Supplementary Information

Dual Visible-light Photoredox and Palladium(II) Catalysis for Dehydrogenative C-2 Acylation of Indoles at Room Temperature

Manash Kumar Manna,^{ab} Gurupada Bairy,^{ab} and Ranjan Jana*^{ab}

^aOrganic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology

4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India

^bAcademy of Scientific and Innovative Research (AcSIR), Kolkata-700032, West Bengal, India

E-mail: rjana@iicb.res.in

Table of Contents

General Information	S3
General Experimental Procedure for the C-H acylation	S4
Characterization Data	S4-S19
General procedure for the deportation of the directing group	S20
Gram Scale Experiment	S20-S21
Control Experiment	
Synthesis of anticancer D-64131 and D-68144	
References	
¹ H and ¹³ C NMR Spectra	S25-S56

General Information: All manipulations with air-sensitive reagents were carried out under a dry nitrogen atmosphere. Unless otherwise stated, all commercial reagents were used without additional purification. Solvents were dried using standard methods and distilled before use. The starting materials were prepared using literature reported method.¹ TLC was performed on silica gel plates (Merck silica gel 60, f₂₅₄), and the spots were visualized with UV light (254 and 365 nm) or by charring the plate dipped in KMnO₄ or vanillin charring solution. ¹H NMR was recorded at 300 MHz and 600 MHz frequency and ¹³C NMR spectra were recorded at 75 MHz and 150 MHz frequency in CDCl₃ solvent using TMS as the internal standard. Chemical shifts were measured in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br. = broad. Coupling constants, *J* were reported in Hertz unit (Hz). HRMS (m/z) were measured using EI and ESI techniques. Infrared (IR) spectra were recorded on Fourier Transform Infrared Spectroscopy, only intense peaks were reported.

Figure 1. Reaction setup for acylation under dual catalysis

General Experimental Procedure for the C-H Acylation of *N***-pyrimidylindole Derivatives:**

To an oven dried 5 mL reaction vial, a mixture of *N*-pyrimidylindole derivative (0.2 mmol), aldehyde (0.3 mmol, 1.5 equiv), Pd(OAc)₂ (0.02 mmol, 10 mol %) and photoredox catalyst Ru(bpy)₃Cl₂·6H₂O (0.005 mmol, 2.5 mol %) was taken and 1 mL dry acetonitrile was added to it. The reaction vial was purged with nitrogen for 3 min to remove oxygen from the reaction mixture and the vial was immediately closed with teflon cap. A decane solution of TBHP (0.6 mmol, 3.0 equiv) was added to the reaction mixture via micro-liter syringe and the reaction vial was irradiated with blue LED at room temperature. The progress of the reaction was monitored by TLC. After completion the reaction, the reaction mixture was quenched with a saturated solution of NaHCO₃ (5 mL) and was extracted with EtOAc (2x25 ml). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography using ethyl acetate/hexane as eluent to afford the desired acylation product.

Spectral data:

(1-(Pyrimidin-2-yl)-1*H*-indol-2-yl)(*p*-tolyl)methanone, 2a, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as white solid, (57 mg, 92%), mp 118-120 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.64 (d, *J* = 4.8 Hz, 2H), 8.40 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.24-7.32 (m, 3H), 7.10 (s, 1H), 7.07

(t, J = 4.8 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 187.4, 158.0, 157.3, 143.6, 138.2, 137.3, 135.3, 129.8, 129.1, 128.0, 126.4, 122.8, 122.4, 117.4, 115.0, 114.2, 21.7; IR (neat): v_{max} 1639, 1565, 1431, 1281, 1213, 750 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₁₅N₃ONa [M + Na]⁺: 336.1113; found: 336.1122.

(4-Methoxyphenyl)(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)methanone, 2b, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 17:3 hexane/ethyl acetate) afforded the desired product as white solid, (51 mg, 78%), mp 102-104 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.66 (d, *J* = 4.8 Hz, 2H), 8.42 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.08-7.10 (m, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 3.89 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 186.5, 163.3, 157.9, 157.3, 138.1, 137.3, 131.9, 130.8, 128.0, 126.2, 122.7, 122.3, 117.3, 114.6, 114.2, 113.6, 55.5; IR (neat): v_{max} 1646, 16021567, 1428, 1267, 1164, 740 cm⁻¹; HRMS (EI, m/z) calcd. for C₂₀H₁₅N₃O₂[M]⁺: 329.1164; found: 329.1172.

(4-Bromophenyl)(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)methanone, 2c, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as white solid, (55 mg, 73%), mp 96-98 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.62 (d, *J* = 4.8 Hz, 2H), 8.41 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.7 Hz, 2H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.56 (d, *J* = 8.7 Hz, 2H), 7.42-7.47 (m, 1H), 7.29 (t, *J* = 7.2 H, 1H), 7.10 (s, 1H), 7.06 (t, *J* = 4.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 186.4, 157.9, 157.0, 138.2, 136.7, 136.6, 131.6, 130.9, 127.8, 127.7, 126.6, 122.9, 122.4, 117.4, 115.3, 114.3; IR (neat): v_{max} 1651, 1572, 1427, 1211, 748 cm⁻¹; HRMS (ESI, m/z) calcd.for C₁₉H₁₂BrN₃ONa [M + Na]⁺: 400.0061; found: 400.0049.

4-(1-(Pyrimidin-2-yl)-1H-indole-2-carbonyl)benzonitrile, 2d, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 4:1 hexane/ethyl acetate) afforded the desired product as white solid, (26 mg, 40%), mp 156-158 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.63 (d, J = 4.8 Hz, 2H), 8.47 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 2H), 7.73-7.75 (m, 3H), 7.50 (t, J = 7.2 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.17 (s, 1H), 7.09 (t, J = 4.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 185.8, 158.0, 157.0, 141.5, 138.3, 136.2, 132.2, 129.5, 127.1, 123.2, 122.6, 118.0, 117.4, 115.9, 115.7, 114.6; IR (neat): v_{max} 2226, 1646, 1564, 1433, 1209, 956, 761 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₀H₁₂N₄ONa [M + Na]⁺: 347.0909; found: 347.0927.

4-(1-(Pyrimidin-2-yl)-1*H*-indole-2-carbonyl)phenyl acetate, 2e, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 4:1 hexane/ethyl acetate) afforded the desired product as white solid, (60 mg, 85%), mp 122-124 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.66 (d, *J* = 4.8 Hz, 2H), 8.42 (d, *J* = 8.4 Hz, 1H), 8.04 (d, *J* = 9.0 Hz, 2H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 8.4 Hz, 1H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.20 (d, *J* = 9.0 Hz, 2H), 7.15 (s, 1H), 7.09 (t, *J* = 4.8 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 186.3, 168.9, 158.0, 157.2, 154.1, 138.3, 136.9, 135.5, 131.1, 127.9, 126.5, 122.8, 122.5, 121.6, 117.4, 115.3, 114.2, 21.2; IR (neat): v_{max} 1762, 1646, 1570, 1421, 1187, 956, 705 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₁H₁₅N₃O₃Na [M + Na]⁺: 380.1011; found: 380.1009.

(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)(4-(trifluoromethyl)phenyl)methanone, 2f, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 17:3 hexane/ethyl acetate) afforded the desired product as white solid, (62 mg, 69%), mp 118-120 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.63 (d, J = 4.8 Hz, 2H), 8.45 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 7.8 Hz, 2H), 7.70-7.73 (m, 3H), 7.48 (t, J = 7.8 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.16 (s, 1H), 7.07 (t, J = 4.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 186.3, 158.0, 157.1, 141.0, 138.4, 136.6, 133.9 (q, J = 32.3 Hz), 129.7, 127.9, 127.0, 125.4 (q, J = 3.8 Hz), 123.7 (q, J = 271.1 Hz), 123.1, 122.7, 117.5, 115.9, 114.5; IR (neat): v_{max} 1662, 1572, 1435, 1324, 1169, 1121, 1065, 703 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₀H₁₃F₃N₃O [M + H]⁺: 368.1011; found: 368.1010.

Benzo[*b*]thiophen-3-yl(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)methanone, 2g, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 17:3 hexane/ethyl acetate) afforded the desired product as white solid, (44 mg, 62%), mp 162-164 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.65-8.68 (m, 3H), 8.41 (d, J = 8.4 Hz, 1H), 8.30 (s, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.45-7.53 (m, 3H), 7.32 (t, J = 7.2 Hz, 1H), 7.23 (s, 1H), 7.08 (t, J = 4.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 181.8, 158.0, 157.3, 140.1, 138.4, 138.03, 137.97, 137.1, 135.8, 127.9, 126.5, 125.6, 125.5, 125.2, 122.8, 122.5, 122.3, 117.5, 115.2, 114.1; IR (neat): v_{max} 1634, 1569, 1421, 743 cm⁻¹; HRMS (ESI, m/z) calcd. for $C_{21}H_{13}N_3OSNa$ [M + Na]⁺: 378.0677; found: 378.0677.

Naphthalen-1-yl(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)methanone, 2h, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as white solid, (52 mg, 75%), mp 142-144 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.71 (d, J = 8.4 Hz, 1H), 8.54 (d, J = 4.8 Hz, 2H), 8.38 (d, J = 8.7 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.76 (dd, $J_1 = 6.9$ Hz, $J_2 = 1.2$ Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.52-7.64 (m, 2H), 7.36-7.49 (m, 2H), 7.27-7.32 (m, 1H), 7.16 (s, 1H), 6.96 (t, J = 4.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 188.8, 157.8, 157.3, 138.9, 138.5,

136.0, 133.7, 132.3, 131.1, 129.0, 128.2, 127.9, 127.6, 126.7, 126.4, 126.0, 124.1, 122.8, 122.6, 117.3, 116.2, 114.2; IR (neat): v_{max} 1654, 1572, 1447, 779 cm⁻¹; HRMS (EI, m/z) calcd.for $C_{23}H_{15}N_{3}O[M]^{+}$: 349.1215; found: 349.1202.

(5-Bromo-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)(phenyl)methanone, 2i, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as white solid, (54 mg, 72%), mp 122-124 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.63 (d, *J* = 4.8 Hz, 2H), 8.35 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 7.8 Hz, 2H), 7.84 (d, *J* = 1.8 Hz, 1H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.53 (dd, *J_I* = 9.0 Hz, *J₂* = 1.8 Hz, 1H), 7.47 (m, 2H), 7.08 (t, *J* = 4.2 Hz, 1H), 7.04 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 187.4, 158.0, 156.9, 138.0, 137.6, 136.6, 132.9, 129.7, 129.5, 129.1, 128.4, 124.7, 117.6, 116.0, 115.9, 113.6; IR (neat): v_{max} 1665,1571, 1442, 1266, 798, 715 cm⁻¹; HRMS (ESI, m/z) calcd.for C₁₉H₁₂BrN₃ONa [M + Na]⁺: 400.0061; found: 400.0068.

(1-(Pyrimidin-2-yl)-1*H*-indol-2-yl)(thiophen-3-yl)methanone, 2j, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as white solid, (45 mg, 74%), mp 152-154 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.71 (d, J = 4.8 Hz, 2H), 8.36 (dd, J_1 = 8.4 Hz, J_2 = 0.6 Hz, 1H), 8.13-8.14 (m, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.67 (dd, J_1 = 4.8 Hz, J_2 = 1.2 Hz, 1H), 7.45-7.47

(m, 1H), 7.36-7.37 (m, 1H), 7.30-7.32 (m, 1H), 7.24 (d, J = 1.2 Hz, 1H), 7.13 (t, J = 4.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 180.8, 158.0, 157.4, 142.2, 138.5, 137.5, 133.5, 127.9, 127.8, 126.6, 126.2, 122.8, 122.5, 117.5, 115.1, 114.0; IR (neat): v_{max} 1638, 1567, 1424, 1341, 824, 740 cm⁻¹; HRMS (ESI, m/z) calcd.for C₁₇H₁₁N₃OSNa [M + Na]⁺: 328.0521; found: 328.0506.

(3-Phenoxyphenyl)(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)methanone, 2k, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 8:2 hexane/ethyl acetate) afforded the desired product as colorless gummy liquid, (51 mg, 65%).

¹H NMR (300 MHz, CDCl₃): δ 8.65 (d, *J* = 4.8 Hz, 2H), 8.39 (d, *J* = 8.7 Hz, 1H), 7.65-7.72 (m, 3H), 7.27-7.48 (m, 5H), 7.19-7.23 (m, 1H), 7.12-7.16 (m, 2H), 7.08 (t, *J* = 4.8 Hz, 1H), 7.00-7.04 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 186.7, 157.9, 157.5, 157.2, 156.6, 139.7, 138.3, 136.8, 129.9, 129.7, 127.9, 126.6, 124.4, 123.7, 122.9, 122.8, 122.5, 119.2, 119.0, 117.4, 115.7, 114.2; IR (neat): ν_{max} 1653, 1572, 1428, 1241, 747 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₅H₁₇N₃O₂Na [M + Na]⁺: 414.1218; found: 414.1215.

(3,4-Dichlorophenyl)(5-methoxy-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)methanone, 2l, (Table 2) The same general procedure was followed. Column chromatography (SiO₂, eluting with 17:3 hexane/ethyl acetate) afforded the desired product as `white solid, (43 mg, 54%), mp 152-154 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.62 (d, J = 4.8 Hz, 2H), 8.39 (d, J = 9.0 Hz, 1H), 8.08 (d, J = 2.4 Hz, 1H), 7.76 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.4$ Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 2.4 Hz, 1H), 7.12 (dd, $J_1 = 9.6$ Hz, $J_2 = 3.0$ Hz, 1H), 7.08 (t, J = 4.8 Hz, 1H), 7.06 (s, 1H), 3.91 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 185.1, 157.9, 156.1, 137.8, 137.1, 136.6, 133.3, 133.0, 131.1, 130.4, 128.6, 128.3, 117.2, 116.9, 115.7, 115.1, 103.4, 55.7; IR (neat): v_{max} 1659, 1569, 1428, 1216, 807 cm⁻¹; HRMS (EI, m/z) calcd.for C₂₀H₁₃Cl₂N₃O₂[M]⁺: 397.0385; found: 397.0391.

(3-Methyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)(phenyl)methanone, 2m, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as white solid, (52 mg, 83%), mp 154-156 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.64 (d, J = 8.4 Hz, 1H), 8.46 (d, J = 4.8 Hz, 2H), 7.78 (d, J = 7.5 Hz, 2H), 7.69 (d, J = 7.8 Hz, 1H), 7.40-7.50 (m, 2H), 7.30-7.37 (m, 3H), 6.86 (t, J = 4.8 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 189.4, 157.5, 157.0, 139.2, 136.3, 133.2, 132.2, 130.2, 128.5, 128.3, 126.1, 122.5, 121.7, 120.1, 116.1, 115.1, 9.3; IR (neat): v_{max} 1657, 1563, 1435, 1262, 948, 746 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₀H₁₅N₃ONa [M + Na]⁺: 336.1113; found: 336.1109.

(7-Methyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)(*p*-tolyl)methanone, 2n, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as yellow gummy liquid, (59 mg, 91%).

¹H NMR (300 MHz, CDCl₃): δ 8.87 (d, *J* = 4.8 Hz, 2H), 7.86 (d, *J* = 7.8 Hz, 2H), 7.60 (t, *J* = 4.8 Hz, 1H), 7.41 (t, *J* = 4.8 Hz, 1H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.21 (s, 1H), 7.13-7.14 (m, 2H), 2.44 (s, 3H), 1.98 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 187.0, 160.0, 158.3, 143.4, 138.4, 136.3, 135.7, 130,0, 129.3, 129.2, 127.4, 122.7, 122.0, 121.2, 120.4, 116.2, 21.8, 19.6; IR (neat): v_{max} 2922, 1639,1529, 1422, 1233, 960, 749 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₁H₁₇N₃ONa [M + Na]⁺: 350.1269; found: 350.1266.

(5-Fluoro-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)(*p*-tolyl)methanone, 20, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 8:2 hexane/ethyl acetate) afforded the desired product as white solid, (50 mg, 75%), mp 124-126 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.63 (d, *J* = 4.8 Hz, 2H), 8.42-8.44 (m, 1H), 7.88 (d, *J* = 8.4 Hz, 2H), 7.35 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.4 Hz, 1H), 7.26 (d, *J* = 7.8 Hz, 2H), 7.19, (td, *J*₁ = 9.6 Hz, *J*₂ = 3.0 Hz, 1H), 7.08 (t, *J* = 4.8 Hz, 1H), 7.04 (s, 1H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 187.3, 159.2 (d, *J* = 237.9 Hz), 157.9, 157.0, 143.7, 138.6, 135.1, 134.4, 129.7, 129.1, 128.7 (d, *J* = 9.9 Hz), 117.4, 115.6 (d, *J* = 9.0 Hz), 114.4 (d, *J* = 25.2 Hz), 113.8 (d, *J* = 4.5 Hz), 107.1 (d, *J* = 23.4 Hz), 21.7; IR (neat): v_{max} 1646, 1567, 1424,1169, 816, 749 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₀H₁₄FN₃ONa [M + Na]⁺: 354.1019; found: 354.1017.

(3,4-Dimethoxyphenyl)(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)methanone, 2p, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 4:1 hexane/ethyl acetate) afforded the desired product as white solid, (62 mg, 87%), mp 178-180 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.67 (d, *J* = 5.4 Hz, 2H), 8.42 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.64 (dd, *J*₁ = 7.8 Hz, *J*₂ = 2.4 Hz, 1H), 7.61 (d, *J* = 1.8 Hz, 1H), 7.44-7.47 (m, 1H), 7.30-7.32 (m, 1H), 7.11 (s, 1H), 7.09 (t, *J* = 4.8 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 3.96 (s, 3H), 3.95 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 186.5, 157.9, 157.3, 153.1, 148.9, 138.1, 137.1, 130.9, 128.0, 126.2, 124.8, 122.7, 122.3, 117.3, 114.7, 114.2, 111.3, 109.9, 56.1, 56.0; IR (neat): v_{max} 1641, 1514, 1427, 1266, 1139, 760 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₁H₁₇N₃O₃Na [M + Na]⁺: 382.1168; found: 382.1171.

2-(4-Methylbenzoyl)-1-(pyrimidin-2-yl)-1*H*-indole-4-carbonitrile, 2q, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 4:1 hexane/ethyl acetate) afforded the desired product as white solid, (45 mg, 67%), mp 188-190 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.67-8.69 (m, 3H), 7.92 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.2 Hz, 1H), 7.48-7.51 (m, 1H), 7.31 (d, J = 7.8 Hz, 2H), 7.25 (s, 1H), 7.17 (t, J = 4.8 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 186.9, 158.2, 156.7, 144.3, 139.2, 137.4, 134.5, 129.9, 129.4, 129.3, 127.7, 125.6, 119.3, 118.1, 117.7, 111.4, 104, 9, 21.7; IR (neat): v_{max} 2219, 1666, 1571, 1431, 1266, 754 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₁H₁₄N₄ONa [M + Na]⁺: 361.1065; found: 361.1071.

(4-Fluorophenyl)(5-methyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)methanone, 2r, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as yellow gummy liquid, (56 mg, 80%).

¹H NMR (600 MHz, CDCl₃): δ 8.61 (d, *J* = 4.8 Hz, 2H), 8.31 (d, *J* = 8.4 Hz, 1H), 7.98-8.00 (m, 2H), 7.48 (s, 1H), 7.28 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.8 Hz, 1H), 7.10-7.13 (m, 2H), 7.03-7.05 (m, 2H), 2.48 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 186.2, 165.5 (d, *J* = 253.5 Hz), 157.9, 157.3, 136.9, 136.6, 134.5 (d, *J* = 3.2 Hz), 132.4, 132.0 (d, *J* = 9.2 Hz), 128.3, 128.2, 122.1, 117.2, 115.5 (d, *J* = 21.8 Hz), 115.1, 114.1, 21.4 IR (neat): v_{max} 1653, 1568, 1428, 1222, 1154, 757, 597 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₀H₁₅FN₃O [M + H]⁺: 332.1199; found: 332.1200.

(5-Chloro-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)(3,5-dimethoxyphenyl)methanone, 2s, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 8:2 hexane/ethyl acetate) afforded the desired product as white solid, (49 mg, 63%), mp 52-54 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.63 (d, *J* = 5.1 Hz, 2H), 8.37 (d, *J* = 9.0 Hz, 1H), 7.66 (d, *J* = 2.1 Hz, 1H), 7.38 (d, *J* = 9.0 Hz, 1H), 7.05-7.11 (m, 4H), 6.64-6.66 (m, 1H), 3.80 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 187.1, 160.8, 158.1, 157.1, 139.6, 138.2, 136.5, 129.2, 128.4, 126.7, 121.8, 117.7, 115.8, 114.0, 107.4, 105.7, 55.7; IR (neat): v_{max} 1657, 1593, 1430, 1159, 757 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₁H₁₇ClN₃O₃ [M + H]⁺: 394.0958; found: 394.0965.

(4-(Allyloxy)phenyl)(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)methanone, 2t, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 4:1 hexane/ethyl acetate) afforded the desired product as white solid, (46 mg, 65%), mp 84-86 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.65 (d, *J* = 4.8 Hz, 2H), 8.40 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 9.0 Hz, 2H), 7.70 (d, *J* = 7.8 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.09 (s, 1H), 7.07 (t, *J* = 4.8 Hz, 1H), 6.95 (d, *J* = 8.7 Hz, 2H), 6.00-6.12 (m, 1H), 5.43 (d, *J* = 17.4 Hz, 1H), 5.32 (d, *J* = 10.5 Hz, 1H), 4.60 (d, *J* = 5.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 186.4, 162.3, 157.9, 157.2, 138.0, 137.2, 132.4, 131.8, 130.7, 127.9, 126.2, 122.7, 122.3, 118.1, 117.3, 114.6, 114.2, 114.1, 68.8; IR (neat): v_{max} 1647, 1567, 1428, 1270, 1164, 746 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₂H₁₇N₃O₂Na [M + Na]⁺: 378.1218; found: 378.1190.

Methyl 3-(2-(4-methylbenzoyl)-1-(pyrimidin-2-yl)-1*H*-indol-3-yl)propanoate, 2u, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 4:1 hexane/ethyl acetate) afforded the desired product as white solid, (60 mg, 76%), mp 130-132 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.68 (d, J = 8.4 Hz, 1H), 8.47 (d, J = 4.8 Hz, 2H), 7.75 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.48 (t, J = 8.4 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.10 (d, J = 7.8 Hz, 2H), 6.87 (t, J = 4.8 Hz, 1H), 3.59 (s, 3H), 3.16 (t, J = 7.2 Hz, 2H), 2.73 (t, J = 8.4 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 189.0, 173.2, 157.5, 156.9, 143.0, 136.5, 136.2, 133.7, 129.1, 129.0, 128.5, 125.9, 123.6, 122.7, 120.0, 116.2, 115.4, 51.5, 35.1, 21.6, 19.7; IR (neat): v_{max} 1737, 1654, 1566, 1435, 1266, 746 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₄H₂₁N₃O₃Na [M + Na]⁺: 422.1481; found: 422.1498.

Cyclohexyl(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)methanone, 2v, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as white solid, (52 mg, 94%), mp 142-144 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.79 (d, *J* = 4.8 Hz, 2H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 8.1 Hz, 1H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.21-7.30 (m, 3H), 2.97-3.07 (m, 1H), 1.99-2.03 (m, 2H), 1.83-

1.88 (m, 2H), 1.51-1.75 (m, 4H), 1.25-1.41 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 197.7, 158.2, 157.9, 138.9, 137.6, 127.7, 126.4, 122.53, 122.49, 117.9, 113.5, 112.7, 48.7, 29.4, 25.9, 25.8; IR (neat): υ_{max} 2923, 1676, 1571, 1437, 1337, 1250, 1150, 806, 747 cm⁻¹; HRMS (ESI, m/z) calcd.for C₁₉H₂₀N₃O [M + H]⁺: 306.1606; found: 306.1604.

3-Methyl-1-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)but-2-en-1-one, 2w, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as white solid, (35 mg, 63%), mp 90-92 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.78 (d, J = 5.1 Hz, 2H), 8.01 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.19-7.28 (m, 3H), 6.69 (s, 1H), 2.17 (s, 3H), 1.98 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 183.4, 158.1, 156.4, 139.6, 139.0, 127.5, 126.4, 122.6, 122.4, 122.3, 118.0, 113.3, 112.9, 27.9, 21.0; IR (neat): v_{max} 1652, 1607, 1564, 1428, 1006, 750 cm⁻¹; HRMS (EI, m/z) calcd.for C₁₇H₁₅N₃O[M]⁺: 277.1215; found: 277.1216.

1-(1-(Pyrimidin-2-yl)-1H-indol-2-yl)hexan-1-one, 2x, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as yellow gummy liquid, (51 mg, 88%).

¹H NMR (600 MHz, CDCl₃): δ 8.79 (d, *J* = 4.8 Hz, 2H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.31 (s, 1H), 7.27 (t, *J* = 7.2 Hz, 1H), 7.22 (t, *J* = 4.8 Hz, 1H),

2.94 (t, J = 7.8 Hz, 2H), 1.76-1.81 (m, 2H), 1.35-1.41 (m, 4H), 0.92 (t, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 193.9, 158.2, 157.8, 139.1, 137.9, 127.5, 126.7, 122.7, 122.5, 118.2, 113.5, 113.2, 40.5, 31.4, 24.4, 22.5, 14.0; IR (neat): v_{max} 2924, 2859, 1677, 1569, 1427, 810, 746 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₈H₁₉N₃ONa [M + Na]⁺: 316.1426; found: 316.1416.

Ethyl 2-(1,3-dioxoisoindolin-2-yl)-3-(2-(4-methylbenzoyl)-1-(pyrimidin-2-yl)-1*H*-indol-3-yl)propanoate, 2y, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 1:1 hexane/ethyl acetate) afforded the desired product as white solid, (106 mg, 72%), mp 190-192 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.59 (d, *J* = 8.4 Hz, 1H), 8.38 (d, *J* = 4.8 Hz, 2H), 7.71 (d, *J* = 8.1 Hz, 1H), 7.54-7.55 (m, 4H), 7.36-7.44 (m, 3H), 7.21-7.27 (m, 1H), 6.78-6.84 (m, 3H), 5.27 (t, *J* = 7.5 Hz, 1H), 4.21 (q, *J* = 7.2 Hz, 2H), 3.85 (d, *J* = 7.5 Hz, 2H), 2.19 (s, 3H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 188.0, 168.6, 167.2, 157.5, 142.6, 135.94, 135.89, 134.8, 133.4, 131.6, 129.0, 128.7, 128.3, 126.0, 123.1, 122.8, 120.2, 119.6, 116.3, 115.3, 62.0, 52.7, 23.6, 21.5, 14.1; IR (neat): v_{max} 1720, 1569, 1428, 1383, 1252, 1029, 720 cm⁻¹; HRMS (EI, m/z) calcd.for C₃₃H₂₆N₄O₅[M]⁺: 558.1903; found: 558.1898.

Ethyl 2-(1,3-dioxoisoindolin-2-yl)-3-(1-(pyrimidin-2-yl)-2-(thiophene-3carbonyl)-1*H*-indol-3-yl)propanoate, 2z, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 6:4 hexane/ethyl acetate) afforded the desired product as white solid, (73 mg, 50%), mp 140-142 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.54 (d, J = 8.4 Hz, 1H), 8.44 (d, J = 4.8 Hz, 2H), 7.70 (d, J = 7.8 Hz, 1H), 7.55-7.63 (m, 4H), 7.48-7.49 (m, 1H), 7.35-7.40 (m, 1H), 7.19-7.25 (m, 2H), 6.94 (dd, $J_1 = 5.1$ Hz, $J_2 = 3.0$ Hz, 1H), 6.85 (t, J = 4.8 Hz, 1H), 5.26 (t, J = 7.5 Hz, 1H), 4.23 (q, J = 7.2 H, 2H), 3.90 (d, J = 7.5 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 181.8, 168.6, 167.2, 157.6, 157.0, 143.3, 136.2, 135.1, 133.7, 131.6, 128.9, 126.8, 126.3, 125.6, 123.2, 122.9, 120.9, 119.8, 116.4, 115.1, 62.1, 52.8, 23.6, 14.1; IR (neat): v_{max} 1717, 1568, 1437, 1030, 719 cm⁻¹; HRMS (EI, m/z) calcd.for C₃₀H₂₂N₄O₅S[M]⁺:550.1311; found: 550.1307.

(9-(Pyrimidin-2-yl)-9H-carbazol-1-yl)(p-tolyl)methanone, 2aa, (Table 2)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 8:2 hexane/ethyl acetate) afforded the desired product as white solid, (49 mg, 68%), mp 204-206 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.54 (d, J = 8.4 Hz, 1H), 8.38 (d, J = 4.8 Hz, 2H), 8.22 (d, J = 7.8 Hz, 1H), 8.11 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 7.8 Hz, 2H), 7.47-7.53 (m, 2H), 7.36-7.43 (m, 2H), 7.18 (d, J = 7.8 Hz, 2H), 6.91 (t, J = 4.8 Hz, 1H), 2.93 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 195.1, 158.0, 157.4, 143.1, 140.0, 136.2, 134.9, 130.0, 128.9, 127.4, 127.1, 127.0, 126.8, 125.1, 122.4, 122.2, 121.5, 119.7, 117.2, 114.4, 21.7; IR (neat): v_{max} 1641, 1564, 1416, 1275, 751 cm⁻¹; HRMS (EI, m/z) calcd.for C₂₄H₁₇N₃O[M]⁺: 363.1372; found: 363.1373.

General procedure for the deportation of the directing group:¹

To an oven dried 10 ml sealed tube a mixture of the acylation product 2a (0.2 mmol) and sodium ethoxide (0.6 mmol, 3 equiv) were taken and dry DMSO (1 mL) was added to it. The reaction tube was placed into a preheated oil bath at 100 °C and allowed to stir for 24h. After completion the reaction, the reaction mixture was extracted with ethyl acetate (3x20 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography using ethyl acetate/hexane as eluent to afford the desired product.

(1*H*-indol-2-yl)(*p*-tolyl)methanone, 3a, (Scheme 1b)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as white solid, (36 mg, 76%), mp 190-192 °C.

¹H NMR (300 MHz, CDCl₃): δ 9.45 (br. s, 1H), 7.93 (d, J = 8.1 Hz, 2H), 7.72 (d, J = 8.1 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.33-7.40 (m, 3H), 7.14-7.19 (m, 2H), 2.47 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 186.9, 143.1, 137.4, 135.3, 134.4, 129.4, 129.2, 127.7, 126.3, 123.1, 120.9, 112.4, 112.2, 21.7;

Gram scale experiment:

To an oven dried 100 mL round bottom flask, a mixture of *N*-pyrimidylindole (1.0 gm, 5.12 mmol), *p*-tolualdehyde (15.4 mmol, 1.5 equiv), $Pd(OAc)_2$ (0.51 mmol, 10 mol %) and photoredox catalyst $Ru(bpy)_3Cl_2 \cdot 6H_2O$ (0.13 mmol, 2.5 mol %) was taken and 25 mL dry acetonitrile was added to it. The reaction vessel was purged with nitrogen for 3 min to remove oxygen from the reaction mixture. After purging a decane solution of TBHP (0.6 mmol, 3.0 equiv) was added to the reaction mixture via syringe and the reaction vessel was immediately closed with glass stopper. The reaction vessel was irradiated with blue LED at room temperature.

The progress of the reaction was monitored by TLC. After completion the reaction (36 h), the reaction mixture was quenched with a saturated solution of NaHCO₃ (50 mL) and was extracted with EtOAc (2x100 ml). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography using ethyl acetate/hexane as eluent to afford the desired acylation product in78% yield.

Control experiment:

The standard reaction was performed in presence of 2 equivalent of TEMPO as a radical scavenger and the reaction did not afford the desire product. The ESI mass spectroscopy of the crude reaction mixture shows an adduct formation of the aldehyde with TEMPO.

Synthesis of anticancer D-64131 and D-68144:

(5-Methoxy-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)(phenyl)methanone, 2ab, (Scheme 3)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 17:3 hexane/ethyl acetate) afforded the desired product as white solid, (48 mg, 73%), mp 128-130 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.60 (d, *J* = 4.8 Hz, 2H), 8.34 (d, *J* = 9.0 Hz, 1H), 7.93-7.96 (m, 2H), 7.51-7.56 (m, 1H), 7.40-7.45 (m, 2H), 7.12 (d, *J* = 2.4 Hz, 1H), 7.08 (dd, *J_I* = 9.0 Hz, *J₂* = 2.4 Hz, 1H), 7.05 (s, 1H), 7.02 (t, *J* = 4.8 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 187.8, 158.0, 156.1, 138.3, 137.8, 133.4, 132.7, 129.6, 128.9, 128.4, 117.2, 116.6, 115.6, 115.0, 103.7, 55.9; IR (neat): v_{max} 1653, 1592, 1435, 1207, 753 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₀H₁₅N₃O₂Na [M + Na]⁺: 352.1062; found: 352.1063.

(5-Methoxy-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)(*p*-tolyl)methanone, 2ac, (Scheme 3)

The same general procedure was followed. Column chromatography (SiO₂, eluting with 17:3 hexane/ethyl acetate) afforded the desired product as white solid, (45 mg, 65%), mp 164-166 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.62 (d, J = 4.8 Hz, 2H), 8.35 (d, J = 9.6 Hz, 1H), 7.88 (d, J = 7.8 Hz, 2H), 7.25 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 2.4 Hz, 1H), 7.09 (dd, $J_I = 9.0$ Hz, $J_2 = 3.2$ Hz, 1H), 7.04 (t, J = 4.8 Hz, 1H), 7.03 (s, 1H), 3.90 (s, 3H), 2.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 187.4, 157.9, 157.2, 155.9, 143.5, 137.7, 135.4, 133.1, 129.7, 129.0, 128.7, 117.1, 116.3, 115.4, 114.5, 103.4, 55.7, 21.7; IR (neat): ν_{max} 1657, 1567, 1444, 1247, 1117, 734 cm⁻¹; HRMS (ESI, m/z) calcd.for C₂₁H₁₇N₃O₂ [M + H]⁺: 344.1399; found: 344.1392.

Deprotection:

(5-Methoxy-1*H*-indol-2-yl)(phenyl)methanone, (D-64131), 3b, (Scheme 3)

The same general deportation procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as white solid, (33 mg, 66%), mp 164-166 °C.

¹H NMR (600 MHz, CDCl₃): δ 9.20 (br. s, 1H), 8.00 (d, J = 7.2 Hz, 2H), 7.64 (t, J = 7.8 Hz, 1H), 7.53-7.56 (m, 2H), 7.39 (d, J = 9.0 Hz, 1H), 7.07-7.11 (m, 3H), 3.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 186.9, 154.8, 138.0, 134.7, 132.9, 132.3, 129.2, 128.4, 128.0, 118.4, 113.0, 112.2, 102.8, 55.7;

(5-Methoxy-1*H*-indol-2-yl)(*p*-tolyl)methanone, (D-68144), 3c, (Scheme 3)

The same general deportation procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as white solid, (37 mg, 71%), mp 208-210 $^{\circ}$ C.

¹H NMR (600 MHz, CDCl₃): δ 9.21 (br. s, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 9.0 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.09-7.11 (m, 2H), 7.07 (dd, $J_I = 9.0$ Hz, $J_2 = 2.4$ Hz, 1H), 3.87 (s, 3H), 2.48 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 186.6, 154.8, 143.0, 135.3, 134.9, 132.8, 129.3, 129.1, 128.1, 118.2, 113.0, 111.8, 102.7, 55.7, 21.7;

References:

1) L. Ackermann and A. V. Lygin, Org. Lett., 2011, 13, 3332.

200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

5 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

38

0 -10 -20 -30 -40 -50 -60

05 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

)5 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)