SUPPLEMENTARY INFORMATION

Modulation of i-Motif Thermal Stability by Insertion of Anthraquinone Monomers

Alaa S. Gouda ^{a, b}, Mahasen S. Amine ^b and Erik B. Pedersen ^{*a}

^aDepartment of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark. Fax +45 66158780; *E-mail: erik@sdu.dk ^bDepartment of Chemistry, Faculty of Science, Benha University, Benha, Egypt13518.

Circular Dichroism (CD) spectral analysis of human telomeric DNA (ON1) and anthraquinone-modified i-motif variants (ON2-ON33, Fig. S1-S3):

Figure S1. Circular dichroism (CD) spectra of human telomeric i-motif DNA (ON1) and anthraquinone-modified i-motif variants (ON2-ON13) measured at 20 °C. For sample composition see table 1.

Wavelength / nm

Figure S2. CD spectra of human telomeric i-motif DNA (ON1) and anthraquinone-modified i-motif variants (ON14-ON29) measured at 20 °C. For sample composition see table 1.

Wavelength / nm

Figure S3. CD spectra of human telomeric i-motif DNA (ON1) and anthraquinone-modified i-motif variants (ON30-ON33) measured at 20 °C. For sample composition see table 1.

Normalized UV absorption melting curves and first derivatives of human telomeric i-motif DNA (ON1) and anthraquinone-modified i-motif variants (ON2-ON33, Fig S4-S6):

Figure S4. Normalized UV absorption melting curves (Up) and first derivatives (Down) versus temperature difference (0.5 °C/min) from 25-65 °C for i–motifs (**ON1-ON13**) at 295 nm (4 μ M) in potassium buffer (100 mM KCl + 20 mM K₂HPO₄ (pH= 5.5) and 1 mM K₂EDTA). Melting temperatures are within the uncertainty \pm 0.5 °C as determined by repetitive experiments and *T_m* values were calculated taking an average of the two melting curves.

Figure S5. Normalized UV absorption melting curves (Up) and first derivatives (Down) versus temperature difference (0.5 °C/min) from 25-65 °C for i–motifs (**ON1** and **ON14-ON29**) at 295 nm (4 μ M) in potassium buffer (100 mM KCl + 20 mM K₂HPO₄ (pH= 5.5) and 1 mM K₂EDTA). Melting temperatures are within the uncertainty ± 0.5 °C as determined by repetitive experiments and T_m values were calculated taking an average of the two melting curves.

Figure S6. Normalized UV absorption melting curves (Up) and first derivatives (Down) versus temperature difference (0.5 °C/min) from 25-65 °C for i–motifs (**ON1** and **ON30-ON33**) at 295 nm (4 μ M) in potassium buffer (100 mM KCl + 20 mM K₂HPO₄ (pH= 5.5) and 1 mM K₂EDTA). Melting temperatures are within the uncertainty ± 0.5 °C as determined by repetitive experiments and T_m values were calculated taking an average of the two melting curves.

Table S1. MALDI-TOF mass spectrometry data (calculated and found mass) of i-Motifs

Oligo	bases replaced	Sequence	M _{calcd}	M _{found}
ON1	wild type	5'-CCC TAA CCC TAA CCC TAA CCC T-3'	6504.44	6504.13
ON2	T ₁₀	5'-CCC TAA CCC H ₁₈ AA CCC TAA CCC T-3'	6617.43	6618.68
ON3	A_{11}	5'-CCC TAA CCC TH ₁₈ A CCC TAA CCC T-3'	6608.43	6608.07
ON4	A ₁₂	5'-CCC TAA CCC TAH ₁₈ CCC TAA CCC T-3'	6608.43	6609.25
ON5	T ₁₀	5'-CCC TAA CCC H ₁₄ AA CCC TAA CCC T-3'	6617.43	6617.38
ON6	A_{11}	5'-CCC TAA CCC TH ₁₄ A CCC TAA CCC T-3'	6608.43	6608.94
ON7	A ₁₂	5'-CCC TAA CCC TAH ₁₄ CCC TAA CCC-T-3'	6608.43	6608.07
ON8	T_{10}	5'-CCC TAA CCC H ₁₅ AA CCC TAA CCC T-3'	6617.43	6618.29
ON9	A_{11}	5'-CCC TAA CCC TH ₁₅ A CCC TAA CCC T-3'	6608.43	6609.22
ON10	A ₁₂	5'-CCC TAA CCC TAH ₁₅ CCC TAA CCC T-3'	6608.43	6609.30
ON11	T_{10}	5'-CCC TAA CCC H ₂₆ AA CCC TAA CCC T-3'	6617.43	6617.49
ON12	A_{11}	5'-CCC TAA CCC TH ₂₆ A CCC TAA CCC T-3'	6608.43	6608.65
ON13	A_{12}	5'-CCC TAA CCC TAH ₂₆ CCC TAA CCC-T-3'	6608.43	6608.36
ON14	$A_{6}T_{16}$	5'-CCC TAH ₁₈ CCC TAA CCC H ₁₈ AA CCC T-3'	6721.56	6722.74
ON15	$A_{6}T_{16}$	5'-CCC TAH ₁₄ CCC TAA CCC H ₁₄ AA CCC T-3'	6721.56	6722.85
ON16	$A_{6}T_{16}$	5'-CCC TAH ₁₅ CCC TAA CCC H ₁₅ AA CCC T-3'	6721.56	6728.08
ON17	$A_{6}T_{16}$	5'-CCC TAH ₂₆ CCC TAA CCC H ₂₆ AA CCC T-3'	6721.56	6721.66
ON18	$A_{6}T_{16}$	5'-CCC TAH ₁₈ CCC TAA CCC H ₁₄ AA CCC T-3'	6721.56	6723.44
ON19	$A_{6}T_{16}$	5'-CCC TAH ₁₈ CCC TAA CCC H ₁₅ AA CCC T-3'	6721.56	6725.84
ON20	$A_{6}T_{16}$	5'-CCC TAH ₁₈ CCC TAA CCC H ₂₆ AA CCC T-3'	6721.56	6721.66
ON21	$A_{6}T_{16}$	5'-CCC TAH ₁₄ CCC TAA CCC H ₁₈ AA CCC T-3'	6721.56	6722.85
ON22	$A_{6}T_{16}$	5'-CCC TAH ₁₄ CCC TAA CCC H ₁₅ AA CCC T-3'	6721.56	6724.04
ON23	$A_{6}T_{16}$	5'-CCC TAH ₁₄ CCC TAA CCC H ₂₆ AA CCC T-3'	6721.56	6722.76
ON24	$A_{6}T_{16}$	5'-CCC TAH ₁₅ CCC TAA CCC H ₁₈ AA CCC T-3'	6721.56	6723.74
ON25	$A_{6}T_{16}$	5'-CCC TAH ₁₅ CCC TAA CCC H ₁₄ AA CCC-T-3'	6721.56	6722.26
ON26	$A_{6}T_{16}$	5'-CCC TAH ₁₅ CCC TAA CCC H ₂₆ AA CCC T-3'	6721.56	6722.18
ON27	$A_{6}T_{16}$	5'-CCC TAH ₂₆ CCC TAA CCC H ₁₈ AA CCC T-3'	6721.56	6719.88
ON28	$A_{6}T_{16}$	5'-CCC TAH ₂₆ CCC TAA CCC H ₁₄ AA CCC T-3'	6721.56	6722.26
ON29	$A_{6}T_{16}$	5'-CCC TAH ₂₆ CCC TAA CCC H ₁₅ AA CCC T-3'	6721.56	6718.12
ON30	A_{18}	5'-CCC TAA CCC TAA CCC TAH ₁₈ CCC T-3'	6608.43	6608.28
ON31	A_{18}	5'-CCC TAA CCC TAA CCC TAH ₁₄ CCC-T-3'	6608.43	6612.98
ON32	A_{18}	5'-CCC TAA CCC TAA CCC TAH ₁₅ CCC T-3'	6608.43	6608.36
ON33	A ₁₈	5'-CCC TAA CCC TAA CCC TAH ₂₆ CCC T-3'	6608.43	6609.83

Maldi-TOF Mass Spectrometry Data of Oligonucleotides (ON1-ON33)

ON29

