Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information for

Phenothiazine-linked Nucleosides and Nucleotides for Redox Labelling of DNA

Anna Simonova,^a Luděk Havran,^b Radek Pohl,^a Miroslav Fojta,^{*b,c} Michal Hocek^{*a,d}

^{*a*} Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic

^b Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic

^c Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic

^d Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic

Contents:

- 1. Kinetics of incorporation of dNTPs
- 2. NEAR
- 3. PCR
- 4. TdT (full gels)
- 5. Fluorescence
- 6. MALDI-TOF spectra (ssDNA)
- 7. Copies of NMR spectra
- 8. Additional electrochemistry data
- 9. References

1. Kinetics of incorporation of modified dNTPs

Figure S1 PAGE analyses of kinetic single nucleotide extension experiments with temp^{tempA} using KOD XL DNA polymerases $dA^{PT}TP$ (dA^{PT}) in comparison with natural dATP (+). Time intervals are given in minutes.

Figure S2 PAGE analyses of kinetic single nucleotide extension experiments with temp^{tempA} using KOD XL DNA polymerases $dA^{EPT}TP$ (dA^{EPT}) in comparison with natural dATP (+). Time intervals are given in minutes.

Figure S3 PAGE analyses of kinetic single nucleotide extension experiments with temp^{tempC} using KOD XL DNA polymerases $dC^{PT}TP$ (dC^{PT}) in comparison with natural dCTP (+). Time intervals are given in minutes.

Figure S4 PAGE analyses of kinetic single nucleotide extension experiments with temp^{tempC} using KOD XL DNA polymerases $dC^{EPT}TP$ (dC^{EPT}) in comparison with natural dATP (+). Time intervals are given in minutes.

2. NEAR

Figure S5 Incorporation of modified dNTPs in NEAR. L: DNA ladder; A^{PT}: product of NEAR with **dA^{PT}TP**, dCTP, dGTP, dTTP; A^{EPT}: product of NEAR with **dA^{EPT}TP**, dCTP, dGTP, dTTP; C^{PT}: product of NEAR with **dC^{PT}TP**, dATP, dGTP, dTTP; C^{EPT}: product of NEAR with **dC^{EPT}TP**, dATP, dGTP, dTTP

3. PCR

Figure S6 PCR synthesis of 98-mer by KOD XL polymerase L: DNA ladder; +: product of PCR with natural dNTPs; A-: product of PCR with dCTP, dGTP, dTTP; C-: product of PCR with dATP, dGTP, dTTP; A^{PT}: product of PCR with **dA**^{PT}**TP**, dCTP, dGTP, dTTP; A^{EPT}: product of PCR with **dA**^{EPT}**TP**, dCTP, dGTP, dTTP; C^{EPT}: product of PCR with **dC**^{EPT}**TP**, dCTP, dGTP, dTTP; C^{EPT}: product of PCR with **dC**^{EPT}**TP**, dATP, dGTP, dTTP.

Figure S7 PCR synthesis of 98-mer by KOD XL polymerase. L: DNA ladder; +: product of PCR with natural dNTPs; A-: product of PCR with dCTP, dGTP, dTTP; C-: product of PCR with dATP, dGTP, dTTP; A^{PT} : product of PCR with $dA^{PT}TP$, dCTP, dGTP, dTTP; A^{EPT} : product of PCR with $dA^{EPT}TP$, dCTP, dGTP, dTTP; A^{EPT} : product of PCR with $dA^{EPT}TP$, dCTP, dGTP, dTTP. The percentage corresponds to the proportion of modified triphosphates ($dA^{PT}TP$ or $dA^{EPT}TP$) in combination with natural dATP in the PCR reaction mixture.

Figure S8 PCR synthesis of 98-mer by KOD XL polymerase with FAM-lableled primers. L: DNA ladder; +: product of PCR with natural dNTPs; A-: product of PCR with dCTP, dGTP, dTTP; C-: product of PCR with dATP, dGTP, dTTP; A^{PT} : product of PCR with $dA^{PT}TP$, dCTP, dGTP, dTTP; A^{EPT} : product of PCR with $dA^{EPT}TP$, dCTP, dGTP, dTTP. The percentage corresponds to the proportion of modified triphosphates ($dA^{PT}TP$ or $dA^{EPT}TP$) in combination with natural dATP in the PCR reaction mixture.

4. TdT (Full gels)

Figure S9 TdT-catalyzed DNA chain elongation. Pr: primer; S-standard (PEX product of temp^{termA} with dATP); A+, A^{PT} and A^{EPT} : products of primer^{rnd} elongation using terminal transferase and either dATP, $dA^{PT}TP$ or $dA^{EPT}TP$ respectively. Time intervals are given in hours.

Figure S10 TdT-catalyzed DNA chain elongation. Pr: primer; S-standard (PEX product of temp^{termC} with dCTP); C+, C^{PT} and C^{EPT}: products of primer^{rnd} elongation using terminal transferase and either dCTP, $dC^{PT}TP$ or $dC^{EPT}TP$ respectively. Time intervals are given in hours.

5. Fluorescence

Determination of extinction coefficients

Extinction coefficients were measured using 1 ml quartz cuvettes on a Cary 100 UV-VIS spectrometer (Agilent Technologies). The absorption coefficients were calculated according to the following The Beer-Lambert Law equation

$$A = C.l.\varepsilon$$

where ε is the extinction coefficient, *C* is the exact concentration of the sample in the cuvette, *l* is the length of the path that the light travels through the cuvette and *A* is the absorbance of the sample. Measurements were triplicated.

Determination of fluorescence quantum yields

Fluorescence spectra were measured on a Fluoromax 4 spectrofluorimeter equiped with a thermostated cuvette holder at 25 °C. (HORIBA Scientific). The excitation wavelength was 350 nm and the recorded spectral range was 370 - 680 nm. Relative determination of the fluorescence quantum yields was performed using quinine sulfate in 0.5 M H₂SO₄ ($\Phi_f = 0.546$ at 25 °C) as a standard.^{S1} The absorbance of sample solutions at the excitation wavelength were kept below 0.08 to avoid inner filter effect. The quantum yields were calculated using following equation^{S2}

$$\Phi_{f,x} = \Phi_{f,st} \frac{F_x}{F_{st}} \frac{1 - 10^{-Abs_{st}}}{1 - 10^{-Abs_x}} \frac{n_x^2}{n_{st}^2}$$

where Φ_f is the quantum yield, *F* is the integrated fluorescence intensity, *Abs* is the absorbance of solution at the excitation wavelength, *n* is the refractive index of the solvent. The subscripts *x* and *st* stand for the sample and standard, respectively. Measurements were triplicated.

Figure S11 Normalized absorption (dashed lines) and fluorescence (solid lines) of compounds dA^{EPT} and dC^{EPT} in EtOH

Figure S12 Fluorescence spectra of modified dA^{EPT} and dC^{EPT} in EtOH; $dA^{EPT}TP$ and $dC^{EPT}TP$ in aqueous solutions

Figure S13 fluorescence spectra (λ ex=486 nm) of ON^{*md16*} **A**^{EPT} obtained after incubation of PEX reaction mixtures containing **dA**^{EPT}**TP**, dCTP, dTTP, dGTP, primer^{*md*} and biotinylated temp^{*md16*} either with (red line) or without (black line) KOD XL DNA polymerase The reaction mixture (100 µL) contained biotinylated template^{*rmd16*} (100 µM, 3.2 µL), primer^{*rmd*} (100 µM, 3.2 µL), dNTPs (4 mM, 5.2 µL), KOD XL polymerase (1.25 U KOD XL; in the case of negative control Milli-Q water was added instead) in enzyme reaction buffer (5 µL) supplied by the manufacturer. The reaction mixture was incubated for 1h at 60 °C in a thermal cycler. The reaction was stopped by cooling to 4°C. DNA from solutions was isolated using Streptavidin Magnetic Particles (Roche, 100 µL). and purified by using QIAquick Nucleotide Removal Kit (QIAGEN). The difference between two samples indicates that **dA**^{EPT}**TP** is accepted as a substrate by DNA polymerase and does not bind unspecifically to DNA.

6. MALDI-TOF spectra

Figure S14 MALDI-TOF spectrum of $ON^A A^{PT}$. Calculated: 6185.2 Da; found: 6186.5 Da; $\Delta = 1.30$

Figure S15 MALDI-TOF spectrum of $ON^A A^{EPT}$. Calculated: 6209.2 Da; found: 6210.6 Da; $\Delta = 1.40$

Figure S16 MALDI-TOF spectrum of ON^{*C*} C^{PT}. Calculated: 6162.2 Da; found: 6163.5 Da; Δ = 1.30

Figure S17 MALDI-TOF spectrum of $ON^C C^{EPT}$. Calculated: 6186.2 Da; found: 6187.5 Da; $\Delta = 1.30$

Figure S18 MALDI-TOF spectrum of ON^{*rnd16*} A^{PT}. Calculated: 10458.46 Da; found: 10459.00 Da; $\Delta = 0.54$

Figure S19 MALDI-TOF spectrum of $ON^{rnd16} A^{EPT}$. Calculated: 10554.54 Da; found: 10555.3 Da; $\Delta = 0.76$

Figure S20 MALDI-TOF spectrum of ON^{*rnd16*} C^{PT}. Calculated: 10462.46 Da; found: 10463.8 Da; $\Delta = 1.34$

Figure S21 MALDI-TOF spectrum of $ON^{rnd16} C^{EPT}$. Calculated: 10558.54 Da; found: 10559.3 Da; $\Delta = 0.76$

Figure S22 MALDI-TOF spectrum of $ON^{rnd16} A^{PT}C^{EBF}$. Calculated: 11031,10 Da; found: 11032.90 Da; $\Delta = 1.8$

* Found mass 10871,7 Da corresponds to the absence of one N-Me group from phenothiazine label in the sample $[M-CH_3]^+$

Nick_1A 5'-P-GTCGTGAGTG-3'

Figure S24 MALDI-TOF spectrum of ON^{Nick_IA} A^{PT}. Calculated: 3388.29 Da; found: 3389.4 Da; $\Delta = 1.11$

Figure S25 MALDI-TOF spectrum of ON^{Nick_*IA*} A^{EPT}. Calculated: 3412.31 Da; found: 3413.4 Da; $\Delta = 1.09$

Nick_10mer_1C 5'-P-GT<u>C</u>ATGAGTG-3'

Figure S26 MALDI-TOF spectrum of ON^{Nick_IC} C^{PT}. Calculated: 3373.69 Da; found: 3374.5 Da; $\Delta = 0.81$

Figure S27 MALDI-TOF spectrum of $ON^{Nick_{IC}}C^{EPT}$. Calculated: 3397.41 Da; found: 3398.4 Da; $\Delta = 0.99$

Figure S28 MALDI-TOF spectrum of ON^{Nick_2A} A^{PT}. Calculated: 3517.58 Da; found: 3519.3 Da; Δ = 1.72

Figure S29 MALDI-TOF spectrum of ON^{Nick_2A} A^{EPT}. Calculated: 3565.62 Da; found: 3566.8 Da; $\Delta = 1.18$

Figure S30 MALDI-TOF spectrum of ON^{Nick_2C} C^{PT}. Calculated: 3519.58 Da; found: 3520.4 Da; $\Delta = 1.34$

Figure S31 MALDI-TOF spectrum of $ON^{Nick_2C} C^{EPT}$. Calculated: 3567.62 Da; found: 3568.7 Da; $\Delta = 1.34$

5'-P-T<u>A</u>GC<u>A</u>TGCT<u>A</u>CGTC<u>A</u>G-3'

Figure S32 MALDI-TOF spectrum of ON^{Nick_4A} A^{PT}. Calculated: 5801.36 Da; found: 5802.8 Da; $\Delta = 1.44$

Figure S33 MALDI-TOF spectrum of ON^{Nick_4A} A^{EPT}. Calculated: 5897.44 Da; found: 5898.7 Da; $\Delta = 1.26$

5'-P-TAG<u>C</u>ATG<u>C</u>TA<u>C</u>GT<u>C</u>AG-3

Figure S34 MALDI-TOF spectrum of $ON^{Nick_{4C}}C^{PT}$. Calculated: 5805.36 Da; found: 5806.6 Da; $\Delta = 1.24$

Figure S35 MALDI-TOF spectrum of ON^{Nick_4C} C^{EPT}. Calculated: 5901.44 Da; found: 5902.5 Da; $\Delta = 1.06$

7. Copies of NMR spectra

¹H NMR and ¹³C spectra of dC^{PT} .

¹H NMR and ¹³C spectra of **dA**^{PT}.

¹H NMR and ¹³C spectra of dC^{EPT} .

¹H NMR and ¹³C spectra of **dA**^{EPT}.

¹H NMR, ¹³C and ³¹P spectra of **dA**^{PT}**TP**.

S26

¹H NMR, ¹³C and ³¹P spectra of $dC^{EPT}TP$.

¹H NMR, ¹³C and ³¹P spectra of **dA**^{EPT}**TP**.

8. Additional electrochemistry data

Figure S36 CV responses of dA^{EPT} (a), dC^{EPT} (b) at PGE. C = 40 μ M, electrolyte 0.2 M acetate buffer (pH 5,0). CV parameters: scan rate 1V/s, Ei = 0.0 V, Esw see legend in the Figure.

(Supplement to Fig. 6 that shows CVs of PT and **dN**^{PT} conjugates)

Figure S37 Components of the SWV current of phenothiazine (a), dA^{PT} (b), dC^{PT} (c), dA^{EPT} (d), dC^{EPT} (e) at PGE. C = 40 μ M, electrolyte 0.2 M acetate buffer (pH 5,0). parameters: frequency 200 Hz, amplitude 50 mV, Ei = 0.0 V. net current (black), forward current (red), backward current (blue).

(Supplement to Fig. 7 to demonstrate reversibility of SWV peak PT^{ox1} and irreversibility of the more positive signals. See the counter peak on blue curves representing the backward current component).

	PT ^{ox1} /mV	PT ^{ox2} /mV	PT ^{ox3} /mV	dC/mV
PT	625	920	1290	-
dA ^{PT}	655 [*]	920	1355	-
dAEPT	655 [*]	860	1360	-
dCPT	630 [*]	855	1330	1160
dCEPT	640/720#	880/985	1330	1160

Table S1 SWV peak potentials of PT, PT-modified nucleosides and ONs

	PT ^{ox1} /mV	PT ^{ox2} /mV	PT ^{ox3} /mV	$PT^{ox2}/G(A^*)^{ox}/$	G(A*)°×/	A ^{ox} /mV
				mV	mV	
$ON^{nick_{4A}} A^{PT}$	460	790	1285	-	1060	-
ON ^{nick_4A} A ^{EPT}	510	-	1320	995	-	-
ON ^{nick} natural	-	-	-	-	1080	1360

	PT ^{ox1} /mV	PT ^{ox2} /mV	G ^{ox} /mV	A ^{ox} /mV
$ON^{rnd16}A^{PT}$	550	815	1090	1360
ON ^{rnd16} natural	-	-	1080	1360

All potentials are given against Ag|AgCl|3M KCl reference electrode; conditions of measurements as in Fig. 6 and Fig. 7.

*the major SWV peak

[#]range of potentials spanning the double-peak envelope, see Fig. 7

9. References

S1 W. H. Melhuish, W. H. J. Phys. Chem., 1961, 65, 229-235

S2 C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, *Nature Protocols*, 2013, 8, 1535–1550.