Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting information

Facile synthesis of benzo[*b*]thiophenes *via* metal-free radical-triggered intramolecular C-S bond formation

Wei Fan,^a Kwong-Yuen Chen,^a Qi-Peng Chen,^a Guigen Li,^{*,a,b} and Bo Jiang^{*,c}

^aInstitute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences,

Nanjing University, Nanjing, 210093, P. R. China

^bDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States

^cSchool of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China

jiangchem@jsnu.edu.cn; guigen.li@ttu.edu

Table of Contents

General information	S2
X-ray Crystallography Structure of Compounds 2d	S2
Intermolecular Competition Experiments	S3
Deuterium Kinetic Isotope Effect	S4
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 2a-2t	S5-S24

General Information

Melting points were determined in open capillaries and were uncorrected. IR spectra were taken on a FT-IR-Tensor 27 spectrometer in KBr pellets and reported in cm⁻¹. ¹H NMR (¹³C NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in DMSO- d_6 or DMF- d_7 with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, d = doublet, t = triplet, brs = broad singlet, m = multiplet), coupling constant (Hz)]. HRMS (ESI) was determined by using microTOF-Q II HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer.

Fig 1, X-ray Structure of 2d

Crystal data for **2d**: C₁₆H₈ClNO₂S, Mr = 313.74, Monoclinic, a = 3.8280(2) Å, b = 13.3111(11) Å, c = 25.038(2) Å, U = 1275.64(17) Å³, T = 298(2) K, space group P2(1)/n, Z = 4, 6131 reflections measured, 2219 unique (R_{int} = 0.1893) which were used in all calculation. The final $wR(F_2)$ was 0.2492 (all data)

Intermolecular Competition Experiments

Triethylammonium (Z)-2-(4-fluorophenyl)-2-oxo-1-(2-oxoindolin-3-ylidene)ethanethiolate (**1b**, 1.0 mmol, 400 mg) and triethylammonium (Z)-2-oxo-1-(2-oxoindolin-3-ylidene)-2-(*p*-tolyl)ethanethiolate (**1f**, 1.0 mmol, 396 mg) were introduced into a 10-mL reaction vial. Then I₂ (0.2 mmol, 50.8 mg) and 1,4-dioxane (2.0 mL) were successively added, and the mixture stirred at 120 °C under microwave conditions for 1 h. After completion of the reaction (monitored by TLC), the reaction mixture was down to room temperature. The solid products were collected by B üchner filtration to give **2b** and **2f**.

Deuterium Kinetic Isotope Effect

Triethylammonium (*Z*)-2-oxo-1-(2-oxoindolin-3-ylidene)-2-phenylethanethiolate (**1a**, 0.1 mmol, 38.2 mg) or triethylammonium (*Z*)-2-oxo-1-(2-oxoindolin-3-ylidene)-2-phenyl- d_5 -ethanethiolate ([D₅]-**1a**, 0.1 mmol, 38.7 mg) was introduced into a 10-mL reaction vial. Then I₂ (0.02 mmol, 5.08 mg) and 1,4-dioxane (2.0 mL) were successively added, and the mixture stirred at 120 °C under microwave conditions for 5-25 min. After completion of the reaction (monitored by TLC), the reaction mixture was down to room temperature. The solid product was collected by Büchner filtration to give almost pure product **2a** or [D₄]-**2a**.

	Yield of 2a or [D ₄]- 2a					
	5 min	10 min	15 min	20 min	25 min	
1a	7%	14%	21%	29%	36%	
[D ₅]- 1 a	2%	4%	6%	8%	10%	

initial rate of 1a and [D₅]-1a

¹³C NMR Spectrum of Compound 2a

¹³C NMR Spectrum of Compound 2b

¹³C NMR Spectrum of Compound 2c

¹³C NMR Spectrum of Compound 2d

¹³C NMR Spectrum of Compound 2f

¹³C NMR Spectrum of Compound 2h

¹³C NMR Spectrum of Compound 2i

¹³C NMR Spectrum of Compound 2j

¹³C NMR Spectrum of Compound 2m

S18

¹³C NMR Spectrum of Compound 20

S23

¹³C NMR Spectrum of Compound 2t