Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Amide rotation trajectories probed by symmetry

by Vladimir Kubyshkin and Nediljko Budisa

Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany

Index

Table S1, S2	S2
Table S3	\$3
Table S4	S4
Table S5	S5
Copies of the NMR spectra for the Pdc derivatives	S6-S17
Copies of the ¹ H NMR spectra for rest of compounds	S18-S28

Т, К	compo	und 2a	compo	und 3a	compound 4a		
	MeO ₂ C	CO ₂ Me	MeO ₂ C''''	CO ₂ Me	Ń		
	H ₃ C	6	H ₃ C		H ₃ C		
	k, s ⁻¹	E [≠] , kJ mol ⁻¹	k, s ⁻¹	E [≠] , kJ mol ⁻¹	k, s ⁻¹	E [≠] , kJ mol ⁻¹	
297.9	0.017 ±	83.06 ±	-	-	-	-	
	0.002	0.29					
303.3	0.032 ±	83.0 ± 0.24	-	-	-	-	
	0.003						
309.7	-	-	0.0015 ±	92.68 ±	0.010 ±	87.79 ±	
			0.0008	1.53	0.002	0.52	
313.9	0.109 ±	82.80 ±	0.0025 ±	92.66 ±	0.018 ±	87.50 ±	
	0.003	0.07	0.0010	1.11	0.002	0.29	
319.3	0.190 ±	82.78 ±	0.0055 ±	92.18 ±	0.032 ±	87.51 ±	
	0.007	0.10	0.0013	0.64	0.001	0.08	
324.6	-	-	0.011 ±	91.89 ±	0.057 ±	87.46 ±	
			0.002	0.50	0.002	0.09	
329.9	0.569 ±	82.63 ±	0.019 ±	91.95 ±	0.098 ±	87.45 ±	
	0.010	0.05	0.002	0.29	0.002	0.06	
335.3	0.949 ±	82.58 ±	0.032 ±	92.03 ±	0.165 ±	87.46 ±	
	0.026	0.08	0.002	0.17	0.003	0.05	

Table S1. Activation energies for *N*-acetylated compounds as function of temperature (in deuterium oxide solution)

Table S2. Activation energies for *N*-aceturylated compounds as function of temperature (in buffered deuterium oxide solution)

Т, К	compor	und 2c	compo	und 3c	compound 4c		
		CO ₂ Me		CO ₂ Me			
	k, s ⁻¹	E [≠] , kJ mol ⁻¹	k, s ⁻¹	E [≠] , kJ mol ⁻¹	k, s ⁻¹	E [≠] , kJ mol ⁻¹	
297.9	0.083 ±	79.13 ±	-	-	-	-	
	0.006	0.18					
303.3	0.145 ±	79.18 ±	-	-	0.013 ±	85.26 ±	
	0.009	0.16			0.002	0.39	
309.7	0.294 ±	79.09 ±	0.012 ±	87.32 ±	0.028 ±	85.14 ±	
	0.015	0.13	0.002	0.43	0.004	0.37	
313.9	0.452 ±	79.09 ±	0.022 ±	86.98 ±	0.044 ±	85.17 ±	
	0.019	0.11	0.004	0.48	0.005	0.30	
319.3	0.781 ±	79.03 ±	0.036 ±	87.19 ±	0.077 ±	85.18 ±	
	0.076	0.26	0.004	0.30	0.005	0.17	
324.6	1.278 ±	79.06 ±	0.063 ±	87.18 ±	0.131 ±	85.21 ±	
	0.058	0.12	0.005	0.21	0.010	0.21	
329.9	2.127 ±	79.01 ±	0.111 ±	87.11 ±	0.219 ±	85.24 ±	
	0.135	0.17	0.007	0.17	0.009	0.11	
335.3	3.467 ±	78.97 ±	0.184 ±	87.15 ±	0.352 ±	85.34 ±	
	0.238	0.19	0.007	0.11	0.019	0.15	

compound	ΔH, kJ mol ⁻¹	ΔS , J mol ⁻¹ K ⁻¹
2a	+ 86.5 ± 0.3	+ 11.9 ± 0.9
За	+ 94.5 ± 3.0	+ 7.6 ± 9.0
4a	+ 88.5 ± 0.6	+ 3.2 ± 1.8
2c	+ 80.5 ± 0.3	+ 4.7 ± 0.9
Зc	+ 87.8 ± 1.1	+ 2.0 ± 3.4
4c	+ 83.4 ± 0.7	- 5.7 ± 2.2

Table S3. Energetic terms for the amide rotation in *N*-acyl compounds in aqueous medium

Table S4. Amide rotation kinetics for the examined substances measured in deuterium oxide solution

compound	structure	Τ, Κ	k,	s ⁻¹	E [≠] , kJ mol ⁻¹			
		I	N-acetyl compour	nds	•			
2a	MeO ₂ C	298	0.019 ±	0.002	82.8	± 0.3		
	н₃с∽о							
3а	MeO ₂ C ¹ ¹ N CO ₂ Me	310	0.0015 ±	0.0008	92.8	± 1.9		
	н₃с∽о							
4a		310	0.009 ±	0.001	88.2	± 0.3		
	н _з с о				-	-		
5a	COoMe	310	trans→cis	cis→trans	trans→cis	cis→trans		
	H ₃ C O		0.0070 ± 0.0005	0.033 ± 0.002	88.8 ± 0.2	84.8 ± 0.2		
		N	-pivaloyl compou	unds				
2b		298	20.0	± 0.2	65.6	± 0.1		
	MeO ₂ C CO ₂ Me							
			0.424					
3b	MeO ₂ C ^{····}	298	0.431 ±	: 0.018	/5.1 ± 0.1			
4b	\square	298	14.2 :	± 0.9	66.4	± 0.2		
	~~~~							
5b		298	trans→cis	cis→trans	trans→cis	cis→trans		
	N CO ₂ Me		0.622 ± 0.043	36.5 ± 2.0	74.2 ± 0.1	64.1 ± 0.1		
		1	1		I			
2c	MeO ₂ C	310	0.292 ±	0.029	79.2	± 0.3		
3c	MeO ₂ C ¹ ¹ , CO ₂ Me	310	0.012 ±	0.002	87.4	± 0.5		
	0, _NH							
	l ì							
4c	$\Box$	310	0.029 ±	0.005	85.1	± 0.5		
	Ň							
	ON NH							
5c		310	trans→cis	cis→trans	trans→cis	cis→trans		
	N∕ ^{CO} ₂Me ↓		0.020 ± 0.001	0.123 ±	86.1 ± 0.1	81.4 ± 0.2		
				0.006				

*Note:* for the *N*-aceturyl compounds **2c**-**5c** the measurements were conducted in buffered deuterium oxide (potassium phosphate buffer, 70 mM, pH 7)

solvent	ET,	compound 2a				compound	3a	compound 4a			
	kJ mol ⁻¹	$\square$						$\square$			
		Me	PO2C	CO ₂ Me	Me	02C''''	CO ₂ Me	N			
			н₃с∽о			н₃с∕∽о		н₃с∕о			
		Т, К	k, s ⁻¹	E [≠] ,	Т, К	k, s ⁻¹	E [≠] ,	Т, К	k, s ⁻¹	E [≠] ,	
				kJ mol ⁻¹			kJ mol ⁻¹			kJ mol ⁻¹	
toluene-d ₈	141.8	298	2.81 ±	70.4 ±	298	0.024	82.2 ±	298	0.090	79.0 ±	
			0.25	0.3		±	0.6		±	0.1	
						0.005			0.005		
benzene-d ₆	143.5	298	2.42 ±	70.8 ±	298	0.024	82.2 ±	298	0.073	79.5 ±	
			0.05	0.1		±	0.2		±	0.2	
						0.002			0.005		
THF-d ₈	156.5	298	2.55 ±	70.7 ±	298	0.019	82.8 ±	298	0.103	78.6 ±	
			0.03	0.1		±	0.3		±	0.1	
						0.002			0.005		
CD ₂ Cl ₂	171.9	298	0.742	73.7 ±	298	0.0067	85.4 ±	298	0.028	81.8 ±	
			±	0.1		±	0.4		±	1.8	
			0.010			0.0010			0.014		
$acetone-d_6$	176.5	298	1.07 ±	72.8 ±	310	0.037	84.5 ±	310	0.197	80.2 ±	
			0.03	0.1		±	0.2		±	0.1	
						0.002			0.005		
CD ₃ CN	190.8	298	0.469	74.9 ±	310	0.019	86.2 ±	298	0.029	81.8 ±	
			±	0.1		±	0.2		±	0.1	
			0.011			0.001			0.001		
$ethanol-d_6$	217.1	310	0.787	76.6 ±	310	0.011	87.6 ±	310	0.027	85.3	
			±	0.1		±	0.6		±	±0.2	
			0.022			0.002			0.002		
methanol-	232.2	310	0.575	77.4 ±	310	0.0085	88.3 ±	310	0.025	85.5 ±	
d ₄			±	0.2		±	0.4		±	0.5	
			0.035			0.0011			0.004		
D ₂ O	264.0	298	0.019	82.8 ±	310	0.0015	92.8 ±	310	0.009	88.2 ±	
			±	0.3		±	1.9		±	0.3	
			0.002			0.0008			0.001		

**Table S5.** Amide rotation kinetics for the *N*-acetyl compounds measured in different solvents

## **Copies of the NMR spectra for the Pdc derivatives** Compound **2a** in deuterium oxide:



ر 173.93						Current Da NAME EXPNO PROCNO	ata Param vk_Pdo 152	eters 2_2 1				~61.16 ~60.15	- 53.12 - 52.83		- 29.35 - 27.69	-21.19	
\$x*\ <b>\$</b> x\1; <b>\$</b> x\2; <b>\$</b> \$ <b>\$</b> \$ <b>\$</b> \$ <b>\$</b> \$ <b>\$</b> \$ <b>\$</b> \$\$ <b>\$</b> \$ <b>\$</b> \$ <b>\$</b> \$ <b></b>		Many American M	ng paga ang			F2 - Acquis Date_ Time PROBHD PPUEROG TD SOLVENT NS SWH FIDRES AQ RG AQ DW DE TE D1 2011 TD0	sition Para 201705C 201705C 201705C 201705C 5 mm PA 3 2768 8 40760.8 1.2435 0.401954 2050 12.267 10.00 u 299.0 K 2.000000 0.030000C 32	ameters 33 ect ATXI 1H/ 330 20 71 Hz 223 Hz 1 sec 1 sec 1 sec .0 sec 00 sec					Y				
175	174 1	73	ppm		= ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	SF01 NUC1 P1 PLW1 SF02 NUC2 CPDPRG[ PCPD2 PCPD2 PCP2 PLW2 PLW12	CHANNE 176.0763 13C 11.50 u 250.00000 CHANNE 700.1728 1H 2 wali 65.00 15.00000 0.37300	EL f1 ==== 711 MHz sec 0000 W EL f2 ===== 007 MHz tz16 00 usec 000 W 000 W									
nskinger Ballannan (n fashi farjer barreska 19 Tanay yarran sa'd galar (ngalar) jarang	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	sag ad di fi dadi. Lip	n i an la tha fa ga gan Mira ng ha ta cag ri	a je bil je bil bil som den narr það fregt friga stör	, bin , bin , p	F2 - Proces SI SF 1' WDW SSB 0 LB 0 PC 0 PC	ssing para 32768 76.057887 EM 1.00 Hz 2.00	ameters 70 MHz z	4 data (h) data, m, et k, n 197 Matematika (h) 19	ille condense ( 4, jei	in dia Jama, dia pao Ji	aste odus object (fig	l de brance and an	fachar an le raf a facha é di Mirigar de le galet de la facha de la fachar d	ands generally a chain	وال المراجع ال	sad al la constantina di Santa Nel a sua constanti a parte
190 180	 170	 160	 150	 140	130	 120	 110	 100	 90			60	 50	40			 10 ppm





⊂ 174.23 - 173.96 - 173.74	Current Data Parameters NAME vk_Pdc_2 EXPNO 172 PROCNO 1	- 59.49 - 59.49 - 53.03	- 29.15 - 26.98 - 21.14
wapely an interest land with land and an interest and an interest	F2 - Acquisition Parameters Date_ 20170504 Time 0.56 INSTRUM spect PROBHD 5 mm PATXI 1H/ PULPROG zgig30 TD 32768 SOLVENT D20 NS 256 DS 8 SWH 40760.871 Hz FIDRES 1.243923 Hz AQ 0.4019541 sec RG 2050 DW 12.267 usec DE 10.00 usec TE 299.0 K D1 2.0000000 sec D11 0.0300000 sec TD0 32	\/ \/	
175 174 173 ppm	====== CHANNEL f1 ======   SF01 176.0763711 MHz   NUC1 13C   P1 11.50 usec   PLW1 250.00000000 W   ====== CHANNEL f2 ======   SF02 700.1728007 MHz   NUC2 1H   CPDPRG[2 waltz16   PCPD2 65.00 usec   PLW12 0.37300000 W		
$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$	F2 - Processing parameters SI 32768 SF 176.0578870 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 2.00	1/2.2.10.10.2.1.10.10.4.11.4.11.4.14.4.14.	Lade states a fill angle ( 101 , and ) become view filsely also 1 g11 maps 100 7 gg/sp ¹⁰ 1 g1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
190 180 170 160 150 140	130 120 110 100 90	80 70 60 50 40	30 20 10 ppm



Compound 2b in deuterium oxide





Compound **3b** in deuterium oxide





Compound **2c** in buffered deuterium oxide





Compound **3c** in buffered deuterium oxide



## **Copies of the NMR spectra for rest of compounds** Bn-(MeO)mPdc-OMe in chloroform-d







page S19



HCl·H-(MeO)mPdc-OMe in methanol-d₄



HCl·H-(MeO)rPdc-OMe in methanol-d₄

in deuterium oxide:



### Compound 4a in deuterium oxide:







Compound **4b** in deuterium oxide:





Compound **5b** in deuterium oxide:

### Compound **4c** in buffered deuterium oxide



Compound **5c** in deuterium oxide:

