Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Palladium-Catalyzed Allylic Amination and Metathesis Reactions: Powerful Tools for the Enantioselective Synthesis of Acyclic Nucleoside Phosphonate Analogues of Cidofovir

Mariam Azzouz, Sébastien Soriano, Margarita Escudero-Casao, M. Isabel Matheu, Sergio Castillón*, Yolanda Díaz*

Departament de Química Analítica i Química Orgànica, Facultat de Química, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona 43007, Spain

INDEX

¹ H NMR and ¹³ C NMR spectra of compound ent-7a	S2
¹ H NMR and ¹³ C NMR spectra of compound 7b	S 3
¹ H NMR and ¹³ C NMR spectra of compound ent-7c	S4
¹ H NMR and ¹³ C NMR spectra of compound ent-7d	S 5
¹ H NMR and ¹³ C NMR spectra of compound 7e	S6
¹ H NMR and ¹³ C NMR spectra of compound 8a	S7
¹ H NMR and ¹³ C NMR spectra of compound 8b	S8
¹ H NMR and ¹³ C NMR spectra of compound 8e	S9
¹ H NMR and ¹³ C NMR spectra of compound 9a	S10
¹ H NMR and ¹³ C NMR spectra of compound 9b	S11
¹ H NMR and ¹³ C NMR spectra of compound 9e	S12
¹ H NMR and ¹³ C NMR spectra of compound 1	S13
¹ H NMR and ¹³ C NMR spectra of compound 2	S14
¹ H NMR and ¹³ C NMR spectra of compound 10	S15
¹ H NMR and ¹³ C NMR spectra of compound 11	S16
¹ H NMR and ¹³ C NMR spectra of compound 12	S17
HPLC traces	S18

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of (*R*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-1-(1-hydroxybut-3-en-2-yl)-cytosine (ent-7a).

¹³C NMR (CDCl₃, 100.6 MHz, δ in ppm) of (R)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-1-(1-hydroxybut-3-en-2-yl)-cytosine (ent-7a).

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of (S)-N,N-Bis(tert-butoxycarbonyl)-9-(1-hydroxybut-3-en-2-yl)adenine (7b).

 13 C NMR (CDCl₃, 100.6 MHz, δ in ppm) of (S)-N,N-Bis(tert-butoxycarbonyl)-9-(1-hydroxybut-3-en-2-yl)adenine (7b).

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of (*R*)-6-chloro-9-(1-hydroxybut-3-en-2-yl)-9*H*-purine (ent-7c).

$^{13}\mathrm{C}$ NMR (CDCl₃, 100.6 MHz, δ in ppm) of of (R)-6-chloro-9-(1-hydroxybut-3-en-2-yl)-9H-purine (ent-7c)

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of (*R*)-1-(1-hydroxybut-3-en-2-yl)-1*H*-benzo[d]imidazole (ent-7d)

¹³C NMR (CDCl₃, 100.6 MHz, δ in ppm) of (*R*)-1-(1-hydroxybut-3-en-2-yl)-1*H*-benzo[d]imidazole (ent-7d).

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of (*S*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-2-(2-amino-6-chloro-9H-purin-9-yl)but-3-en-1-ol (7e).

¹³C NMR (CDCl₃, 100.6 MHz, δ in ppm) of (S)-N,N-Bis(*tert*-butoxycarbonyl)-2-(2-amino-6-chloro-9H-purin-9-yl)but-3-en-1-ol (7e).

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of (*S*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-1-[1-(*tert*-butyldiphenylsilyloxy)but-3-en-2-yl]cytosine (8a).

¹³C NMR (CDCl₃, 100.6 MHz, δ in ppm) of (S)-N,N-Bis(*tert*-butoxycarbonyl)-1-[1-(*tert*-butyldiphenylsilyloxy)but-3-en-2-yl]cytosine (8a)

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of (S)-N,N-Bis(*tert*-butoxycarbonyl)-9-[1-(tert-butyldiphenylsilyloxy)but-3-en-2-yl]adenine (8b)

¹³C NMR (CDCl₃, 100.6 MHz, δ in ppm) of (S)-N,N-Bis(*tert*-butoxycarbonyl)-9-[1-(tert-butyldiphenylsilyloxy)but-3-en-2-yl]adenine (8b)

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of (*S*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-9-(1-(*tert*-butyldiphenylsilyloxy)but-3-en-2-yl)-2-amino-6-chloro-9H-purine (8e).

¹³C NMR (CDCl₃, 100.6 MHz, δ in ppm) of (*S*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-9-(1-(*tert*-butyldiphenylsilyloxy)but-3-en-2-yl)-2-amino-6-chloro-9H-purine (8e).

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of Diethyl (2*E*,4*S*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-1-[1-(*tert*-butyldiphenylsilyloxy)-5-phosphonopent-3-en-2-yl]cytosine (9a).

¹³C NMR (CDCl₃, 100.6 MHz, δ in ppm) of Diethyl (2*E*,4*S*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-1-[1-(*tert*-butyldiphenylsilyloxy)-5-phosphonopent-3-en-2-yl]cytosine (9a).

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of Diethyl (2*E*,4*S*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-1-[1-(*tert*-butyldiphenylsilyloxy)-5-phosphonopent-3-en-2-yl]adenine (9b)

¹³C NMR (CDCl₃, 100.6 MHz, δ in ppm) of Diethyl (2*E*,4*S*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-1-[1-(*tert*-butyldiphenylsilyloxy)-5-phosphonopent-3-en-2-yl]adenine (9b)

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of Diethyl (*S*,*E*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-(4-(2-amino-6-chloro-9H-purin-9-yl)-5-((*tert*-butyldiphenylsilyl)oxy)pent-2-en-1-yl)phosphonate (9e).

¹³C NMR (CDCl₃, 100.6 MHz, δ in ppm) of Diethyl (*S,E*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-(4-(2-amino-6-chloro-9H-purin-9-yl)-5-((*tert*-butyldiphenylsilyl)oxy)pent-2-en-1yl)phosphonate (9e).

¹H NMR (D₂O, 400 MHz, δ in ppm) of (2*E*,4*S*)-1-[5-phosphono-1-hydroxypent-3-en-2-yl]cytosine (1)

 13 C NMR (D₂O, 100.6 MHz, δ in ppm) of (2*E*,4*S*)-1-[5-phosphono-1-hydroxypent-3-en-2-yl]cytosine (1)

¹H NMR (D₂O, 400 MHz, δ in ppm) of (2*E*,4*S*)-1-[5-phosphono-1-hydroxypent-3-en-2-yl]adenine (2)

 ^{13}C NMR (D₂O, 100.6 MHz, δ in ppm) of (2*E*,4*S*)-1-[5-phosphono-1-hydroxypent-3-en-2-yl]adenine (2)

¹H NMR (500 MHz, D₂O) of (S,E)-(4-(2-amino-6-chloro-9H-purin-9-yl)-5-hydroxypent-2-en-1-yl)phosphonic acid (10).

¹³C NMR (126 MHz, D₂O) of (S,E)-(4-(2-amino-6-chloro-9H-purin-9-yl)-5-hydroxypent-2-en-1-yl)phosphonic acid (10).

¹H NMR (CDCl₃, 400 MHz, δ in ppm) of Diethyl (*S*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-1-[1-(*tert*-butyldiphenylsilyloxy)-5-phosphonopent-2-yl]cytosine (11)

¹³C NMR (CDCl₃, 100.6 MHz, δ in ppm) of Diethyl (*S*)-*N*,*N*-Bis(*tert*-butoxycarbonyl)-1-[1-(*tert*-butyldiphenylsilyloxy)-5-phosphonopent-2-yl]cytosine (11)

¹H NMR (D₂O, 400 MHz, δ in ppm) of (S)-1-[5-phosphono-1-hydroxypent-2-yl]cytosine (12)

 $^{13}\mathrm{C}$ NMR (D₂O, 100.6 MHz, δ in ppm) of (S)-1-[5-phosphono-1-hydroxypent-2-yl]cytosine (12)

HPLC TRACES

ent-7a: Daicel Chiralcel OD-H, *n-hexane-ⁱPrOH*, 90:10, flow = 0.5 mL/min, detection, uv 210 nm; retention times (min), 9.79, 11.42, $t_R(R) = 9.79$ min and $t_R(S) = 11.42$ min): 75 %*ee*

7b: Daicel Chiralcel OD-H, *n-hexane-*^{*i*}*PrOH* 85:15, flow = 0.5 mL/min, detection, uv 254 nm; retention times (min), 11.77, 13.47, $t_R(R) = 11.77$ min and $t_R(S) = 13.47$ min): **92 %***ee*

ent-7c: Daicel Chiralcel OD-H, *n*-hexane-^{*i*}PrOH, 90:10, flow = 1 mL/min, detection, uv 210 nm; retention times (min), 17.12, 18.36, $t_R(R) = 17.12 \text{ min and } t_R(S) = 18.36 \text{ min}$): 91.4 %ee

ent-7d: Daicel Chiralcel OD-H, *n-hexane-ⁱPrOH*, 92:08, flow = 1.0 mL/min, detection, uv 220 nm; retention times (min), 17.84, 25.57, $t_R(R) = 17.84$ min and $t_R(S) = 25.57$ min): **88** %*ee*

7e: Daicel Chiralcel OD-H, *n-hexane-*^{*i*}*PrOH* 90:10, flow = 0.6 mL/min, detection, uv 230 nm; retention times (min), 13.5, 15.2, $t_R(R) = 13.5$ min and $t_R(S) = 15.2$ min): **92** %*ee*

Peak	RetTime	Туре	Width	Area	Height	Area
ŧ	[min]		[min]	[mAU*s]	[mAU]	암
				I		
1	13.588	BB	0.3636	172.97897	7.26869	3.7616
2	15.228	ВB	0.4599	4425.59814	147.54933	96.2384