Supporting Information

Corrected version March 30, 2018

Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael additionreactions of carboxylate-substituted enonesFeng Yin, Ainash Garifullina, and Fujie Tanaka*

Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan

1. Synthesis of enones S2
2. Synthesis of catalysts S3
3. Screening of catalysts and conditions S4
4. Michael addition reactions to afford 2 S5
5. Transformations of $\mathbf{2}$ to pyrrolidine-3-carboxylic acid and β^{2}-amino acid derivatives S10
6. References S16
7. HPLC charts S17
8. NMR spectra S31

General

For thin layer chromatography (TLC), Merck silica gel 60 F254 aluminum sheets were used. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker Avance 400. Proton chemical shifts are reported in ppm downfield from tetramethylsilane or from the residual solvent as internal standard in $\mathrm{CDCl}_{3}(\delta 7.26 \mathrm{ppm})$ and in $\mathrm{CD}_{3} \mathrm{OD}(\delta 3.31 \mathrm{ppm})$. Carbon chemical shifts were internally referenced to the deuterated solvent signals in $\mathrm{CDCl}_{3}(\delta 77.0 \mathrm{ppm})$ and in $\mathrm{CD}_{3} \mathrm{OD}(\delta 49.0 \mathrm{ppm})$. High-resolution mass spectra were recorded on a Thermo Scientific LTQ Orbitrap ESI ion trap mass spectrometer. Optical rotations were measured on a Jasco P2200 polarimeter.

Note

This corrected version was prepared based on the correct structure of $\mathbf{3}$, determined from the X-ray crystal structure of a derivative of $\mathbf{3}$, which will be reported separately in the future.

1. Synthesis of enones

General procedure for the synthesis of enones

Enones were synthesized according to the reported procedures. ${ }^{1}$ To a solution of glyoxylate ester or its derivative (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, 1-(triphenylphosphoranylidene)-2-propanone or its derivative (33 mmol) was added and the mixture was stirred at room temperature $\left(25^{\circ} \mathrm{C}\right)$ for 24 h . The mixture was concentrated and purified by flash column chromatography (hexane/EtOAc) to give enone 1.

Known compound. ${ }^{2}$ Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.01(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 197.6,165.4,139.9,131.6,61.4,28.0,14.1$.

Known compound. ${ }^{3}$ Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.96(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.59(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (septet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 197.6,164.9,139.7,132.1,69.0,27.9,21.6$.

Known compound. ${ }^{4}$ Pale yellow oil. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 197.4,165.3,140.3,135.2,128.7,128.6,128.4,67.2,28.1$.

Known compound. ${ }^{5}$ Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.91(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.9,164.6$, 139.2, 133.7, 82.1, 28.0, 27.9.

Known compound. ${ }^{4}$ Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.1,165.5,139.1,130.6,61.3$,
34.7, 14.1, 7.6.

Known compound. ${ }^{4}$ Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 200.0,165.4,139.6,135.2,130.2,128.6,128.5,128.4$, 67.1, 34.8, 7.6.

Known compound. ${ }^{6}$ This (Z)-isomer was generated during the synthesis of the (E)-isomer and was purified by flash column chromatography. Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.45(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 201.3,165.2,141.6,124.7,61.2,30.0,14.0$.

Known compound. ${ }^{7}$ Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.07(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.4, 167.6, 140.9, 132.3, 61.6, 32.1, 14.3, 14.1.

2. Synthesis of catalysts

General procedure for the synthesis of catalysts F and G

Catalysts \mathbf{F} and \mathbf{G} were synthesized according to the reported procedure. ${ }^{8}$ To a solution of $(1 R, 2 R)$-cyclohexanediamine $(154.0 \mathrm{mg}, 0.64 \mathrm{mmol})$ in dry THF $(5.0 \mathrm{~mL})$, the corresponding isocyanate $(0.70 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature $\left(24^{\circ} \mathrm{C}\right)$ for 16 h . The mixture was concentrated under reduced pressure and purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=9: 1\right)$ to give the catalyst.

Catalyst F: 1-((1R,2R)-2-aminocyclohexyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea ${ }^{8}$

Known compound. ${ }^{8}$

Catalyst G

Colorless Solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.71(\mathrm{bs}, 1 \mathrm{H}), 3.60-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.57(\mathrm{~m}$, $1 \mathrm{H}), 2.39-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.07(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 185.0,148.5\left(J_{\mathrm{C}, \mathrm{F}}=\right.$ $246 \mathrm{~Hz}), 139.2\left(J_{\mathrm{C}, \mathrm{F}}=246 \mathrm{~Hz}\right), 116.7,61.9,56.0,34.5,32.5,25.9$ 25.7. ESI-HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~F}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 340.0901$, found 340.0897 .

3. Screening of catalysts and conditions

Procedure for the catalyst screening (Table 1)

To a mixture of catalyst (0.04 mmol) and additive (if used, 0.04 mmol) in solvent $(0.5 \mathrm{~mL})$, enone $1(0.2 \mathrm{mmol})$ and nitromethane $(1.0 \mathrm{mmol})$ were added at room temperature $\left(24{ }^{\circ} \mathrm{C}\right)$ and the mixture (initially often suspension) was stirred at the same temperature. The progress of the reaction was monitored by TLC. After 48 h (except noted), the mixture was poured into aqueous 1 M HCl solution (1 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column chromatography (hexane/EtOAc $=4: 1$) to afford 2. The ee was determined by chiral-phase HPLC.

Table S1. Additional catalyst screening.

entry	catalyst	yield (\%)	ee (\%)
1		0	-
2		24	23
3		0	

entry	catalyst	yield (\%)	ee (\%)
4		3	-
5		33	-

a Conditions: Enone $1(0.2 \mathrm{mmol})$, nitromethane (1.0 mmol), and catalyst (0.04 mmol) in toluene $(0.5 \mathrm{~mL})$ at $24^{\circ} \mathrm{C}$ for 48 h .

Table S2. Solvent screening in the catalyst \mathbf{F}-catalyzed reaction.

entry	solvent	yield (\%)	ee (\%)
1	toluene	51	82
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	70	85
3	CHCl_{3}	62	82
4	$\mathrm{CH}_{3} \mathrm{CN}$	34	-
5	THF	42	-
6	o-xylene	58	89
7	EtOAc	42	-
8	i-PrOH	40	-

a Conditions: Enone $\mathbf{1}(0.2 \mathrm{mmol})$, nitromethane $(1.0 \mathrm{mmol})$, and catalyst $\mathrm{F}(0.04 \mathrm{mmol})$ in solvent (0.5 mL) at $24^{\circ} \mathrm{C}$ for 48 h .

4. Michael addition reactions to afford 2

General procedure for the Michal addition reactions to afford 2 (Table 2 and Scheme 2)
To a mixture of catalyst $\mathbf{F}(0.04 \mathrm{mmol})$ and additive (if used, 0.04 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$, enone (0.2 mmol) and nitroalkane (1.0 mmol) were added at room temperature $\left(24{ }^{\circ} \mathrm{C}\right)$ and the mixture (initially often suspension) was stirred at the same temperature. The progress of the reaction was monitored by TLC. After indicated time, the mixture was poured into aqueous 1 M HCl aqueous solution (1 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column chromatography (hexane/EtOAc) to give 2. The ee was determined by chiral-phase HPLC. Racemic standards of the Michael Addition product were synthesized using racemic catalyst \mathbf{F}.

Ethyl 2-(nitromethyl)-4-oxopentanoate (Compound 2a)

To a mixture of 1-(($1 R, 2 R$)-2-aminocyclohexyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (catalyst $\mathbf{F})(15.4 \mathrm{mg}, 0.04 \mathrm{mmol})$ and acetic acid $(1.8 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$, (E)-ethyl 4-oxopent-2-enoate (1a) $(28.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and nitromethane ($54.2 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ were added at $10^{\circ} \mathrm{C}$ and the mixture (initially suspension) was stirred at the same temperature. The progress of the reaction was monitored by TLC. After 5 days, the mixture was poured into
aqueous 1 M HCl solution (1.0 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column chromatography (hexane/ EtOAc $=4: 1)$ to afford $2(30.9 \mathrm{mg}, 76 \%, 94 \%$ ee $)$.
Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.74$ (dd, $J=14.4 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.69 (dd, $J=$ $14.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=18.6 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.81(\mathrm{dd}, J=18.6 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 204.9,170.5,61.9,41.4,38.2,29.9,13.9$. ESI-HRMS: calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 204.0872, found 204.0849. HPLC (Daicel Chiralpak IA, hexane $/ i-\operatorname{PrOH}=95 / 5$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}): t_{\mathrm{R}}($ major enantiomer $)=27.0 \mathrm{~min}, t_{\mathrm{R}}($ minor enantiomer $)=24.4 \mathrm{~min}$.

A 2 gram-scale synthesis of 2a. A mixture of catalyst $\mathbf{F}(819.5 \mathrm{mg}, 2.13 \mathrm{mmol})$, enone $\mathbf{1 a}$ (2.14 $\mathrm{g}, 15.1 \mathrm{mmol})$, and nitromethane $(4.0 \mathrm{~mL}, 75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at room temperature $\left(24^{\circ} \mathrm{C}\right)$. The progress of the reaction was monitored by TLC. After 4 days, the mixture was poured into aqueous 1 M HCl solution $(15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column chromatography (hexane/EtOAc $=4: 1$) to afford $\mathbf{2 a}(2.1 \mathrm{~g}, 69 \%, 90 \% \mathrm{ee})$.

Compound 2b

The dr was determined by ${ }^{1} \mathrm{H}$ NMR analysis before purification. The diastereomers (compounds $\mathbf{2 b - 1}$ and 2b-2) were separately purified by flash column chromatography. Relative stereochemistries were tentatively assigned based on the NOESY ezperiments.

Compound 2b-1

Rf 0.35 (hexane/EtOAc = 4:1). Pale yellow oil, $21.7 \mathrm{mg}, 50 \%, 90 \%$ ee. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 4.95(\mathrm{qd}, J=8.9 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{ddd}, J=9.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 3.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.05 (dd, $J=17.9 \mathrm{~Hz}, 9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=17.9 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$, $1.57(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.9,170.6$, 82.5, 61.8, 44.2, 40.5, 29.9, 16.8, 14.0. ESI-HRMS: calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$218.1028, found 218.1004. HPLC (Daicel Chiralpak AS, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $220 \mathrm{~nm}): t_{\mathrm{R}}($ major enantiomer $)=38.4 \mathrm{~min}, t_{\mathrm{R}}($ minor enantiomer $)=44.8 \mathrm{~min}$.

Compound 2b-2

Rf 0.32 (hexane/EtOAc = 4:1). Pale yellow oil, $21.7 \mathrm{mg}, 50 \%, 93 \%$ ee. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.92(\mathrm{qd}, J=6.8 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{ddd}, \mathrm{J}=8.5 \mathrm{~Hz}, 5.6$ $\mathrm{Hz}, 4.4 . \mathrm{Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=18.0 \mathrm{~Hz}, 8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (dd, $J=18.0 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (s, $3 \mathrm{H}), 1.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.8$,
$170.5,82.0,61.8,43.6,40.3,30.0,16.2,14.0$. ESI-HRMS: calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 218.1028, found 218.1004. HPLC (Daicel Chiralpak AS, hexane $i-\operatorname{PrOH}=75 / 25$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}): t_{\mathrm{R}}($ major enantiomer $)=14.1 \mathrm{~min}, t_{\mathrm{R}}($ minor enantiomer $)=13.6 \mathrm{~min}$.

Compound 2c

Pale yellow oil, $41.6 \mathrm{mg}, 90 \%, 92 \%$ ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.66 (dd, $J=11.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.04(\mathrm{dd}, J=17.8 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dd, $J=17.8 \mathrm{~Hz}$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 204.9,170.8,88.3,61.6,48.3,41.4,29.8,25.5,23.1,14.0$. ESI-HRMS: calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$232.1179, found 232.1173. HPLC (Daicel Chiralpak AS, hexane $/ i-\mathrm{PrOH}=$ $97 / 3$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major enantiomer) $=28.4 \mathrm{~min}, t_{\mathrm{R}}$ (minor enantiomer) $=27.2 \mathrm{~min}$.

Compound 2d

Pale yellow oil, $35.3 \mathrm{mg}, 65 \%, 92 \%$ ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.30 (dd, $J=11.4 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (dd, $J=18.0 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57-2.42 (m, 3H), 2.15 $(\mathrm{s}, 3 \mathrm{H}), 1.77-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.12(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 205.3,170.6,91.8,61.5,49.2,40.9,33.3,31.4,29.9,24.4,22.2,22.1,14.0$. ESI-HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$272.1498, found 272.1470. HPLC (Daicel Chiralpak IA, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major enantiomer) $=20.1 \mathrm{~min}, t_{\mathrm{R}}$ $($ minor enantiomer $)=17.9 \mathrm{~min}$.

Compound 2e

Pale yellow oil, $43.7 \mathrm{mg}, 85 \%$, 93% ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.21-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.56$ (dd, $J=10.8 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=18.0 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.49$ (m, 1H), $2.50(\mathrm{dd}, J=18.0 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.3,170.7,100.3$, $61.5,47.3,42.1,36.8,35.3,29.8,24.0,23.6,14.0$. ESI-HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 258.1341, found 258.1319. HPLC (Daicel Chiralpak AS, hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}): t_{\mathrm{R}}($ major enantiomer $)=28.4 \mathrm{~min}, t_{\mathrm{R}}($ minor enantiomer $)=27.2 \mathrm{~min}$.

Compound 2f

Pale yellow oil, $32.6 \mathrm{mg}, 75 \%, 94 \%$ ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.05$ (septet, $J=6.2 \mathrm{Ha}$, $1 \mathrm{H}), 4.73$ (dd, $J=14.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.46$ (m, 1H), 3.03 (dd, $J=18.5 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=18.5 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.24$ (d, $J=$ $6.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.9,170.0,74.8,69.7,41.4,38.4,29.9,21.6,21.5$. ESI-HRMS: calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$218.1028, found 218.1004. HPLC (Daicel Chiralpak AS, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}): t_{\mathrm{R}}($ major enantiomer $)=45.1 \mathrm{~min}$, $t_{\mathrm{R}}($ minor enantiomer $)=43.2 \mathrm{~min}$.

Compound 2g

Pale yellow oil, $38.2 \mathrm{mg}, 72 \%, 94 \%$ ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.16$ $(\mathrm{s}, 2 \mathrm{H}), 4.80-4.67(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=18.6 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=$ $18.6 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.8,170.4,135.0,128.7$, 128.6, 128.3, 74.6, 67.6, 41.4, 38.3, 29.8. ESI-HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$266.1028, found 266.1003. HPLC (Daicel Chiralpak AS, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $220 \mathrm{~nm}): t_{\mathrm{R}}($ major enantiomer $)=44.8 \mathrm{~min}, t_{\mathrm{R}}($ minor enantiomer $)=39.0 \mathrm{~min}$.

Compound 2h

Pale yellow oil, $36.5 \mathrm{mg}, 79 \%, 93 \%$ ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.69$ (dd, $J=14.0 \mathrm{~Hz}, 6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=18.5 \mathrm{~Hz}, 5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.76(\mathrm{dd}, J=18.5 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.2,169.5,82.6,74.9,41.5,39.0,29.9,27.8$. ESI-HRMS: calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 232.1179, found 232.1173. HPLC (Daicel Chiralpak IA, hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}): t_{\mathrm{R}}($ major enantiomer $)=34.3 \mathrm{~min}, t_{\mathrm{R}}($ minor enantiomer $)=32.3 \mathrm{~min}$.

Compound 2i

Pale yellow oil, $30.4 \mathrm{mg}, 70 \%, 96 \%$ ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.75$ (dd, $J=14.0 \mathrm{~Hz}, 6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=$
$18.3 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dd, $J=18.3 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.9,170.6,74.8,61.8,40.1,38.2$, 36.0, 14.0, 7.6. ESI-HRMS: calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$218.1028, found 218.1004. HPLC (Daicel Chiralpak AS, hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major enantiomer $)=40.4 \mathrm{~min}, t_{\mathrm{R}}($ minor enantiomer $)=37.1 \mathrm{~min}$.

Compound 2j

Pale yellow oil, $33.5 \mathrm{mg}, 60 \%, 95 \%$ ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46$ (dd, $J=14.4 \mathrm{~Hz}, 6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.72$ (dd, $J=14.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (s, 2H), 4.82-4.68 (m, 2H), 3.67-3.57 (m, 1H), $3.00(\mathrm{dd}, J=18.3 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=18.3 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.8,170.5,135.0,128.7,128.6,128.3,74.7$, 67.6, 40.1, 38.2, 36.0, 7.6. ESI-HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$280.1179, found 280.1173. HPLC (Daicel Chiralpak AS, hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}): t_{\mathrm{R}}($ major enantiomer $)=56.7 \mathrm{~min}, t_{\mathrm{R}}($ minor enantiomer $)=48.8 \mathrm{~min}$.

Compound 2k

Colorless oil, $46.0 \mathrm{mg}, 72 \%, 90 \%$ ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.16(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=18.0$ $\mathrm{Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 1 \mathrm{H})$, 1.93-1.81 (m, 1H), 1.78-1.50 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.3,170.6,135.1,128.6$, 128.5, 128.4, 100.2, 67.4, 47.3, 42.1, 36.9, 35.2, 29.9, 24.0, 23.6. ESI-HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$320.1492, found 320.1497. HPLC (Daicel Chiralpak AS, hexane/i-PrOH $=$ $95 / 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major enantiomer) $=23.3 \mathrm{~min}, t_{\mathrm{R}}$ (minor enantiomer) $=28.3 \mathrm{~min}$.

Compound 21

Reaction of (E)-ethyl 2-methyl-4-oxopent-2-enoate with nitromethane was performed according to the general procedure but in toluene at $45{ }^{\circ} \mathrm{C}$. Pale yellow oil, $18.7 \mathrm{mg}, 43 \% .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.90(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~d}$, $J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, \mathrm{~J}=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.6,173.0,79.2,61.8,47.3,43.5,30.3,22.1$, 13.9. ESI-HRMS: calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$218.1028, found 218.1004.

Compound 2m

Reaction of (E)-ethyl 4-oxobut-2-enoate with nitromethane was performed according to the general procedure to afford 2. Pale yellow oil, $17.8 \mathrm{mg}, 47 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $9.78(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=19.1 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=19.1 \mathrm{~Hz}, 5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.9,170.1,74.4,62.1,42.0,37.0$, 14.0. ESI-HRMS: calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$190.0710, found 190.0704.
5. Transformations of 2 to pyrrolidine-3-carboxylic acid and β^{2}-amino acid derivatives Synthesis of (3S,5R)-5-methylpyrrolidine-3-carboxylic acid (3) via 2g (Scheme 3)

To a mixture of catalyst $\mathbf{F}(291.3 \mathrm{mg}, 0.76 \mathrm{mmol})$ and acetic acid $(40.0 \mu \mathrm{~L}, 0.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}),(E)$-benzyl 4-oxopent-2-enoate $(902.5 \mathrm{mg}, 4.42 \mathrm{mmol})$ and nitromethane (1.0 $\mathrm{mL}, 18 \mathrm{mmol})$ were added at room temperature $\left(24^{\circ} \mathrm{C}\right)$ and the mixture (initially suspension) was stirred at the same temperature for 4 days (the reaction progress was monitored by TLC). The mixture was poured into 1 M HCl aqueous solution (15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column chromatography (hexane/ $\operatorname{EtOAc}=4: 1$) to afford product $2 \mathrm{~g}(879.5 \mathrm{mg}, 75 \%)$.

A mixture of compound $\mathbf{2 g}(346.5 \mathrm{mg}, 1.31 \mathrm{mmol})$ and $10 \% \mathrm{Pd}$ on charcoal (258.2 mg) in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$ was stirred under H_{2} (balloon) at room temperature $\left(24^{\circ} \mathrm{C}\right)$ for 2 days. The mixture was filtered through celite and the filtrate was concentrated to remove the solvent to give 3 ($151 \mathrm{mg}, 90 \%, 97 \% \mathrm{ee}$).
(3S,5R)-5-Methylpyrrolidine-3-carboxylic acid (Compound 3)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 3.68-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=11.6 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (dd, $J=11.6 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=13.4 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79$ (ddd, $J=13.4 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.41$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 179.3,57.7,49.1,46.4,37.9,17.5$. HPLC (Daicel Chiralpak ZWIX (+), $\mathrm{MeOH} / \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=$ $49 / 49 / 2$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{ELSD}): t_{\mathrm{R}}$ (major enantiomer) $=19.6 \mathrm{~min}, t_{\mathrm{R}}$ (minor enantiomer)
$=16.5 \mathrm{~min}$.
NMR chemical shifts of compound $\mathbf{3}$ were altered in the presence of acids (see below).

Transformations of 3a to 4

A mixture of compound $\mathbf{2 h}(46.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 93 \% \mathrm{ee})$ and trifluoroacetic acid (2 mL) was stirred for 1 hour at room temperature $\left(24^{\circ} \mathrm{C}\right)$. The mixture was concentrated under vacuum to afford compound 4 , which was directly used for the next step.

A mixture of compound $\mathbf{4}, 10 \% \mathrm{Pd}$ on charcoal (21.8 mg) in anhydrous $\mathrm{MeOH}(5 \mathrm{~mL})$ was stirred under H_{2} (balloon) at room temperature $\left(24^{\circ} \mathrm{C}\right)$ for 2 days. The mixture was filtered through celite and the filtrate was concentrated under vacuum to afford compound $\mathbf{3}$ (21.9 mg , 85% from 2h).

To a mixture of compound $\mathbf{3}(21.9 \mathrm{mg})$ and triethylamine ($57.2 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, benzyl chloroformate ($42.3 \mu \mathrm{l}, 0.30 \mathrm{mmol}$) was added dropwise over 30 min at room temperature $\left(24^{\circ} \mathrm{C}\right)$ and the mixture was stirred for 10 h at the same temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column chromatography (hexane/EtOAc $=2: 1$) to afford the Cbz-protected product. This was dissolved in anhydrous EtOH (2 mL). To this solution, thionyl chloride ($21.8 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) was added at room temperature $\left(24{ }^{\circ} \mathrm{C}\right)$ and the mixture was stirred for 16 h at the same temperature. The mixture was concentrated and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was washed with saturated aqueous NaHCO_{3}. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column chromatography (hexane/EtOAc $=4: 1$) to afford compound 5.

Compound 4

Pale yellow oil, $35 \mathrm{mg}, 99 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.77$ (dd, $J=14.6 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.70 (dd, $J=14.6 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=18.6 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (dd, $J=18.6 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.1,175.8,74.2$, 41.2, 37.8, 27.8. ESI-HRMS: calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$176.0553, found 176.0583.
(3S,5R)-5-Methylpyrrolidine-3-carboxylic acid (Compound 3) obtained from 2h COOH

Colorless solid, $21.9 \mathrm{mg}, 85 \%$ for two steps from $\mathbf{2 h} .[\alpha]^{20}{ }_{\mathrm{D}}+9.6$ (c $0.52, \mathrm{MeOH}, 91 \%$ ee). Lit. $[\alpha]^{25}+10.3$ (c $\left.0.58, \mathrm{MeOH}\right) .{ }^{9}$ Compound $\mathbf{3}$ obtained from compound $\mathbf{2 h}$ possibly included trace $\mathrm{CF}_{3} \mathrm{COOH} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.50(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.44(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 182.8,57.1,51.2,48.6,40.1,19.3$.

Compound 5

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.24-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.13(\mathrm{~m}$, $2 \mathrm{H}), 4.04-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.77(\mathrm{~m}$, 1H), 1.43-1.14 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,154.5,136.8,128.5,127.94$, 127.91, 66.7, 61.0, 53.7, 53.0, 48.6, 48.2, 42.2, 41.8, 37.2, 36.6, 21.3, 20.3, 14.1. ESI-HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$292.1543, found 292.1544. HPLC (Daicel Chiralpak AS, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): t_{R} (major enantiomer) $=25.3 \mathrm{~min}, t_{\mathrm{R}}$ $($ minor enantiomer $)=24.3 \mathrm{~min}$.

Transformation of 5 to 3

To a solution of compound $5(91 \%$ ee, $29.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{EtOH}(1.0 \mathrm{~mL})-\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL}), 1$ M NaOH aqueous solution $(0.15 \mathrm{~mL})$ was added at room temperature and the mixture was stirred for 16 h . The mixture was poured into ice- $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The residue was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$, and $10 \% \mathrm{Pd}$ on charcoal (39.7 mg) was added. The mixture was stirred under H_{2} (balloon) at room temperature $\left(24{ }^{\circ} \mathrm{C}\right)$ for 2 days. The mixture was filtered through celite and the filtrate was concentrated under vacuum to afford compound 3 ($11.6 \mathrm{mg}, 90 \%$ yield for two steps from $\mathbf{5}$).

Transformation of 2a to 5

A mixture of compound 2a $(95 \%$ ee, $203 \mathrm{mg}, 1.0 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{MeOH}(10$ mL). To this solution, p-toluenesulfonic acid ($187 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $10 \% \mathrm{Pd}$ on charcoal (173 mg) were added and the mixture was stirred under H_{2} (balloon) at room temperature $\left(24{ }^{\circ} \mathrm{C}\right)$ for 2 days. The mixture was filtered through celite and the filtrate was concentrated under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and triethylamine ($530 \mu \mathrm{~L}, 3.8 \mathrm{mmol}$) was added. To the mixture, benzyl chloroformate ($270 \mu \mathrm{~L}, 1.92 \mathrm{mmol}$) was added dropwise over 30 min at room temperature $\left(24^{\circ} \mathrm{C}\right)$. The mixture was stirred at the same temperature for 10 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous NaHCO_{3} solution. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column chromatography (hexane/EtOAc $=2: 1$) to give $5(92 \%$ ee $)$.

Transformation of 2a to 6

A mixture of $2 \mathrm{a}(81.2 \mathrm{mg}, 0.40 \mathrm{mmol}$), ethylene glycol (2 mL), and p-toluenesulfonic acid monohydrate $(15.0 \mathrm{mg}, 0.08 \mathrm{mmol})$ in benzene $(10 \mathrm{~mL})$ was heated at reflux with a Dean-Stark apparatus for 24 h . After being cooled to room temperature, the mixture was diluted with EtOAc, washed with saturated aqueous NaHCO_{3}. The organic phase was dried over MgSO_{4}, filtered, concentrated, and purified by flash column chromatography (hexane/EtOAc $=4: 1$) to give 6 ($89.0 \mathrm{mg}, 90 \%$).

Compound 6

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.74$ (dd, $J=14.4 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.66 (dd, $J=$ $14.4 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.12(\mathrm{~m}, 2 \mathrm{H})$, 4.05-3.88 (m, 4H), 3.40-3.30 (m, 1H), 2.24 (dd, $J=$ $14.8 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.2,108.6,75.4,64.6,64.4,61.5,38.9,37.4,24.0,14.0$. ESI-HRMS: calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$248.1129, found 248.1099.

Transformation of 2a to 8

A solution of $\mathbf{2 a}(46.7 \mathrm{mg}, 0.23 \mathrm{mmol})$ and p-toluenesulfonyl hydrazide ($42.8 \mathrm{mg}, 0.23 \mathrm{mmol}$) in $\mathrm{MeOH}(2.3 \mathrm{~mL})$ was refluxed for 2 h . After being cooled to room temperature, generated precipitate was collected by filtration and washed with hexane/EtOAc (10:1) to give $7(99 \%, 85.4$ mg, 99%).

Compound 8

Colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.52(\mathrm{dd}, J=14.6 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=14.6 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.05(\mathrm{~m}, 2 \mathrm{H})$, 3.53-3.43 (m, 1H), 2.71 (dd, $J=17.7 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=17.7 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (s, $3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.0,153.2,144.6$, 134.9, 129.7, 128.1, 73.9, 61.7, 39.1, 36.4, 21.6, 16.5, 13.9. ESI-HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$372.1224, found 372.1230.

Transformation of 2a to 9

To a solution of $\mathbf{2 a}(40.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$, benzylamine ($43.7 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(85.4 \mathrm{mg}, 0.40 \mathrm{mmol})$ were added at room temperature $\left(24^{\circ} \mathrm{C}\right)$ and the mixture was stirred for 48 h at the same temperature. To the mixture, aqueous $1 \mathrm{~N} \mathrm{NaOH}(1.5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash column chromatography (hexane/EtOAc $=4: 1$) to give 9a ($11.9 \mathrm{mg}, 24 \%$) and 9b ($16.9 \mathrm{mg}, 34 \%$). Relative stereochemistry was determined by NOESY experiments.

Compound 9a

Rf 0.40 (hexane/EtOAc $=3: 1$), colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.18(\mathrm{~m}, 5 \mathrm{H})$, $4.96(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.08(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=12.8 \mathrm{~Hz}, 8.8 \mathrm{~Hz}$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{ddd}, J=12.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.8,136.1,128.8,127.9,127.7,76.3,51.1,44.3,40.8,32.8,19.9$. ESI-HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$249.1234, found 249.1227.

Compound 9b

Rf 0.35 (hexane/EtOAc = 3:1), colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.19(\mathrm{~m}, 5 \mathrm{H})$, $4.99(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 5.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.0,136.0,128.8,128.0,127.8$, 75.9, 50.8, 44.5, 39.3, 31.2, 19.0. ESI-HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$249.1234, found 249.1227.

Transformation 3e to 10

A mixture of compound $\mathbf{2 a}(95 \%$ ee, $115.0 \mathrm{mg}, 0.57 \mathrm{mmol}$) was dissolved in anhydrous MeOH $(10 \mathrm{~mL})$. To this solution, p-toluenesulfonic acid $(91.4 \mathrm{mg}, 0.53 \mathrm{mmol})$ and $10 \% \mathrm{Pd}$ on charcoal $(62.0 \mathrm{mg})$ were added and the mixture was stirred under H_{2} (balloon) at room temperature $\left(24{ }^{\circ} \mathrm{C}\right)$ for 2 days. The mixture was filtered through celite and the filtrate was concentrated under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and triethylamine ($226 \mu \mathrm{~L}, 1.58 \mathrm{mmol}$) was added. To the mixture, benzyl chloroformate ($270 \mu \mathrm{~L}, 1.92 \mathrm{mmol}$) was added dropwise over 30 min at room temperature $\left(24^{\circ} \mathrm{C}\right)$. The mixture was stirred at the same temperature for 10 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous NaHCO_{3} solution. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column chromatography (hexane/EtOAc $=2: 1$) to give $\mathbf{1 0}$.

Compound 10

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.23-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.06(\mathrm{~m}$, $2 \mathrm{H}), 3.93-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.10(\mathrm{~m}, 12 \mathrm{H}), 1.27(\mathrm{t}, J=$
$7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7,153.8,136.7,128.4,128.1,128.0,73.4,66.4$, $60.7,54.2,53.3,35.9,35.4,34.4,29.7,26.9,25.5,24.0,22.6,14.1$. ESI-HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$346.2013, found 346.2016.

6. References

(1) H.-L. Cui, F. Tanaka, Chem. Eur. J. 2013, 19, 6213.
(2) X. Zhao, K. E. Ruhl, T. Rovis, Angew. Chem. Int. Ed. 2012, 51, 12330.
(3) A. Takahashi, H. Yanai, M. Zhang, T. Sonoda, M. Mishima, T. Taguchi, J. Org. Chem., 2010, 75, 1259.
(4) J. Wang, A. Ma, D. Ma, Org. Lett., 2008, 10, 5425.
(5) M. Ronsheim, C. Zercher, J. Org. Chem., 2003, 68, 4535.
(6) W. Baratta, A. Zotto, Chem. Comm. 1997, 22, 2163.
(7) D. Lyzwa, K. Dudzinski, P. Kwiatkowski, Org. Lett., 2012, 14, 1540.
(8) K. Dudzinski, A. Pakulska, P. Kwiatkowski, Org. Lett., 2012, 14, 4222.
(9) H. Zhang, M. Mifsud, F. Tanaka, C. F. Barbas, III, J. Am. Chem. Soc. 2006, 128, 9630.

No.	RT	Area	Conc 1
1	24.350	62894	2.136
2	27.020	2880925	97.864
		2943819	100.000

No.	RT	Area	Area \%
1	38.43	5838327	51.722
2	44.32	5449663	48.278
		11287990	100.000

No.	RT	Area	Area \%
1	38.36	10875166	95.192 2
	44.78	549296	4.808

No.	RT	Area	Area\%
1	15.49	445592	47.649
2	15.86	489562	52.351
		935154	100.000

No.	RT	Area	Area \%
1	13.62	281303	3.764
2	14.05	7192135	96.236
		7473438	100.000

No.	RT	Area	Area \%
1	24.917	13988504	47.609
2	25.787	15393615	52.391
	29382119	100.000	

No.	RT	Area	Area \%
1	27.217	1121048	3.945
2	28.360	27293166	96.055
	28414214	100.000	

No.	RT	Area	Area \%
1	17.903	34568243	51.632
2	20.123	32382927	48.368
		66951170	100.000

No.	RT	Area	Area \%
1	17.880	294323	3.629
2	20.100	7815468	96.371
		8109791	100.000

No.	RT	Area	Area \%
1	24.917	13988504	47.609
2	25.787	15393615	52.391
		29382119	100.000

No.	RT	Area	Area \%
1	27.217	1121048	3.945
2	28.360	27293166	96.055
		28414214	100.000

No.	RT	Area	Area \%
1	43.18	368983	3.149
2	45.07	11346951	96.851
		11715934	100.000

No.	RT	Area	Area $\%$
1	39.020	1877029	2.639
2	44.770	69244641	97.361
		71121670	100.000

No.	RT	Area	Conc 1
1	32.010	14192065	46.907
2	34.223	16063822	53.093
		30255887	100.000

No.	RT	Area	Conc 1
1	32.263	615320	3.927
2	34.340	15054443	96.073
		15669763	100.000

No.	RT	Area	Area \%
1	37.20	9417005	49.381
2	40.66	9653273	50.619
		19070278	100.000

No.	RT	Area	Area \%
1	37.09	405314	1.850
2	40.39	21504186	98.150
		21909500	100.000

No.	RT	Area	Area \%
1	49.06	17447831	49.754
2	57.28	17620460	50.246
		35068291	100.000

No.	RT	Area	Area\%
1	48.80	342088	2.416
2	56.67	13816323	97.584
		14158411	100.000

No.	RT	Area	Area \%
1	24.01	8512579	50.140
2	25.48	18573	0.109
3	28.18	8446382	49.750
		16977534	100.000

No.	RT	Area	Area \%
1	23.33	14204346	94.443
2	28.31	835817	5.557
		15040163	100.000

No.	RT	Area	Area \%
1	25.39	1522841	51.457
2	27.14	1436588	48.543
		2959429	100.000

No.	RT	Area	Area \%
1	24.31	123294	3.945
2	25.31	3002352	96.055
		3125646	100.000

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mV}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mV]	Area \%
1	16.060	BB	0.4718	233.04874	6.93982	52.3282
2	20.363	BB	0.6059	212.31113	5.09763	47.6718

Peak RetTime Type	Width	Area	Height	Area	
$\#$	[min]	[min]	[mV*s]	$[\mathrm{mV}]$	$\%$

Cur
NAM
EXPI
PROC
F2
Dat
Time
INS
PROB
PUL
TD
SOL
NS
DS
SWH
FIDR
AQ
RG
DW
DE
TE
D1
TD0

$===$
SFO
NUC
P1
PLW

F2
SI
SF
WDW
SSB
LB
GB
PC
XPNO
ROCNO
F2－Acquisition Parameters
te－ 20160816
STRUM 14.19
5 mm PABBO BB／
LPROG $\begin{array}{r}\text { 2930 } \\ 65536\end{array}$
65536
CDCl3

16	
2	
H	8012.820

DRES $\quad 0.122266 \mathrm{~Hz}$
4.0894465 sec
62.88
62.400 usec
6.50 usec
298.8 K
1.00000000 sec
$\begin{array}{rl} \\ 01 & 400.1324710 \mathrm{MHz}\end{array}$
15.00 us

－Processing parameters	
65536	
W	
400.1300090 MHz	
B	0

$\begin{aligned} & \circ \\ & \stackrel{\ominus}{\sim} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \circ \text { GMm } \\ & \text { r M M O } \end{aligned}$	$\begin{aligned} & \text { rör } \\ & \text { ๙ N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & N \stackrel{n}{N} \\ & \underset{N}{N} \stackrel{N}{N} \end{aligned}$
$\stackrel{\rightharpoonup}{\circ}$	$\dot{\varphi} \dot{\varphi}$	$\dot{\sim}$	$\dot{\sim}$	
\dagger	$V V$	W		\downarrow

(

$\begin{aligned} & \text { Curr } \\ & \text { NAME } \end{aligned}$	$\begin{aligned} & \text { Data Parameters } \\ & \text { yf-16-1122-c7 } \end{aligned}$
EXPNO	10
PROCNO	1
- Acquisition Paramet	
Date	20161122
ime ${ }^{-}$	16.10
NSTRUM	spect
PROBHD	5 mm PABBO BB/
PULPROG	zg30
D	65536
SOLVENT	CDCl3
S	16
S	2
SWH	8012.820 Hz
IDRES	0.122266 Hz
Q	4.0894465 sec
G	77.81
W	62.400 use
E	6.50 use
E	298.4 K
1	1.00000000 se

======= CHANNEL f1 ========

SFO1	400.1324710 MHz
NUC1	1 H

$$
\begin{array}{lr}
\text { P1 } \quad 15.00 \text { us }
\end{array}
$$

F2 - Processing parameters

$$
\text { SI } \quad 400.1300096 \mathrm{MHz}
$$

$$
\begin{array}{lll}
\text { SH } & 400.1300096 \\
\text { WDW } & 0 & \text { EM } \\
\text { SSB } & 0
\end{array}
$$

$$
\begin{array}{lll}
\text { SSB } & 0 & 0.30 \mathrm{~Hz} \\
\text { LB } & 0 &
\end{array}
$$

$$
\begin{array}{lll}
\text { GB } & 0 & 1.00 \\
\text { PC } & &
\end{array}
$$

N

$\underset{\sim}{\wedge} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$

Current Data Paramete	
NAME	yf-16-1110-688cp
EXPNO	10
PROCNO	1
F2 - Acquisition Parameters	
Date	20161110
Time ${ }^{-}$	15.23
INSTRUM	spect
PROBHD	5 mm PABBO $\mathrm{BB} /$
PULPROG	zg30
TD	65536
SOLVENT	CD30D_SPE
NS	16
DS	2
SWH	8012.820 Hz
FIDRES	0.122266 Hz
AQ	4.0894465 sec
RG	31.13
DW	62.400 usec
DE	6.50 usec
TE	298.5 K
D1	1.00000000 sec
TD0	1
	CHANNEL f1 ===
SFO1	400.1324710 MHz
NUC 1	1H
P1	15.00 usec
PLW1	7.50000000 W
F2 - Processing parameters	
SI	65536
SF	400.1300076 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0 (0
PC	1.00

6

Current Data Parameters	
NAME	YF-16-1208-AG16C
EXPNO	10
PROCNO	1
F2 - Acquisition Parameters	
Date	20161208
Time ${ }^{-}$	11.44
INSTRUM	spect
PROBHD	5 mm PABBO BB/
PULPROG	zg30
TD	65536
SOLVENT	CDCl3
NS	16
DS	2
SWH	8012.820 Hz
FIDRES	0.122266 Hz
AQ	4.0894465 sec
RG	77.81
DW	62.400 usec
DE	6.50 usec
TE	298.5 K
D1	1.00000000 sec
TD0	1
======== CHANNEL f1 ========	
SFO1	400.1324710 MHz
NUC1	1H
P1	15.00 usec
PLW1	7.50000000 W
F2 - Processing parameters	
SI 65536	
SF	400.1300095 MHz
WDW EM	
SSB	0
LB 0.30 Hz	
$\begin{array}{lll}\text { GB } & 0 & 1.00\end{array}$	

$\begin{array}{lc}\text { Current } & \text { Data Parameters } \\ \text { NAME } & \text { YF-16-0805-626-2 } \\ \text { EXPNO } & 10 \\ \text { PROCNO } & 1\end{array}$
F2 - Acquisition Parameters
Date $\quad 20160805$
Time $\quad 22.15$ INSTRUM $\begin{aligned} & 22.15 \\ & \text { spect }\end{aligned}$ PROBHD 5 mm PABBO BB/

PULPROG	Zg30
TD	65536

SOLVENT	65536
	CDC13

SS	CDCNT
DS	16
SWH	2
FIDRES	8012.820 Hz
SQ	0.122266 Hz

AQ	0.122266 Hz

.0894465 sec
88.94
62.400 usec 6.50 use
298.6 K

CHANNEL $\mathrm{f} 1 \mathrm{=}======$
400.1324710 MH

NUC1	1 H
P1	15.00 use
PLW1	8.00000000 W

F2 - Processing parameters
$\begin{array}{lr}\text { SI } & 65536 \\ \text { SF } & 400.1300091 \mathrm{MHz} \\ \text { WDW } & \end{array}$
WDW EM
SSB
LB $\quad 0.30 \mathrm{H}$
GB
PC
1.00

