	$\beta = 88.689(9)^{\circ}$	<i>b</i> = 15.7022(8) Å	$\beta = 98.244(5)^{\circ}$			
	c = 22.413(2) Å	$\gamma = 69.865(5)^{\circ}$	c = 30.3358(18) Å	$\gamma = 90.00$ °			
Volume	V = 1773	3.9(3) Å ³	$V = 4688.0(5) \text{ Å}^3$				
Z	2	2	4				
Density Calc.	1.313	g/cm ³	1.277 g/cm ³				
Absorption coefficient	0.105	mm ⁻¹	0.146 mm ⁻¹				
F(000)	73	34	1928				
Crystal	Prismatic	, colorless	Prismatic, colorless				
Crystal size	0.71 × 0.53	× 0.24 mm	$0.56 \times 0.35 \times 0.21 \text{ mm}$				
θ range for data collection	2.76 -	28.62 °	2.68 – 28.66 °				
Index ranges	$-11 \le h \le 11, -13 \le$	≤ k ≤13, -30≤ l ≤29	$-12 \le h \le 13, -21 \le k \le 21, -40 \le 1 \le 39$				
Reflections collected (all/independent)	33596 [R:=	/ 7650 = 0.051	$ \begin{array}{c} 11406 / 7415 \\ [B_{++} = 0.033] \end{array} $				
Absorption correction		Mult	i-scan	0.055]			
Refinement method		Full-matrix lea	ast-squares on F^2				
Data / restraints / parameters	8543/5	02/599	11406/0/838				
Goodness-of-fit on F^2	1.0)92	0.916				
Final R indices $[F^2 > 2\sigma(F^2)]$	R = 0.050,	$\omega R = 0.163$	R = 0.033, $\omega R = 0.073$				
<i>R</i> indices (all data)	R = 0.068,	$\omega R = 0.174$	$R = 0$ $\omega R = 0$.062, 0.078			
Largest diff. peak and hole	0.579 and -	0.498 e Å ⁻³	0.287 and -0.304 e Å ⁻³				

3. Visualization and Cartesian coordinates of calculated structures

Fig. S21. Structures and relative energies of pyrrole with chloride (a), dihydrogenphosphate (b), and acetate (c) anions obtained at DFT/M06-2X/6-311G(d) level of theory; corresponding hydrogen bond interactions are $d_{\text{N}\cdots\text{Cl}-} = 3.143, 2.756, \text{ and } 2.737 \text{ Å}$, respectively.

Table S3. Cartesian coordinates of the structures of pyrrole, acetate, dihydrogenphosphate, and anion complexes with pyrrole calculated at DFT/M06-2X/6-311G(d) level of theory using program Spartan'16 Parallel Suite⁴³

		Pyrrole				MeCO ₂ -			H ₂ PO ₄ -					
	F =	_210 1221	58 911		$\mathbf{F} = -\mathbf{i}$	228 47598	0 911	F = -643574252 au						
		-210.1221	27000 au			-220.775700	7217 ou		E = 7DE = 642.525999 are					
	E + ZI E = -070.337039 au				E + ZPE	= -228.42	/21 / au		E + ZPE = -643.535888 au					
Ν	0.000000	0.000000	1.117622	С	0.220244	0.001583	0.000000	Р	0.000000	0.000004	-0.174661			
C	1.120010	0.000000	0.330394	0	0.689923	1.156582	0.000000	0	-0.883022	-0.990723	-0.848902			
C	0.711051	0.000000	-0.979683	0	0.802227	-1.099097	0.000000	0	-0.964229	0.838773	0.883056			
C	-0.711051	0.000000	-0.979683	C	-1.347137	-0.055435	0.000000	0	0.883018	0.990761	-0.848863			
С	-1.120010	0.000000	0.330394	Н	-1.715036	-1.083850	0.000000	0	0.964233	-0.838814	0.883014			
Н	2.106872	0.000000	0.765101	Н	-1.730401	0.473540	-0.878782	Н	1.746539	-0.302581	1.036738			
Н	1.358904	0.000000	-1.842493	Н	-1.730401	0.473540	0.878782	Н	-1.746541	0.302540	1.036747			
Н	-1.358904	0.000000	-1.842493											
Н	-2.106872	0.000000	0.765101											
Н	0.000000	0.000000	2.122901											
	I	Pyrrole + C	C1-		Pyrr	ole + MeC	O_2^{-}		Pyrrole + H_2PO_4 -					
	E =	-670.4209	89 au		E = -4	438.64588	9 au		E = -853.734493 au					
E + ZPE = -670.337099 au				E + ZPE	= -438.511	1941 au		E + ZPE = -853.611268 au						
N	0.000000	0.000000	0.249272	N	1 020100	0.255076	0.000000	N	1 606177	0.402211	0.025926			
C	1 100423	0.000000	1.033500	C IN	2 121768	1 164623	0.000000	C	1.090177	-0.493211	0.023820			
C	0.710715	0.000000	2 254524	C	2.121/00	0.274204	0.000000	C	2 271124	1.0645257	-0.100908			
Ċ	0.710715	0.000000	2.334324	C	2 202171	0.374394	0.000000	C	3.2/1124	0.205107	-0.094390			
C	-0./10/13	0.000000	1.022500	C	2.000171	-0.970209	0.000000	C	2 800207	-0.203107	0.040707			
с ц	2 001852	0.000000	0.587072		2 012019	-0.943293	0.000000	с ц	2.890297	-1.142/03	0.110112			
н ц	1 262581	0.000000	2 216410	п П	4 276710	2.230004	-0.000000	и П	2 750126	2 025117	-0.180040			
н	1.302381	0.000000	3.210419	н Н	4.270710	1 864843	0.000000	и Ц	4 960127	2.023117	-0.178280			
и П	2 001852	0.000000	0.587072	П Ц	0.672402	1 714654	0.000000	и П	2 020828	-0.408957	0.081280			
н ц	-2.091855	0.000000	0.387072		0.072492	-1./14034	0.000000	и П	2.930838	-2.210440	0.214310			
	0.000000	0.000000	-0.780975	C II	0.024428	0.033010	0.000000	11 D	1.820528	-0.904641	0.043141			
CI	0.000000	0.000000	-2.094934		-2.220938	1.062044	0.000000	r	-1.029338	1 107460	-0.00994/			
					-1.010009	1.002944	0.000000	0	-0.908/82	-1.19/409	0.009420			
				õ	1 742951	1 170802	0.000000	0	2 024511	0.201017	1 214500			
				Ö C	-1.742851	-1.179803	0.000000	0	-2.924511	-0.201017	-1.214599			
				O C	-1.742851 -3.769078	-1.179803 0.086223	0.000000 0.000000	0 0	-2.924511 -1.295923	-0.201017 1.414300	-1.214599 -0.118022			
				O C H	-1.742851 -3.769078 -4.244680	-1.179803 0.086223 -0.895172	0.000000 0.000000 0.000000	0 0 0	-2.924511 -1.295923 -2.777624	-0.201017 1.414300 -0.029825	-1.214599 -0.118022 1.333821			

Η

-4.086453

0.653426

0.878934

Н

-2.962206

-1.140963

-1.411770

4. References

- 1. Szumna, A.; Jurczak, J., *European Journal of Organic Chemistry* **2001**, *2001*, 4031-4039.
- 2. Chmielewski, M. J.; Jurczak, J., *Chemistry A European Journal* **2005**, *11*, 6080-6094.
- 3. Chmielewski, M. J.; Jurczak, J., *Chemistry A European Journal* **2006**, *12*, 7652-7667.
- 4. Lichosyt, D.; Dydio, P.; Jurczak, J., *Chem. Eur. J.* **2016**, *22*, 17673-17680.
- 5. Kondo, S.-i.; Nagamine, M.; Karasawa, S.; Ishihara, M.; Unno, M.; Yano, Y., *Tetrahedron* **2011**, *67*, 943-950.
- 6. Piątek, P., *Tetrahedron Letters* **2007**, *48*, 4427-4430.

7. Juwarker, H.; Lenhardt, J. M.; Castillo, J. C.; Zhao, E.; Krishnamurthy, S.; Jamiolkowski, R. M.; Kim, K.-H.; Craig, S. L.,

- The Journal of Organic Chemistry **2009**, 74, 8924-8934.
- 8. Hua, Y.; Liu, Y.; Chen, C.-H.; Flood, A. H., *Journal of the American Chemical Society* **2013**, *135*, 14401-14412.
- 9. Chmielewski, M. Praca doktorska. Instytut Chemii Organicznej PAN, Warszawa, 2003.
- 10. Jurczak, J.; Dydio, P.; Stepniak, P.; Zielinski, T., *RSC Advances* **2016**, *6*, 41568-41571.
- 11. Inoue, Y.; Kanbara, T.; Yamamoto, T., *Tetrahedron Letters* **2003**, *44*, 5167-5169.
- 12. Chmielewski, M.; Jurczak, J., *Tetrahedron Letters* **2004**, *45*, 6007-6010.
- 13. Chmielewski, M. J.; Szumna, A.; Jurczak, J., *Tetrahedron Letters* **2004**, *45*, 8699-8703.
- 14. Chmielewski, M. J.; Jurczak, J., *Tetrahedron Letters* **2005**, *46*, 3085-3088.
- 15. Hossain, M. A.; Kang, S. O.; Powell, D.; Bowman-James, K., *Inorg Chem* **2003**, *42*, 1397-9.
- 16. Hossain, M. A.; Llinares, J. M.; Powell, D.; Bowman-James, K., *Inorganic Chemistry* **2001**, *40*, 2936-2937.

17. Korendovych, I. V.; Cho, M.; Makhlynets, O. V.; Butler, P. L.; Staples, R. J.; Rybak-Akimova, E. V., *J Org Chem* **2008**, *73*, 4771-82.

18. Kolesnikov, G. V.; German, K. E.; Kirakosyan, G.; Tananaev, I. G.; Ustynyuk, Y. A.; Khrustalev, V. N.; Katayev, E. A., *Organic & Biomolecular Chemistry* **2011**, *9*, 7358-7364.

19. Sessler, J. L.; Katayev, E.; Pantos, G. D.; Ustynyuk, Y. A., *Chemical Communications* **2004**, 1276-1277.

20. Sessler, J. L.; Katayev, E.; Pantos, G. D.; Scherbakov, P.; Reshetova, M. D.; Khrustalev, V. N.; Lynch, V. M.; Ustynyuk, Y. A., *Journal of the American Chemical Society* **2005**, *127*, 11442-11446.

21. Calderon-Kawasaki, K.; Kularatne, S.; Li, Y. H.; Noll, B. C.; Scheidt, W. R.; Burns, D. H., *The Journal of Organic Chemistry* **2007**, *72*, 9081-9087.

- 22. Satake, A.; Ishizawa, Y.; Katagiri, H.; Kondo, S.-i., *The Journal of Organic Chemistry* **2016**, *81*, 9848-9857.
- 23. (a) Gale, P. A.; Sessler, J. L.; Král, V.; Lynch, V., *Journal of the American Chemical Society* **1996**, *118*, 5140-5141; (b) Warriner, C. N.; Gale, P. A.; Light, M. E.; Hursthouse, M. B., Chemical Communications **2003**, 1810-1811.
- Warnier, C. N., Gale, P. A., Light, W. L., Hursthouse, W. B., Chemical Communications 2003, 1010-1011.
- 24. Sessler, J. L.; An, D.; Cho, W.-S.; Lynch, V., *Journal of the American Chemical Society* **2003**, *125*, 13646-13647.

25. Sessler, J. L.; Cho, W.-S.; Gross, D. E.; Shriver, J. A.; Lynch, V. M.; Marquez, M., *The Journal of Organic Chemistry* **2005**, *70*, 5982-5986.

- 26. Dąbrowa, K.; Pawlak, M.; Duszewski, P.; Jurczak, J., Organic letters **2012**, *14*, 6298-6301.
- 27. Dąbrowa, K.; Ceborska, M.; Jurczak, J., *Crystal Growth & Design* **2014**, *14*, 4906-4910.
- 28. Bisson, A. P.; Lynch, V. M.; Monahan, M.-K. C.; Anslyn, E. V., Angew. Chem., Int. Ed. 1997, 36, 2340-2342.
- 29. Kang, S. O.; Hossain, M. A.; Bowman-James, K., *Coordination Chemistry Reviews* **2006**, *250*, 3038-3052.
- 30. Hossain, M. A.; Kang, S. O.; Llinares, J. M.; Powell, D.; Bowman-James, K., *Inorganic Chemistry* **2003**, *42*, 5043-5045.
- 31. Wang, Q.-Q.; Begum, R. A.; Day, V. W.; Bowman-James, K., *Polyhedron* **2013**, *52*, 515-523.
- 32. Kang, S. O.; Powell, D.; Day, V. W.; Bowman-James, K., Angew Chem Int Ed Engl 2006, 45, 1921-5.
- 33. Wang, Q.-Q.; Day, V. W.; Bowman-James, K., Angewandte Chemie International Edition 2012, 51, 2119-2123.
- 34. Yoon, D.-W.; Gross, D. E.; Lynch, V. M.; Lee, C.-H.; Bennett, P. C.; Sessler, J. L., *Chemical Communications* **2009**, 1109-1111.
- 35. Yano, M.; Tong, C. C.; Light, M. E.; Schmidtchen, F. P.; Gale, P. A., Org Biomol Chem 2010, 8, 4356-63.
- 36. RED, C. *Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm*, Version 1.171.28; Oxford Diffraction Ltd.
- 37. *CrysAlisPro (release 16-05-2011 CrysAlis171 .NET)*, Version 1.171.35.11; Agilent Technologies: 2011.
- 38. Sheldrick, G., *Acta Crystallographica Section A* **1990**, *46*, 467-473.
- 39. Farrugia, L., *Journal of Applied Crystallography* **1999**, *32*, 837-838.
- 40. (a) Sheldrick, G., *Acta Crystallogr. Sect. A* **2008**, *64*, 112-122; (b) Sheldrick, G. M., *SHELXL97, Program for Crystal Structure Refinement*. 1997.
- 41. Wilson, A. J. C.; Geist, V., *Crystal Research and Technology* **1993**, *28*, 110-110.
- 42. Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P., *Pure and Applied Chemistry* **2011**, *83*, 1637-1641.
- 43. Spartan'14 for Windows, Wavefunction Inc., California, USA: 2014.