Supplementary Information

First total synthesis and solution structure of a polypeptin, PE2, a cyclic lipopeptide with broad spectrum antibiotic activity.

Simon J. Mountford, ${ }^{\text {a }}$ Biswaranjan Mohanty, ${ }^{\text {a }}$ Kade D. Roberts, ${ }^{\text {a }}$ Heidi Y. Yu, ${ }^{\text {b }}$ Martin J. Scanlon, ${ }^{\text {a Roger L. Nation, }, ~ T o n y ~ V e l k o v, ~}{ }^{\text {b }}$ Jian Li, ${ }^{\text {b }}$ Philp E. Thompson*a

${ }^{\mathrm{a}}$ Medicinal Chemistry and ${ }^{\text {b }}$ Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Australia

Contents

		Page
Figure S1	HPLC and ESI-MS of crude and purified (inset) peptides, 7 and 7A	2
Figure S2	Chiral HPLC traces for RS-15 (a) and S-15 (b).	4
Figure S3	Overlay of 2D $\left[{ }^{15} \mathrm{~N},{ }^{1} \mathrm{H}^{\mathrm{N}}\right]$-SOFAST-HMQC spectra of 7A and 7	5
Figure S4	Overlay of 1D ${ }^{1} \mathrm{H}$ and $2 \mathrm{D}\left[{ }^{15} \mathrm{~N},{ }^{1} \mathrm{H}^{\mathrm{N}}\right]$-SOFAST-HMQCs spectra of 7 (synthesized via 12) and 7 (synthesized via S-12)	6
Figure S5	$1 \mathrm{D}^{1} \mathrm{H}$-NMR spectra of amide regions of 7 and 7 A in water and $\mathrm{D}_{2} \mathrm{O}$.	7
Table S1	MIC values for 7A and polymyxin B	8
	NMR spectra for Compounds 10-12, 15-16	9
	HR-MS for compounds 12, S-12, 16	19

Figure S1 HPLC and ESI-MS of crude and purified (inset) peptides 7 and 7A. (A) Synthesis from 12. (B) Synthesis from S-12.

Figure S2 Chiral HPLC traces for $\boldsymbol{R S} \mathbf{- 1 5}$ (a) and $\boldsymbol{S} \mathbf{- 1 5}$ (b).

Chemical shift assignments:

Sequence specific chemical shift assignments of 7 (FADDI-491B) and 7A (FADDI-491A) peptides are provided in the supplementary information (see two excel files).

Figure S3 Overlay of 2D $\left[{ }^{15} \mathrm{~N}, \mathrm{H}^{\mathrm{N}}\right]$-SOFAST-HMQC spectra of 7A and 7 ($3 R S-12$). Spectra were acquired from each sample with peptide concentration of $\sim 1.7 \mathrm{mM}$ in $7 \%{ }^{2} \mathrm{H}_{2} \mathrm{O}$ and 93% $\mathrm{H}_{2} \mathrm{O}$ at pH 4.35 . All data were collected on a 600 MHz spectrometer equipped with CryoProbe at $10^{\circ} \mathrm{C}$. The side-chain amide peaks for 7 are labelled in magenta. I, L, T, Z, V and F indicates Ile, Leu, Thr, Dab, D-Val and D-Phe residues.

Figure S4 Overlay of $1 \mathrm{D}{ }^{1} \mathrm{H}$ and $2 \mathrm{D}\left[{ }^{15} \mathrm{~N}, \mathrm{H}^{\mathrm{N}}\right]$-SOFAST-HMQCs spectra enabling comparison of 7 (synthesized via 12) and 7 (synthesized via \boldsymbol{S}-12). Spectra were acquired from each sample with peptide concentration of $\sim 1.7 \mathrm{mM}$ in $7 \%{ }^{2} \mathrm{H}_{2} \mathrm{O}$ and $93 \% \mathrm{H}_{2} \mathrm{O}$ at pH 4.35 . All data were collected on a 600 MHz spectrometer equipped with CryoProbe at $10^{\circ} \mathrm{C} . \mathrm{I}, \mathrm{L}, \mathrm{T}, \mathrm{Z}, \mathrm{V}$ and F indicates Ile, Leu, Thr, Dab, D-Val and D-Phe residues.

Figure S5 1D ${ }^{1} \mathrm{H}$-NMR spectra of 7 and 7 A in water and $\mathrm{D}_{2} \mathrm{O}$. Only amide region is shown for clarity. Spectra were acquired from each sample with peptide concentration of $\sim 1.7 \mathrm{mM}$. The dead time between the addition of $\mathrm{D}_{2} \mathrm{O}$ to the lyophilized peptides and the beginning of data acquisition was ~ 8 minutes. The data acquisition time of each spectrum took ~ 7 minutes. All data were collected on a 600 MHz spectrometer equipped with CryoProbe at $10^{\circ} \mathrm{C}$. I, O and sc indicate unassigned peaks from sample impurities, overlapped peaks and side-chain amide peaks, respectively. I, L, T, Z, V and F indicates Ile, Leu, Thr, Dab, D-Val and D-Phe residues.

Table S1 MIC values for 7A and polymyxin B

Bacterial species	Strain	$\begin{gathered} 7 \mathrm{~A} \\ \text { MIC }(\mu \mathrm{g} / \mathrm{mL}) \end{gathered}$	Polymyxin B MIC ($\mu \mathrm{g} / \mathrm{mL}$)
Gram Negative P. aeruginosa	Pa ATCC 27853	>32	0.5
	FADDI-PA021	>32	0.5
	FADDI-PA025	>32	1
	FADDI-PA070	>32	>32
	FADDI-PA060	>32	4
	FADDI-PA090	>32	2
Gram Negative A. baumannii	Ab ATCC 19606	>32	0.5
	FADDI-AB34	>32	0.5
	Ab ATCC 17978	>32	1
	FADDI-AB065	>32	>32
	FADDI-AB156	>32	8
	FADDI-AB167	>32	8
Gram Negative K. pneumonia	Kp ATCC 13883	>32	1
	FADDI-KP032	16	0.5
	FADDI-KP027	>32	>32
	FADDI-KP003	>32	>32
	FADDI-KP012	>32	>32
Gram Negative E. cloacae	FADDI-EC006	32	0.5
	FADDI-EC001	32	0.25
	FADDI-EC003	32	0.25
Gram Positive	VRE ${ }^{\text {a }}$ ATCC 700221	>32	>32
	MRSA ATCC 43300	>32	>32
	VISA ATCC 700698	>32	>32
	$\begin{aligned} & \hline \text { VRSA ATCC } \\ & 700699 \end{aligned}$	>32	>32

 MS Zoomed Spectrum Counts vs. Mass-to-Charge (m/z)

Compound Label	$\boldsymbol{m} / \mathbf{z}$	RT	Algorithm	Mass
Cpd 1: C29 H37 N 07	534.2453	0.127	Find By Formula	511.2561

9t0z-^0N-OI uo Wd to:zt ze pzzulud	I to I $26 \mathrm{ef}_{\text {d }}$	

Compound Label	m / z	RT	Algorithm	Mass
Cpd 1: C29 H37 N 07	512.2644	Find By Formula	511.2567	
MS Spectrum				

HR-MS Compound $3 \mathrm{~S}-12$	
Data File	SJM-402-82.d
Sample Type	Sample
Instrument Name	Instrument 1
Acq Method	Monash_Direct.m
IRM Calibration Status	Success
Comment	
Sample Group	C29H37NO7
Formula	
Acquisition Sw Version	6200 series TOF/6500 series Q

Qualitative Compound Report

