Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Corrected version March 30, 2018

Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones

Feng Yin, Ainash Garifullina, and Fujie Tanaka*

Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan

1.	Synthesis of enones	S2
2.	Synthesis of catalysts	S3
3.	Screening of catalysts and conditions	S4
4.	Michael addition reactions to afford 2	S5
5.	Transformations of 2 to pyrrolidine-3-carboxylic acid and β^2 -amino acid derivatives	S10
6.	References	S16
7.	HPLC charts	S17
8.	NMR spectra	S31

General

For thin layer chromatography (TLC), Merck silica gel 60 F254 aluminum sheets were used. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh). ¹H NMR and ¹³C NMR were recorded on a Bruker Avance 400. Proton chemical shifts are reported in ppm downfield from tetramethylsilane or from the residual solvent as internal standard in CDCl₃ (δ 7.26 ppm) and in CD₃OD (δ 3.31 ppm). Carbon chemical shifts were internally referenced to the deuterated solvent signals in CDCl₃ (δ 77.0 ppm) and in CD₃OD (δ 49.0 ppm). High-resolution mass spectra were recorded on a Thermo Scientific LTQ Orbitrap ESI ion trap mass spectrometer. Optical rotations were measured on a Jasco P2200 polarimeter.

Note

This corrected version was prepared based on the correct structure of 3, determined from the X-ray crystal structure of a derivative of 3, which will be reported separately in the future.

1. Synthesis of enones General procedure for the synthesis of enones

Enones were synthesized according to the reported procedures.¹ To a solution of glyoxylate ester or its derivative (10 mmol) in CH_2Cl_2 (30 mL), 1-(triphenylphosphoranylidene)-2-propanone or its derivative (33 mmol) was added and the mixture was stirred at room temperature (25°C) for 24 h. The mixture was concentrated and purified by flash column chromatography (hexane/EtOAc) to give enone 1.

Known compound.² Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.01 (d, J = 16.1 Hz, 1H), 6.64 (d, J = 16.1 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 165.4, 139.9, 131.6, 61.4, 28.0, 14.1.

Known compound.³ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.96 (d, J = 16.1 Hz, 1H), 6.59 (d, J = 16.1 Hz, 1H), 5.09 (septet, J = 6.2 Hz, 1H), 2.32 (s, 3H), 1.27 (d, J = 6.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 164.9, 139.7, 132.1, 69.0, 27.9, 21.6.

Known compound.⁴ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.31 (m, 5H), 7.05 (d, *J* = 16.1 Hz, 1H), 6.69 (d, *J* = 16.1 Hz, 1H), 5.25 (s, 2H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 197.4, 165.3, 140.3, 135.2, 128.7, 128.6, 128.4, 67.2, 28.1.

O COO*t*Bu

Known compound.⁵ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.91 (d, J = 16.1 Hz, 1H), 6.57 (d, J = 16.1 Hz, 1H), 2.34 (s, 3H), 1.51 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 197.9, 164.6, 139.2, 133.7, 82.1, 28.0, 27.9.

COOEt

Known compound.⁴ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.04 (d, J = 16.0 Hz, 1H), 6.66 (d, J = 16.0 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 2.65 (q, J = 7.2 Hz, 2H), 1.30 (t, J = 7.0 Hz, 3H), 1.11 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 165.5, 139.1, 130.6, 61.3,

34.7, 14.1, 7.6.

Known compound.⁴ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.31 (m, 5H), 7.10 (d, *J* = 16.0 Hz, 1H), 6.72 (d, *J* = 16.0 Hz, 1H), 5.24 (s, 2H), 2.66 (q, *J* = 7.2 Hz, 2H), 1.13 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.0, 165.4, 139.6, 135.2, 130.2, 128.6, 128.5, 128.4, 67.1, 34.8, 7.6.

O COOEt

Known compound.⁶ This (*Z*)-isomer was generated during the synthesis of the (*E*)-isomer and was purified by flash column chromatography. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.45 (d, *J* = 12.2 Hz, 1H), 6.02 (d, *J* = 12.2 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.36 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.3, 165.2, 141.6, 124.7, 61.2, 30.0, 14.0.

COOE

Known compound.⁷ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.07 (s, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.30 (s, 3H), 2.21 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 167.6, 140.9, 132.3, 61.6, 32.1, 14.3, 14.1.

2. Synthesis of catalysts

General procedure for the synthesis of catalysts F and G

Catalysts **F** and **G** were synthesized according to the reported procedure.⁸ To a solution of (1R,2R)-cyclohexanediamine (154.0 mg, 0.64 mmol) in dry THF (5.0 mL), the corresponding isocyanate (0.70 mmol) was added dropwise at 0 °C. The mixture was stirred at 0°C for 30 min and at room temperature (24 °C) for 16 h. The mixture was concentrated under reduced pressure and purified by flash column chromatography (CH₂Cl₂/MeOH = 9:1) to give the catalyst.

Catalyst F: 1-((1R,2R)-2-aminocyclohexyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea⁸

Catalyst G

Colorless Solid. ¹H NMR (400 MHz, CDCl₃): δ 6.71 (bs, 1H), 3.60-3.30 (m, 1H), 3.02-2.57 (m, 1H), 2.39-1.64 (m, 4H), 1.44-1.07 (m, 4H). ¹³C NMR (100 MHz, CD₃OD): δ 185.0, 148.5 ($J_{C,F}$ = 246 Hz), 139.2 ($J_{C,F}$ = 246 Hz), 116.7, 61.9, 56.0, 34.5, 32.5, 25.9 25.7. ESI-HRMS: calcd for C₁₃H₁₅N₃F₅S ([M+H]⁺) 340.0901, found 340.0897.

3. Screening of catalysts and conditions

Procedure for the catalyst screening (Table 1)

To a mixture of catalyst (0.04 mmol) and additive (if used, 0.04 mmol) in solvent (0.5 mL), enone **1** (0.2 mmol) and nitromethane (1.0 mmol) were added at room temperature (24 °C) and the mixture (initially often suspension) was stirred at the same temperature. The progress of the reaction was monitored by TLC. After 48 h (except noted), the mixture was poured into aqueous 1 M HCl solution (1 mL) and extracted with CH_2Cl_2 . Organic layers were combined, dried over Na₂SO₄, concentrated, and purified by flash column chromatography (hexane/EtOAc = 4:1) to afford **2**. The ee was determined by chiral-phase HPLC.

Table S1. Additional catalyst screening.

a Conditions: Enone **1** (0.2 mmol), nitromethane (1.0 mmol), and catalyst (0.04 mmol) in toluene (0.5 mL) at 24 °C for 48 h.

 Table S2. Solvent screening in the catalyst F-catalyzed reaction.

a Conditions: Enone 1 (0.2 mmol), nitromethane (1.0 mmol), and catalyst F (0.04 mmol) in solvent (0.5 mL) at 24 °C for 48 h.

4. Michael addition reactions to afford 2

General procedure for the Michal addition reactions to afford 2 (Table 2 and Scheme 2)

To a mixture of catalyst **F** (0.04 mmol) and additive (if used, 0.04 mmol) in CH_2Cl_2 (0.2 mL), enone (0.2 mmol) and nitroalkane (1.0 mmol) were added at room temperature (24 °C) and the mixture (initially often suspension) was stirred at the same temperature. The progress of the reaction was monitored by TLC. After indicated time, the mixture was poured into aqueous 1M HCl aqueous solution (1 mL) and extracted with CH_2Cl_2 . Organic layers were combined, dried over Na₂SO₄, concentrated, and purified by flash column chromatography (hexane/EtOAc) to give **2**. The ee was determined by chiral-phase HPLC. Racemic standards of the Michael Addition product were synthesized using racemic catalyst **F**.

Ethyl 2-(nitromethyl)-4-oxopentanoate (Compound 2a)

To a mixture of 1-((1*R*,2*R*)-2-aminocyclohexyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (catalyst **F**) (15.4 mg, 0.04 mmol) and acetic acid (1.8 μ L, 0.04 mmol) in CH₂Cl₂ (0.2 mL), (*E*)-ethyl 4-oxopent-2-enoate (1a) (28.4 mg, 0.2 mmol) and nitromethane (54.2 μ L, 1.0 mmol) were added at 10 °C and the mixture (initially suspension) was stirred at the same temperature. The progress of the reaction was monitored by TLC. After 5 days, the mixture was poured into

aqueous 1M HCl solution (1.0 mL) and extracted with CH_2Cl_2 . Organic layers were combined, dried over Na₂SO₄, concentrated, and purified by flash column chromatography (hexane/ EtOAc = 4:1) to afford **2** (30.9 mg, 76 %, 94 % ee).

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.74 (dd, J = 14.4 Hz, 6.0 Hz, 1H), 4.69 (dd, J = 14.4 Hz, 5.6 Hz, 1H), 4.23-4.15 (m, 2H), 3.57-3.49 (m, 1H), 3.04 (dd, J = 18.6 Hz, 5.6 Hz, 1H), 2.81 (dd, J = 18.6 Hz, 6.6 Hz, 1H), 2.20 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.9, 170.5, 61.9, 41.4, 38.2, 29.9, 13.9. ESI-HRMS: calcd for C₈H₁₄O₅N ([M+H]⁺) 204.0872, found 204.0849. HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 220$ nm): t_R (major enantiomer) = 27.0 min, t_R (minor enantiomer) = 24.4 min.

A 2 gram-scale synthesis of 2a. A mixture of catalyst F (819.5 mg, 2.13 mmol), enone 1a (2.14 g, 15.1 mmol), and nitromethane (4.0 mL, 75 mmol) in CH_2Cl_2 (10 mL) was stirred at room temperature (24 °C). The progress of the reaction was monitored by TLC. After 4 days, the mixture was poured into aqueous1M HCl solution (15 mL) and extracted with CH_2Cl_2 . Organic layers were combined, dried over Na₂SO₄, concentrated, and purified by flash column chromatography (hexane/EtOAc = 4:1) to afford 2a (2.1 g, 69%, 90% ee).

Compound 2b

The dr was determined by ¹H NMR analysis before purification. The diastereomers (compounds **2b-1** and **2b-2**) were separately purified by flash column chromatography. Relative stereochemistries were tentatively assigned based on the NOESY experiments.

Compound 2b-1

Rf 0.35 (hexane/EtOAc = 4:1). Pale yellow oil, 21.7 mg, 50%, 90% ee. ¹H NMR (400 MHz, CDCl₃): δ 4.95 (qd, J = 8.9 Hz, 5.6 Hz, 1H), 4.26-4.13 (m, 2H), 3.44 (ddd, J = 9.4 Hz, 5.6 Hz, 3.6 Hz, 1H), 3.05 (dd, J = 17.9 Hz, 9.4 Hz, 1H), 2.53 (dd, J = 17.9 Hz, 3.6 Hz, 1H), 2.21 (s, 3H), 1.57 (d, J = 6.9 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.9, 170.6, 82.5, 61.8, 44.2, 40.5, 29.9, 16.8, 14.0. ESI-HRMS: calcd for C₉H₁₆O₅N ([M+H]⁺) 218.1028, found 218.1004. HPLC (Daicel Chiralpak AS, hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 220 nm): $t_{\rm R}$ (major enantiomer) = 38.4 min, $t_{\rm R}$ (minor enantiomer) = 44.8 min.

Compound 2b-2

Rf 0.32 (hexane/EtOAc = 4:1). Pale yellow oil, 21.7 mg, 50%, 93% ee. ¹H NMR (400 MHz, CDCl₃): δ 4.92 (qd, J = 6.8 Hz, 5.6 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.62 (ddd, J = 8.5 Hz, 5.6 Hz, 4.4. Hz, 1H), 3.01 (dd, J = 18.0 Hz, 8.5 Hz, 1H), 2.67 (dd, J = 18.0 Hz, 4.4 Hz, 1H), 2.21 (s, 3H), 1.55 (d, J = 6.8 Hz, 3H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.8,

170.5, 82.0, 61.8, 43.6, 40.3, 30.0, 16.2, 14.0. ESI-HRMS: calcd for C₉H₁₆O₅N ([M+H]⁺) 218.1028, found 218.1004. HPLC (Daicel Chiralpak AS, hexane/*i*-PrOH = 75/25, flow rate 0.5 mL/min, $\lambda = 220$ nm): *t*_R (major enantiomer) = 14.1 min, *t*_R (minor enantiomer) = 13.6 min.

Compound 2c

Pale yellow oil, 41.6 mg, 90%, 92% ee. ¹H NMR (400 MHz, CDCl₃): δ 4.17 (q, J = 7.1 Hz, 2H), 3.66 (dd, J = 11.2 Hz, 2.4 Hz, 1H), 3.04 (dd, J = 17.8 Hz, 11.2 Hz, 1H), 2.41 (dd, J = 17.8 Hz, 2.4 Hz, 1H), 2.17 (s, 3H), 1.63 (s, 3H), 1.59 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.9, 170.8, 88.3, 61.6, 48.3, 41.4, 29.8, 25.5, 23.1, 14.0. ESI-HRMS: calcd for C₁₀H₁₈O₅N ([M+H]⁺) 232.1179, found 232.1173. HPLC (Daicel Chiralpak AS, hexane/*i*-PrOH = 97/3, flow rate 0.5 mL/min, λ = 220 nm): $t_{\rm R}$ (major enantiomer) = 28.4 min, $t_{\rm R}$ (minor enantiomer) = 27.2 min.

Compound 2d

Pale yellow oil, 35.3 mg, 65%, 92% ee. ¹H NMR (400 MHz, CDCl₃): δ 4.17 (q, J = 7.1 Hz, 2H), 3.30 (dd, J = 11.4 Hz, 3.0 Hz, 1H), 3.04 (dd, J = 18.0 Hz, 11.4 Hz, 1H), 2.57-2.42 (m, 3H), 2.15 (s, 3H), 1.77-1.52 (m, 4H), 1.46-1.12 (m, 4H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.3, 170.6, 91.8, 61.5, 49.2, 40.9, 33.3, 31.4, 29.9, 24.4, 22.2, 22.1, 14.0. ESI-HRMS: calcd for C₁₃H₂₂O₅N ([M+H]⁺) 272.1498, found 272.1470. HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 220 nm): $t_{\rm R}$ (major enantiomer) = 20.1 min, $t_{\rm R}$ (minor enantiomer) = 17.9 min.

Compound 2e

Pale yellow oil, 43.7 mg, 85%, 93% ee. ¹H NMR (400 MHz, CDCl₃): δ 4.21-4.12 (m, 2H), 3.56 (dd, *J* = 10.8 Hz, 2.9 Hz, 1H), 3.07 (dd, *J* = 18.0 Hz, 10.8 Hz, 1H), 2.70-2.60 (m, 1H), 2.58-2.49 (m, 1H), 2.50 (dd, *J* = 18.0 Hz, 2.9 Hz, 1H), 2.17 (s, 3H), 2.12-2.00 (m, 1H), 1.96-1.84 (m, 1H), 1.80-1.64 (m, 4H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.3, 170.7, 100.3, 61.5, 47.3, 42.1, 36.8, 35.3, 29.8, 24.0, 23.6, 14.0. ESI-HRMS: calcd for C₁₂H₂₀O₅N ([M+H]⁺) 258.1341, found 258.1319. HPLC (Daicel Chiralpak AS, hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 220 nm): *t*_R (major enantiomer) = 28.4 min, *t*_R (minor enantiomer) = 27.2 min.

Compound 2f

Pale yellow oil, 32.6 mg, 75%, 94% ee. ¹H NMR (400 MHz, CDCl₃): δ 5.05 (septet, J = 6.2 Ha, 1H), 4.73 (dd, J = 14.4 Hz, 5.6 Hz, 1H), 4.69 (dd, J = 14.4 Hz, 5.6 Hz, 1H), 3.54-3.46 (m, 1H), 3.03 (dd, J = 18.5 Hz, 5.6 Hz, 1H), 2.80 (dd, J = 18.5 Hz, 6.6 Hz, 1H), 2.21 (s, 3H), 1.24 (d, J = 6.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 204.9, 170.0, 74.8, 69.7, 41.4, 38.4, 29.9, 21.6, 21.5. ESI-HRMS: calcd for C₉H₁₆O₅N ([M+H]⁺) 218.1028, found 218.1004. HPLC (Daicel Chiralpak AS, hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 220$ nm): $t_{\rm R}$ (major enantiomer) = 45.1 min, $t_{\rm R}$ (minor enantiomer) = 43.2 min.

Compound 2g

Pale yellow oil, 38.2 mg, 72%, 94% ee. ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.28 (m, 5H), 5.16 (s, 2H), 4.80-4.67 (m, 2H), 3.64- 3.55 (m, 1H), 3.03 (dd, *J* = 18.6 Hz, 5.5 Hz, 1H), 2.82 (dd, *J* = 18.6 Hz, 6.5 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.8, 170.4, 135.0, 128.7, 128.6, 128.3, 74.6, 67.6, 41.4, 38.3, 29.8. ESI-HRMS: calcd for C₁₃H₁₆O₅N ([M+H]⁺) 266.1028, found 266.1003. HPLC (Daicel Chiralpak AS, hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 220 nm): *t*_R (major enantiomer) = 44.8 min, *t*_R (minor enantiomer) = 39.0 min.

Compound 2h

Pale yellow oil, 36.5 mg, 79%, 93% ee. ¹H NMR (400 MHz, CDCl₃): δ 4.69 (dd, J = 14.0 Hz, 6.0 Hz, 1H), 4.65 (dd, J = 14.0 Hz, 5.6 Hz, 1H), 3.49-3.41 (m, 1H), 2.99 (dd, J = 18.5 Hz, 5.7 Hz, 1H), 2.76 (dd, J = 18.5 Hz, 6.6 Hz, 1H), 2.20 (s, 3H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 205.2, 169.5, 82.6, 74.9, 41.5, 39.0, 29.9, 27.8. ESI-HRMS: calcd for C₁₀H₁₈O₅N ([M+H]⁺) 232.1179, found 232.1173. HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, λ = 220 nm): t_R (major enantiomer) = 34.3 min, t_R (minor enantiomer) = 32.3 min.

Compound 2i

Pale yellow oil, 30.4 mg, 70%, 96% ee. ¹H NMR (400 MHz, CDCl₃): δ 4.75 (dd, J = 14.0 Hz, 6.0 Hz, 1H), 4.70 (dd, J = 14.0 Hz, 5.6 Hz, 1H), 4.25-4.15 (m, 2H), 3.60-3.51 (m, 1H), 3.00 (dd, J =

18.3 Hz, 5.6 Hz, 1H), 2.77 (dd, J = 18.3 Hz, 6.5 Hz, 1H), 2.57- 2.42 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 207.9, 170.6, 74.8, 61.8, 40.1, 38.2, 36.0, 14.0, 7.6. ESI-HRMS: calcd for C₉H₁₆O₅N ([M+H]⁺) 218.1028, found 218.1004. HPLC (Daicel Chiralpak AS, hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 220$ nm): $t_{\rm R}$ (major enantiomer) = 40.4 min, $t_{\rm R}$ (minor enantiomer) = 37.1 min.

Compound 2j

Pale yellow oil, 33.5 mg, 60%, 95% ee. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (dd, J = 14.4 Hz, 6.0 Hz, 1H), 4.72 (dd, J = 14.4 Hz, 5.6 Hz, 1H), 5.16 (s, 2H), 4.82-4.68 (m, 2H), 3.67-3.57 (m, 1H), 3.00 (dd, J = 18.3 Hz, 5.6 Hz, 1H), 2.78 (dd, J = 18.3 Hz, 6.5 Hz, 1H), 2.51-2.36 (m, 2H), 1.05 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 207.8, 170.5, 135.0, 128.7, 128.6, 128.3, 74.7, 67.6, 40.1, 38.2, 36.0, 7.6. ESI-HRMS: calcd for C₁₄H₁₈O₅N ([M+H]⁺) 280.1179, found 280.1173. HPLC (Daicel Chiralpak AS, hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, λ = 220 nm): t_R (major enantiomer) = 56.7 min, t_R (minor enantiomer) = 48.8 min.

Compound 2k

Colorless oil, 46.0 mg, 72%, 90% ee. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.29 (m, 5H), 5.16 (d, J = 12.2 Hz, 1H), 5.12 (d, J = 12.2 Hz, 1H), 3.63 (dd, J = 10.8 Hz, 2.9 Hz, 1H), 3.09 (dd, J = 18.0 Hz, 10.8 Hz, 1H), 2.69-2.58 (m, 1H), 2.56-2.43 (m, 2H), 2.14 (s, 3H), 2.09-1.97 (m, 1H), 1.93-1.81 (m, 1H), 1.78-1.50 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 205.3, 170.6, 135.1, 128.6, 128.5, 128.4, 100.2, 67.4, 47.3, 42.1, 36.9, 35.2, 29.9, 24.0, 23.6. ESI-HRMS: calcd for C₁₇H₂₂O₅N ([M+H]⁺) 320.1492, found 320.1497. HPLC (Daicel Chiralpak AS, hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 220$ nm): $t_{\rm R}$ (major enantiomer) = 23.3 min, $t_{\rm R}$ (minor enantiomer) = 28.3 min.

Compound 21

Reaction of (*E*)-ethyl 2-methyl-4-oxopent-2-enoate with nitromethane was performed according to the general procedure but in toluene at 45 °C. Pale yellow oil, 18.7 mg, 43 %. ¹H NMR (400 MHz, CDCl₃): δ 4.90 (d, *J* = 12.0 Hz, 1H), 4.80 (d, *J* = 12.0 Hz, 1H), 4.25-4.15 (m, 2H), 3.04 (d, *J* = 18.6 Hz, 1H), 2.90 (d, J = 18.6 Hz, 1H), 2.17 (s, 3H), 1.36 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.6, 173.0, 79.2, 61.8, 47.3, 43.5, 30.3, 22.1, 13.9. ESI-HRMS: calcd for C₉H₁₆O₅N ([M+H]⁺) 218.1028, found 218.1004.

Compound 2m

Reaction of (*E*)-ethyl 4-oxobut-2-enoate with nitromethane was performed according to the general procedure to afford **2**. Pale yellow oil, 17.8 mg, 47%. ¹H NMR (400 MHz, CDCl₃): δ 9.78 (s, 1H), 4.77 (dd, *J* = 14.4 Hz, 6.1 Hz, 1H), 4.69 (dd, *J* = 14.4 Hz, 6.1 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.64-3.56 (m, 1H), 3.10 (dd, *J* = 19.1 Hz, 5.7 Hz, 1H), 2.88 (dd, *J* = 19.1 Hz, 5.7 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 197.9, 170.1, 74.4, 62.1, 42.0, 37.0, 14.0. ESI-HRMS: calcd for C₇H₁₂O₅N ([M+H]⁺) 190.0710, found 190.0704.

5. Transformations of 2 to pyrrolidine-3-carboxylic acid and β^2 -amino acid derivatives Synthesis of (3*S*,5*R*)-5-methylpyrrolidine-3-carboxylic acid (3) via 2g (Scheme 3)

To a mixture of catalyst **F** (291.3 mg, 0.76 mmol) and acetic acid (40.0 μ L, 0.70 mmol) in CH₂Cl₂ (3.0 mL), (*E*)-benzyl 4-oxopent-2-enoate (902.5 mg, 4.42 mmol) and nitromethane (1.0 mL, 18 mmol) were added at room temperature (24 °C) and the mixture (initially suspension) was stirred at the same temperature for 4 days (the reaction progress was monitored by TLC). The mixture was poured into 1 M HCl aqueous solution (15 mL) and extracted with CH₂Cl₂. Organic layers were combined, dried over Na₂SO₄, concentrated, and purified by flash column chromatography (hexane/ EtOAc = 4:1) to afford product **2g** (879.5 mg, 75 %).

A mixture of compound **2g** (346.5 mg, 1.31 mmol) and 10% Pd on charcoal (258.2 mg) in anhydrous MeOH (10 mL) was stirred under H₂ (balloon) at room temperature (24 °C) for 2 days. The mixture was filtered through celite and the filtrate was concentrated to remove the solvent to give **3** (151 mg, 90%, 97% ee).

(3S,5R)-5-Methylpyrrolidine-3-carboxylic acid (Compound 3)

¹H NMR (400 MHz, CD₃OD): δ 3.68-3.58 (m, 1H), 3.54 (dd, J = 11.6 Hz, 7.2 Hz, 1H), 3.36 (dd, J = 11.6 Hz, 8.8 Hz, 1H), 3.11-3.02 (m, 1H), 2.47 (ddd, J = 13.4 Hz, 8.0 Hz, 6.8 Hz, 1H), 1.79 (ddd, J = 13.4 Hz, 10.0 Hz, 8.8 Hz, 1H), 1.41 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 179.3, 57.7, 49.1, 46.4, 37.9, 17.5. HPLC (Daicel Chiralpak ZWIX (+), MeOH/MeCN/H₂O = 49/49/2, flow rate 0.5 mL/min, ELSD): t_R (major enantiomer) = 19.6 min, t_R (minor enantiomer)

= 16.5 min. NMR chemical shifts of compound **3** were altered in the presence of acids (see below).

Transformations of 3a to 4

A mixture of compound **2h** (46.2 mg, 0.20 mmol, 93% ee) and trifluoroacetic acid (2 mL) was stirred for 1 hour at room temperature (24 °C). The mixture was concentrated under vacuum to afford compound **4**, which was directly used for the next step.

A mixture of compound **4**, 10% Pd on charcoal (21.8 mg) in anhydrous MeOH (5 mL) was stirred under H₂ (balloon) at room temperature (24 °C) for 2 days. The mixture was filtered through celite and the filtrate was concentrated under vacuum to afford compound **3** (21.9 mg, 85 % from **2h**).

To a mixture of compound **3** (21.9 mg) and triethylamine (57.2 μ L, 0.40 mmol) in CH₂Cl₂ (5 mL), benzyl chloroformate (42.3 μ l, 0.30 mmol) was added dropwise over 30 min at room temperature (24 °C) and the mixture was stirred for 10 h at the same temperature. The mixture was diluted with CH₂Cl₂ and washed with saturated aqueous solution of NaHCO₃ (5 mL). The organic phase was dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography (hexane/EtOAc = 2:1) to afford the Cbz-protected product. This was dissolved in anhydrous EtOH (2 mL). To this solution, thionyl chloride (21.8 μ L, 0.30 mmol) was added at room temperature (24 °C) and the mixture was stirred for 16 h at the same temperature. The mixture was concentrated and diluted with CH₂Cl₂. The mixture was washed with saturated aqueous NaHCO₃. The organic phase was dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography (hexane/EtOAc = 4:1) to afford the CH₂Cl₂.

Compound 4

Pale yellow oil, 35 mg, 99%. ¹H NMR (400 MHz, CDCl₃): δ 4.77 (dd, J = 14.6 Hz, 5.8 Hz, 1H), 4.70 (dd, J = 14.6 Hz, 5.5 Hz, 1H), 3.66-3.56 (m, 1H), 3.06 (dd, J = 18.6 Hz, 4.6 Hz, 1H), 2.86 (dd, J = 18.6 Hz, 6.4 Hz, 1H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.1, 175.8, 74.2, 41.2, 37.8, 27.8. ESI-HRMS: calcd for C₆H₁₀O₅N ([M+H]⁺) 176.0553, found 176.0583.

(3S,5R)-5-Methylpyrrolidine-3-carboxylic acid (Compound 3) obtained from 2h

Colorless solid, 21.9 mg, 85% for two steps from **2h**. $[\alpha]^{20}{}_{D}$ +9.6 (c 0.52, MeOH, 91% ee). Lit. $[\alpha]^{25}{}_{D}$ +10.3 (c 0.58, MeOH).⁹ Compound **3** obtained from compound **2h** possibly included trace CF₃COOH. ¹H NMR (400 MHz, CD₃OD): δ 3.78-3.70 (m, 1H), 3.62 (dd, *J* = 12.0 Hz, 6.8 Hz, 1H), 3.50 (dd, *J* = 12.0 Hz, 9.2 Hz, 1H), 3.41-3.32 (m, 1H), 2.61-2.53 (m, 1H), 1.89-1.80 (m, 1H), 1.44 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 182.8, 57.1, 51.2, 48.6, 40.1, 19.3.

Compound 5

Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.28 (m, 5H), 5.24-5.03 (m, 2H), 4.19-4.13 (m, 2H), 4.04-3.77 (m, 2H), 3.64-3.52 (m, 1H), 3.03-2.88 (m, 1H), 2.49-2.33 (m, 2H), 2.02-1.77 (m, 1H), 1.43-1.14 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 172.8, 154.5, 136.8, 128.5, 127.94, 127.91, 66.7, 61.0, 53.7, 53.0, 48.6, 48.2, 42.2, 41.8, 37.2, 36.6, 21.3, 20.3, 14.1. ESI-HRMS: calcd for C₁₆H₂₂O₄N ([M+H]⁺) 292.1543, found 292.1544. HPLC (Daicel Chiralpak AS, hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm): *t*_R (major enantiomer) = 25.3 min, *t*_R (minor enantiomer) = 24.3 min.

Transformation of 5 to 3

To a solution of compound **5** (91% ee, 29.1 mg, 0.10 mmol) in EtOH (1.0 mL)-H₂O (1.0 mL), 1 M NaOH aqueous solution (0.15 mL) was added at room temperature and the mixture was stirred for 16 h. The mixture was poured into ice-1 M HCl (10 mL), and the mixture was extracted with CH_2Cl_2 . The organic phase was dried over anhydrous Na₂SO₄, concentrated under vacuum. The residue was dissolved in MeOH (5 mL), and 10% Pd on charcoal (39.7 mg) was added. The mixture was stirred under H₂ (balloon) at room temperature (24 °C) for 2 days. The mixture was filtered through celite and the filtrate was concentrated under vacuum to afford compound **3** (11.6 mg, 90% yield for two steps from **5**).

Transformation of 2a to 5

A mixture of compound **2a** (95% ee, 203 mg, 1.0 mmol) was dissolved in anhydrous MeOH (10 mL). To this solution, *p*-toluenesulfonic acid (187 mg, 1.0 mmol) and 10% Pd on charcoal (173 mg) were added and the mixture was stirred under H₂ (balloon) at room temperature (24 °C) for 2 days. The mixture was filtered through celite and the filtrate was concentrated under vacuum. The residue was dissolved in CH₂Cl₂ (20 mL), and triethylamine (530 μ L, 3.8 mmol) was added. To the mixture, benzyl chloroformate (270 μ L, 1.92 mmol) was added dropwise over 30 min at room temperature (24 °C). The mixture was stirred at the same temperature for 10 h. The mixture was diluted with CH₂Cl₂ and washed with saturated aqueous NaHCO₃ solution. The organic phase was dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography (hexane/EtOAc = 2:1) to give **5** (92% ee).

Transformation of 2a to 6

A mixture of **2a** (81.2 mg, 0.40 mmol), ethylene glycol (2 mL), and *p*-toluenesulfonic acid monohydrate (15.0 mg, 0.08 mmol) in benzene (10 mL) was heated at reflux with a Dean-Stark apparatus for 24 h. After being cooled to room temperature, the mixture was diluted with EtOAc, washed with saturated aqueous NaHCO₃. The organic phase was dried over MgSO₄, filtered, concentrated, and purified by flash column chromatography (hexane/EtOAc = 4:1) to give **6** (89.0 mg, 90%).

Compound 6

Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.74 (dd, J = 14.4 Hz, 8.8 Hz, 1H), 4.66 (dd, J = 14.4 Hz, 4.6 Hz, 1H), 4.26-4.12 (m, 2H), 4.05-3.88 (m, 4H), 3.40-3.30 (m, 1H), 2.24 (dd, J = 14.8 Hz, 5.3 Hz, 1H), 1.94 (dd, J = 14.8 Hz, 7.4 Hz, 1H), 1.33 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.2, 108.6, 75.4, 64.6, 64.4, 61.5, 38.9, 37.4, 24.0, 14.0. ESI-HRMS: calcd for C₁₀H₁₈O₆N ([M+H]⁺) 248.1129, found 248.1099.

Transformation of 2a to 8

A solution of **2a** (46.7 mg, 0.23 mmol) and *p*-toluenesulfonyl hydrazide (42.8 mg, 0.23 mmol) in MeOH (2.3 mL) was refluxed for 2 h. After being cooled to room temperature, generated precipitate was collected by filtration and washed with hexane/EtOAc (10:1) to give 7 (99%, 85.4 mg, 99%).

Compound 8

Colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 4.52 (dd, J = 14.6 Hz, 7.8 Hz, 1H), 4.32 (dd, J = 14.6 Hz, 4.6 Hz, 1H), 4.23-4.05 (m, 2H), 3.53-3.43 (m, 1H), 2.71 (dd, J = 17.7 Hz, 4.4 Hz, 1H), 2.52 (dd, J = 17.7 Hz, 8.4 Hz, 1H), 2.44 (s, 3H), 1.81 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 153.2, 144.6, 134.9, 129.7, 128.1, 73.9, 61.7, 39.1, 36.4, 21.6, 16.5, 13.9. ESI-HRMS: calcd for C₁₅H₂₂O₆N₃S ([M+H]⁺) 372.1224, found 372.1230.

Transformation of 2a to 9

To a solution of **2a** (40.6 mg, 0.20 mmol) in CH₂Cl₂ (1.5 mL), benzylamine (43.7 μ L, 0.40 mmol) and NaBH(OAc)₃ (85.4 mg, 0.40 mmol) were added at room temperature (24 °C) and the mixture was stirred for 48 h at the same temperature. To the mixture, aqueous 1 N NaOH (1.5 mL) was added and the mixture was extracted with CH₂Cl₂. Organic layers were combined, washed with brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography (hexane/EtOAc = 4:1) to give **9a** (11.9 mg, 24%) and **9b** (16.9 mg, 34%). Relative stereochemistry was determined by NOESY experiments.

Compound 9a

Rf 0.40 (hexane/EtOAc = 3:1), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.18 (m, 5H), 4.96 (d, J = 15.0 Hz, 1H), 4.93 (dd, J = 13.8 Hz, 3.8 Hz, 1H), 4.50 (dd, J = 13.8 Hz, 9.2 Hz, 1H),

4.08 (d, J = 15.0 Hz, 1H), 3.59-3.48 (m, 1H), 3.30-3.19 (m, 1H), 2.53 (ddd, J = 12.8 Hz, 8.8 Hz, 6.6 Hz, 1H), 1.44 (ddd, J = 12.8 Hz, 10.8 Hz, 8.9 Hz, 1H), 1.22 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.8, 136.1, 128.8, 127.9, 127.7, 76.3, 51.1, 44.3, 40.8, 32.8, 19.9. ESI-HRMS: calcd for C₁₃H₁₇O₃N₂ ([M+H]⁺) 249.1234, found 249.1227.

Compound 9b

Rf 0.35 (hexane/EtOAc = 3:1), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.19 (m, 5H), 4.99 (d, *J* = 14.9 Hz, 1H), 4.86 (dd, *J* = 13.8 Hz, 3.8 Hz, 1H), 4.53 (dd, *J* = 13.8 Hz, 8.8 Hz, 1H), 3.99 (d, *J* = 14.9 Hz, 1H), 3.62-3.50 (m, 1H), 3.41-3.29 (m, 1H), 2.02 (dd, *J* = 8.8 Hz, 5.8 Hz, 2H), 1.19 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 136.0, 128.8, 128.0, 127.8, 75.9, 50.8, 44.5, 39.3, 31.2, 19.0. ESI-HRMS: calcd for C₁₃H₁₇O₃N₂ ([M+H]⁺) 249.1234, found 249.1227.

Transformation 3e to 10

A mixture of compound **2a** (95% ee, 115.0 mg, 0.57 mmol) was dissolved in anhydrous MeOH (10 mL). To this solution, *p*-toluenesulfonic acid (91.4 mg, 0.53 mmol) and 10% Pd on charcoal (62.0 mg) were added and the mixture was stirred under H₂ (balloon) at room temperature (24 °C) for 2 days. The mixture was filtered through celite and the filtrate was concentrated under vacuum. The residue was dissolved in CH₂Cl₂ (20 mL), and triethylamine (226 μ L, 1.58 mmol) was added. To the mixture, benzyl chloroformate (270 μ L, 1.92 mmol) was added dropwise over 30 min at room temperature (24 °C). The mixture was stirred at the same temperature for 10 h. The mixture was diluted with CH₂Cl₂ and washed with saturated aqueous NaHCO₃ solution. The organic phase was dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography (hexane/EtOAc = 2:1) to give **10**.

Compound 10

Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.28 (m, 5H), 5.23-5.05 (m, 2H), 4.26-4.06 (m, 2H), 3.93-3.82 (m, 1H), 2.86-2.71 (m, 1H), 2.27-2.12 (m, 1H), 2.03-1.10 (m, 12H), 1.27 (t, *J* =

7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 153.8, 136.7, 128.4, 128.1, 128.0, 73.4, 66.4, 60.7, 54.2, 53.3, 35.9, 35.4, 34.4, 29.7, 26.9, 25.5, 24.0, 22.6, 14.1. ESI-HRMS: calcd for C₂₀H₂₈O₄N ([M+H]⁺) 346.2013, found 346.2016.

6. References

(1) H.-L. Cui, F. Tanaka, Chem. Eur. J. 2013, 19, 6213.

- (2) X. Zhao, K. E. Ruhl, T. Rovis, Angew. Chem. Int. Ed. 2012, 51, 12330.
- (3) A. Takahashi, H. Yanai, M. Zhang, T. Sonoda, M. Mishima, T. Taguchi, *J. Org. Chem.*, **2010**, 75, 1259.
- (4) J. Wang, A. Ma, D. Ma, Org. Lett., 2008, 10, 5425.
- (5) M. Ronsheim, C. Zercher, J. Org. Chem., 2003, 68, 4535.
- (6) W. Baratta, A. Zotto, Chem. Comm. 1997, 22, 2163.
- (7) D. Lyzwa, K. Dudzinski, P. Kwiatkowski, Org. Lett., 2012, 14, 1540.
- (8) K. Dudzinski, A. Pakulska, P. Kwiatkowski, Org. Lett., 2012, 14, 4222.
- (9) H. Zhang, M. Mifsud, F. Tanaka, C. F. Barbas, III, J. Am. Chem. Soc. 2006, 128, 9630.

No.	RT	Area	Conc 1
1 2	24.350 27.020	62894 2880925	2.136 97.864
		2943819	100.000

No.	RT	Area	Area %
1	38.43 44 32	5838327 5449663	51.722 48.278
		11287990	100.000

No.	RT	Area	Area %
1 2	38.36 44.78	10875166 549296	95.192 4.808
		11424462	100.000

No.	RT	Area	Area %
1	15.49	445592	47.649
2	15.86	489562	52.351
		935154	100.000

No.	RT	Area	Area %
1 2	13.62 14.05	281303 7192135	3.764 96.236
		7473438	100.000

Intensity (mV)

1	24.917	13988504	47.609
2	25.787	15393615	52.391
		29382119	100.000

No.	RT	Area	Area %
1 2	27.217 28.360	1121048 27293166	3.945 96.055
		28414214	100.000

8109791

100.000

1	24.917	13988504	47.609
2	25.787	15393615	52.391
		29382119	100.000

No.	RT	Area	Area %
1 2	27.217 28.360	1121048 27293166	3.945 96.055
		28414214	100.000

22272892

100.000

No.	RT	Area	Area %
1 2	39.020 44.770	1877029 69244641	2.639 97.361
		71121670	100.000

No.	RT	Area	Conc 1
1 2	32.010 34.223	14192065 16063822	46.907 53.093
		30255887	100.000

No.	RT	Area %		
1 2	37.09 40.39	405314 21504186	1.850 98.150	
		21909500	100.000	

1	49.06	17447831	49.754
2	57.28	17620460	50.246
		35068291	100.000

No.	RT	Area	Area %		
1 2	48.80 56.67	342088 13816323	2.416 97.584		
		14158411	100.000		

No.	RT	Area	Area % 94.443 5.557		
1 2	23.33 28.31	14204346 835817			
		15040163	100.000		

Retention Time (min)

Intensity (mV)

Intensity (mV)

3125646

100.000

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mV*s]	[mV]	%
1	16.060	BB	0.4718	233.04874	6.93982	52.3282
2	20.363	BB	0.6059	212.31113	5.09763	47.6718

Peak RetTime Type Width Height Area Area # [min] [min] [mV*s] [mV] % 16.500 BB 0.5274 25.88804 7.56224e-1 1 0.8698 19.642 BB 1.2513 2950.44043 2 34.58559 99.1302

· ·	180 160	140 1	20 100	80	60	40	20	ppm	
								houserschartware	F2 - Processing parameters SI 32768 SF 100.6127713 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40
									D1 2.0000000 sec D11 0.03000000 sec TD0 1 ======= CHANNEL f1 ====== SFO1 100.6228293 MHz NUC1 13C P1 10.00 usec PLW1 70.0000000 W ======= CHANNEL f2 ====== SFO2 400.1316005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 8.0000000 W PLW12 0.28125000 W PLW13 0.28125000 W
O	COOEt								F2 - Acquisition Parameters Date_ 20160816 Time 15.30 INSTRUM spect PROBHD 5 mm PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 1024 DS 4 SWH 24038.461 Hz FIDRES 0.366798 Hz AQ 1.3631488 sec RG 195.88 DW 20.800 usec DE 6.50 usec TE 299.9 K
197.56	165.43			$\bigwedge_{76.68}^{77.32}$	61.42			14.08	Current Data Parameters NAME yf-16-0816-s1-c EXPNO 10 PROCNO 1

$\bigwedge_{6.547}^{7} \bigvee_{6.6931}^{7} \bigvee_{6.588}^{7}$	2.339	
O COOtBu		Current Data Parameters NAME yf-16-0816-s4 EXPNO 10 PROCNO 1 F2 - Acquisition Parameters Date_ 20160816 Time 14.11 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG 230 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 8012.820 Hz FIDRES 0.122266 Hz AQ 4.0894465 sec RG 62.488 DW 62.400 usec DE 6.50 usec TE 298.7 K D1 1.0000000 sec TD0 1 ======= CHANNEL f1 ======== SFO1 400.1324710 MHz NUC1 1F
9 8 7 6 5 4 [8] [5]	3 2 (D) (C) (C)	 FLW1 8.0000000 W F2 - Processing parameters SI 65536 SF 400.1300096 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 FC 1.00

	· · · ·		'	· · · · ·	·					10	1.10
										GB	0 1 40
	hangsafangan sama anti-si ang kina	and the second secon	adore and the state of the stat	deff telefoliseiter Lefon The Sta	rija gažny vitilaži gani galižina ostati		entert and position with	hing and the second of the	in the second	SF WDW SSB LB	1 00 H7
1										F2 - Pro SI	cessing parameters 32768
										PLW12 PLW13	0.28125000 W 0.28125000 W
			I							CPDPRG[2 PCPD2 PLW2	waltz16 80.00 usec 8.0000000 W
										======== SFO2 NUC2	CHANNEL f2 ======= 400.1316005 MHz 1H
										PI PLW1	10.00 usec 70.00000000 W
										======= SF01 NUC1	CHANNEL f1 ======= 100.6228293 MHz 13C
										D11 TD0	0.03000000 sec 1
										DE TE D1	6.50 usec 299.9 K 2.0000000 sec
										AQ RG DW	1.3631488 sec 195.88 20.800 usec
										SWH FIDRES	24038.461 Hz 0.366798 Hz
										SOLVENT NS DS	CDC13 1024
										PROBHD PULPROG TD	5 mm PABBO BB/ zgpg30 65536
	J									Date_ Time INSTRUM	20160817 14.15 spect
0 (COOEt									PROCNO F2 - Acq	l uisition Parameters
						l				Current NAME EXPNO	Data Parameters YF-16-0816-S7-C 10
		I	1	I		¥	1		I I		
Ì		Ĩ	Ï	Ĩ		ŇŻ	Ĩ		Î		

