Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Asymmetric Synthesis of Isoquinolinonaphthyridines Catalyzed by a

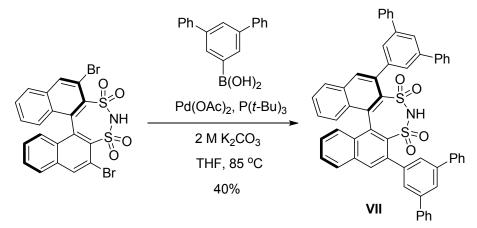
Chiral Brønsted Acid

Jianjun Li,^a Yiwei Fu,^a Cong Qin,^a Yang Yu,^a Hao Li,^{*a} and Wei Wang^{*a,b}

^[a]State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Mei-long Road, Shanghai, 200237, China

^[b]Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA

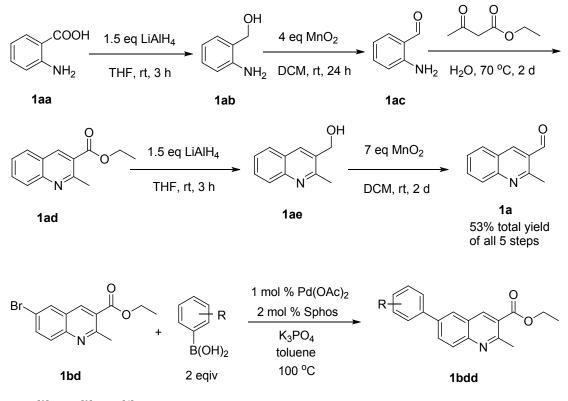
Table of contents


I. General Information	S2
II. General procedure for the synthesis of catalysts	S2
III. Procedure for the synthesis of compound 1	S 3
IV. General procedure for the synthesis of compound 4	S6
V. Determination of X-ray crystallographic structure 3b	S11
VI. References	S14
VII. ¹ H and ¹³ C-NMR spectra	S16
VIII. Chiral HPLC analysis spectra	S39
IX. Other substrates	S51

1. General Information

Unless otherwise noted, all reagents were obtained commercially and used without further purification. Unless otherwise specified, all other reagents were purchased from Acros, Aldrich, Fisher, Adamas-beta Co. Ltd. or TCI and used without further purification. The NMR spectra were recorded on a Varian MERCURY plus-400 (400 MHz, ¹H; 100 MHz, ¹³C) spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvent and the internal standard tetramethylsilane. Data for 1H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Chromatography was carried out with silica gel (200-300 mesh) or neutral alumina (200-300 mesh) using mixtures of petroleum ether (b.p. 60-90 °C) and ethyl acetate as eluents. The enantiomeric ratios of products were detected on HPLC (Shimadzu LC-LabSolutions) using a Daicel chiral column. Mass Spectra were obtained by using an electrospray spectrometer Waters Micromass Q-TOF Premier Mass Spectrometer from East China University of Science and Technology mass spectral facility.

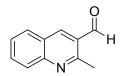
2. Procedure for the synthesis of catalysts


Catalysts $I_{,[1a]}$ $III_{,[1b]}$ $III_{,[1c]}$ $IV_{,[1d,1e]}$ $V_{,[1f]}$ $VI_{,[1g]}$ and $VIII_{[1h]}$ were known in the literature and VII were prepared according to the literature methods.^[1a]

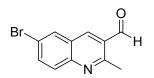
(*R*)-(-)-3,3'-bis(3,5-Diphenylphenyl)-1,1'-binaphthalene-2,2'-sulfonimide VII: To a solution of (*R*)-(-)-3,3'-Dibromo-1,1'-binaphthalene-2,2'-sulfonimide (1.16 g, 2.1 mmol, 1 equiv), Pd(OAc)₂ (24 mg, 1.05 mmol, 0.05 equiv), and (3,5diphenylphenyl)boronic acid (1.73 g, 6.3 mmol, 3 equiv) in THF (60 mL) under the protection of N₂, was added 2 M aqueous K₂CO₃ (13 mL). Then P(*t*-Bu)₃ (1M in hexane, 0.21 mL, 0.1 equiv) was added quickly. The reaction mixture was heated for 24 h at 85 °C. After the reaction was completed, the resulting mixture was acidified with 1 M HCl and extracted with CHCl₃ (30 mL×3). The combined organic phase was dried over Na₂SO₄ followed by filtration and concentrated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether/EtOAc 3:1). Then the product was dissolved in DCM and acidified with a 2 M HCl aqueous solution. The combined organic phase was evaporated to give the desired product as a white solid (702 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃): 8.20 (s, 2H), 8.03 (d, *J* = 8.0 Hz, 2H), 7.87 (s, 2H), 7.82 (s, 2H), 7.66-7.77 (m, 12H), 7.33-7.49 (m, 14H), 7.22 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 141.4, 140.8, 140.7, 139.9, 138.5, 136.7, 134.4, 133.9, 132.3, 132.0, 129.9, 128.9, 128.8, 128.5, 128.2, 127.6, 127.5, 127.4, 126.3, 125.6; HRMS (ESI) calcd for C₅₆H₃₁NO₄S₂ [M-H]⁻ 850.2086, found 850.2085.

3. General procedure for the synthesis of compound 2-methylquinolin-3carbaldehyde derivatives 1^[2-4] and Characterization data

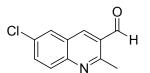
Unless otherwise specified, 2-methylquinoline-3-carbaldehyde (as examples) derivatives were synthesized via the following 5 steps:

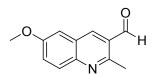

1ab,^[2] **1ac**,^[3] **1ad**^[4] were prepared according to the literature.

1ae: To an ice-cooled solution of 2-methyl-3-quinolinecarboxylic acid ethyl ester **1ad** (17.66 g, 82.1 mmol) in dry THF (100 mL), a solution of LiAlH₄ in THF (1M, 125 mL) was added dropwise. The resulting mixture was stirred for 3 h at room temperature. The mixture was slowly treated with ethyl acetate (100 mL), partitioned by saturated NaHCO₃ (200 mL), and extracted with ethyl acetate three times. The combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated to afford 2-methyl-3-quinolinemethanol **1ae** quantitatively without further purification.

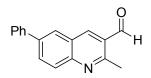

1a: To a solution of 2-methyl-3-quinolinemethanol **1ad** (14 g, 81 mmol) in DCM (300 mL) was treated with MnO_2 (50 g, 567 mmol). The mixture was stirred for 2 d at room temperature. After the reaction was completed (monitored by TLC, PE/EA 3:1, Rf = 0.6), the resulting mixture was filtered through celite, washed with DCM, and the combined organic phase was evaporated. The crude product was purified by silica gel column chromatography (PE/EA 12:1) to give the pure product 2-methylquinolin-3-

carbaldehyde 1a (7.45 g, 53% total yield).

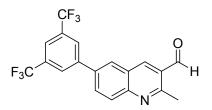

1bdd: To a solution of $Pd(OAc)_2$ (2.2 mg, 0.01 mmol), Sphos (8.2 mg, 0.02 mmol), K_3PO_4 (849 mg, 4 mmol), 6-bromo-2-methylquinoline-3-carboxylate **1bd** (294 mg, 1 mmol) in toluene was added relevant phenylboronic acid (2 equiv, 2 mmol). Then the reaction was stirred at 100 °C for 24 h. After the reaction was completed (monitored by TLC), the mixture was filtered and evaporated. The crude product was purified by flash silica gel column chromatography to give the product.


2-Methylquinolin-3-carbaldehyde (1a): yellow solid, 53% total yield. ¹H NMR (400 MHz, CDCl₃): δ 10.39 (s, 1H), 8.60 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.85 (t, J = 8 Hz, 1H), 7.59 (t, J = 8 Hz, 1H), 3.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.5, 158.3, 149.2, 142.5, 132.7, 129.1, 128.8, 128.0, 127.0, 126.1, 24.0; HRMS (EI) m/z calcd for C₁₁H₉NO (M) 171.0684, found 171.0685.

6-Bromo-2-methylquinoline-3-carbaldehyde (1b): yellow solid, 22% total yield. ¹H NMR (400 MHz, CDCl₃): δ 10.38 (s, 1H), 8.50 (s, 1H), 8.10 (s, 1H), 7.88-7.96 (m, 2H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.1, 158.8, 147.8, 141.0, 136.0, 130.8, 130.5, 128.5, 127.2, 120.7, 24.0; HRMS (EI) m/z calcd for C₁₁H₈BrNO (M) 248.9789, found 248.9786.



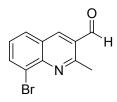
6-Chloro-2-methylquinoline-3-carbaldehyde (1c): yellow solid, 14% total yield. ¹H NMR (400 MHz, CDCl₃): δ 10.37 (s, 1H), 8.49 (s, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.91 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 3.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.1, 158.6, 147.6, 141.2, 133.5, 132.7, 130.4, 128.6, 127.5, 126.7, 23.9; HRMS (EI) m/z calcd for C₁₁H₈CINO (M) 205.0294, found 205.0296.

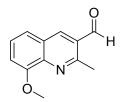


6-Methoxy-2-methylquinoline-3-carbaldehyde (1d): pale yellow solid, 12% total

yield. ¹H NMR (400 MHz, CDCl₃): δ 10.31 (s, 1H), 8.47 (s, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.37 (s, 1H), 7.21 (d, J = 8.0 Hz, 1H), 3.98 (s, 3H), 3.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.1, 163.5, 159.0, 151.3, 141.6, 130.2, 126.2, 121.2, 120.2, 106.9, 55.8, 23.8; HRMS (EI) m/z calcd for C₁₂H₁₁NO₂ (M) 201.0790, found 201.0791.

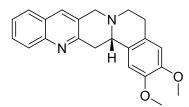
2-Methyl-6-phenylquinoline-3-carbaldehyde (1e): yellow solid, 16% total yield. The title compound was prepared from **1bd** and phenylboronic acid according to the above steps of **1bdd**, **1ae** and **1a**. ¹H NMR (400 MHz, CDCl₃): δ 10.41 (s, 1H), 8.65 (s, 1H), 8.09-8.16 (m, 3H), 7.71-7.72 (m, 2H), 7.50-7.54 (m, 2H), 7.41-7.45 (m, 1H), 3.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 158.3, 148.6, 142.6, 139.8, 139.7, 132.5, 129.2, 129.1, 128.4, 128.1, 127.4, 126.5, 126.3, 24.0; HRMS (EI) m/z calcd for C₁₇H₁₃NO (M) 247.0997, found 247.0998.


6-(3,5-bis(Trifluoromethyl)phenyl)-2-methylquinoline-3-carbaldehyde (1f): yellow solid, 14% total yield. The title compound was prepared from **1bd** and 3,5bis(Trifluoromethyl)phenylboronic acid according to the above steps of **1bdd**, **1ae** and **1a**. ¹H NMR (400 MHz, CDCl₃): δ 10.42 (s, 1H), 8.70 (s, 1H), 8.08-8.23 (m, 5H), 7.94 (s, 1H), 3.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.1, 159.4, 149.0, 142.5, 141.9, 136.7, 132.7, 132.4, 131.5, 130.1, 128.8, 127.4, 126.3, 124.6, 121.9, 121.7, 24.1; HRMS (EI) m/z calcd for C₁₉H₁₁F₆NO (M) 383.0745, found 383.0743.


2-Methylbenzo[g]quinoline-3-carbaldehyde (1g): yellow solid, 4% total yield. ¹H NMR (400 MHz, CDCl₃): δ 10.36 (s, 1H), 8.77 (s, 1H), 8.63 (s, 1H), 8.55 (s, 1H), 8.09 (t, *J* = 8.0 Hz, 2H), 7.55-7.63 (m, 2H), 3.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.3, 158.3, 144.9, 144.5, 135.9, 131.9, 129.2, 128.6, 128.5, 128.1, 127.8, 126.6, 126.5, 124.3, 24.7; HRMS (EI) m/z calcd for C₁₅H₁₁NO (M) 221.0841, found 221.0842.

2-Methylnicotinaldehyde (1h): yellow oil, 42% total yield. The title compound was prepared from commercial availability ethyl 2-methylnicotinate, according to a simple procedure of **1ae** and **1a**. ¹H NMR (400 MHz, CDCl₃): δ 10.34 (s, 1H), 8.69 (d, *J* = 8.0 Hz, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 1H), 2.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 160.3, 153.2, 138.3, 129.5, 121.8, 22.3; HRMS (EI) m/z calcd for C₇H₇NO (M) 121.0528, found 121.0529.

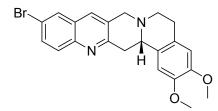
8-Bromo-2-methylquinoline-3-carbaldehyde (1i): white solid, 24% total yield. ¹H NMR (400 MHz, CDCl₃): δ 10.41 (s, 1H), 8.57 (s, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.43 (t, *J* = 8.0 Hz, 1H), 3.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.0, 159.5, 146.1, 142.4, 136.1, 128.9, 128.5, 127.4, 127.3, 124.4, 24.3; HRMS (EI) m/z calcd for C₁₁H₈BrNO (M) 248.9789, found 248.9787.



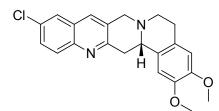
8-Methoxy-2-methylquinoline-3-carbaldehyde (1j): yellow solid, 27% total yield. ¹H NMR (400 MHz, CDCl₃): δ 10.42 (s, 1H), 8.60 (s, 1H), 7.53 (d, *J* = 4.0 Hz, 2H), 7.21 (t, *J* = 4.0 Hz, 1H), 4.13 (s, 3H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.5, 157.4, 154.8, 141.1, 140.9, 128.4, 127.2, 127.1, 120.7, 110.7, 56.3, 24.2; HRMS (EI) m/z calcd for C₁₂H₁₁NO₂ (M) 201.0790, found 201.0788.

Unless otherwise noted, all compounds **2** were obtained commercially and used without further purification. Compound **2d** was prepared according to the literature methods.⁵

4. General procedure for the synthesis of compound 2,3-dimethoxy-6,8,15,15atetrahydro-5H-benzo[b]isoquinolino[2,1-g][1,6]naphthyridine derivatives 3 and Characterization Data


Under N₂, a mixture of **1a** (0.1 mmol) and catalyst **VII** (0.03 mmol) was stirred in toluene (1.0 mL) for 30 min at room temperature. Then 3 Å molecular sieves (50 mg), secondary amine **2a** (0.13 mmol) were added and the reaction was heated to 60 °C. After the reaction was completed (monitored by TLC), the mixture was cooled to room temperature, filtered, and washed with DCM. The combined organic phase was evaporated and purified by column chromatography (neutral alumina) to give the corresponding product **3a**.

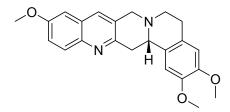
(S)-2,3-Dimethoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-


g][1,6]naphthyridine (3a): yellow solid, 91% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 12.0 Hz, 1H), 7.88 (s, 1H), 7.76 (d, J = 12.0 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 6.84 (s, 1H), 6.65 (s, 1H), 4.26 (d, J = 16.0 Hz, 1H), 3.89 (s, 6H), 3.79-3.86 (m, 3H), 3.15-3.27 (m, 3H), 2.67-2.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.5, 147.6, 147.5, 147.1, 132.7, 129.1, 129.0, 128.4, 128.2, 127.3, 127.0, 126.2, 126.0, 111.3, 108.2, 59.7, 58.0, 55.9, 55.8, 51.5, 40.9, 29.0; HRMS (EI) m/z calcd for C₂₂H₂₂N₂O₂ (M) 346.1681, found 346.1679. (Chiralpak OD-3, *i*-PrOH/hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 210$ nm): t_{major} = 15.14 min, t_{minor} = 21.69 min, e.r.

 $= 86:14, [\alpha] = 19.2^{\circ} (c = 0.15, CH_2Cl_2).$

(*S*)-11-Bromo-2,3-dimethoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1g][1,6]naphthyridine (3b): yellow solid, 88% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.78 (s, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 6.81 (s, 1H), 6.65 (s, 1H), 4.25 (d, *J* = 16.0 Hz, 1H), 3.75-3.89 (m, 9H), 3.16-3.27 (m, 3H), 2.67-2.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 157.1, 147.6, 146.6, 132.5, 131.6, 130.2, 129.3, 128.9, 128.1, 126.2, 119.7, 111.3, 108.2, 59.6, 57.8, 55.9, 55.9, 51.5, 40.9, 28.9; HRMS (EI) m/z calcd for C₂₂H₂₁BrN₂O₂ (M) 424.0786, found 424.0779. (Chiralpak OD-3, *i*-PrOH/hexane = 20/80, flow rate = 1.0 mL/min, λ = 210 nm): t_{major}

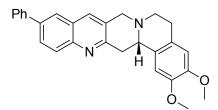
= 15.91 min, t_{minor} = 24.12 min, e.r. = 90:10; [α] = 5.3° (c = 0.16, CH₂Cl₂)



(S)-11-Chloro-2,3-dimethoxy-6,8,15,15a-tetrahydro-5H-

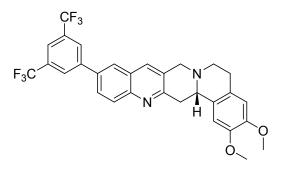
benzo[b]isoquinolino[2,1-g][1,6]naphthyridine (3c): yellow solid, 41% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.79 (s, 1H), 7.75 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 6.81 (s, 1H), 6.65 (s, 1H), 4.26 (d, *J* = 12.0 Hz, 1H), 3.76-3.89 (m,

9H), 3.14-3.27 (m, 3H), 2.68-2.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 157.0, 147.7, 145.4, 131.7, 131.6, 130.1, 130.0, 129.3, 128.9, 127.6, 126.2, 125.9, 111.28, 108.2, 59.6, 57.9, 55.9, 55.8, 51.5, 40.8, 29.0; HRMS (EI) m/z calcd for C₂₂H₂₁ClN₂O₂ (M) 380.1292, found 4380.1284. (Chiralpak OD-3, *i*-PrOH/hexane = 20/80, flow rate **D**

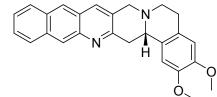

= 1.0 mL/min, λ = 210 nm): t_{major} = 13.47 min, t_{minor} = 21.77 min, e.r. = 87:13; [α] = 8.8° (c = 0.2, CH₂Cl₂).

(S)-2,3,11-Trimethoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-

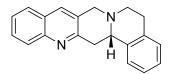
g][1,6]naphthyridine (3d): yellow solid, 86% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (s, 1H), 7.64 (d, J = 12.0 Hz, 1H), 7.35 (s, 1H), 7.15 (d, J = 8.0 Hz, 1H), 6.83 (s, 1H), 6.65 (s, 1H), 4.21 (d, J = 16.0 Hz, 1H), 3.74-3.98 (m, 12H), 3.16-3.25 (m, 3H), 2.66-2.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 156.4, 148.7, 147.6, 147.5, 132.5, 129.1, 128.3, 126.2, 125.9, 122.3, 119.3, 111.3, 108.2, 106.4, 59.7, 57.8, 55.9, 55.5, 51.5, 40.8, 29.0; HRMS (EI) m/z calcd for C₂₃H₂₄N₂O₃ (M) 376.1787, found 376.1789. (Chiralpak OD-3, *i*-PrOH/hexane = 20/80, flow rate = 1.0 mL/min, λ = 220


nm): $t_{major} = 14.40 \text{ min}, t_{minor} = 22.10 \text{ min}, \text{ e.r.} = 66:34; [\alpha] = 12.2^{\circ} (c = 0.15, CH_2Cl_2).$

(S)-2,3-Dimethoxy-11-phenyl-6,8,15,15a-tetrahydro-5H-

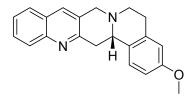

benzo[b]isoquinolino[2,1-g][1,6]naphthyridine (3e): yellow solid, 81% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 8.0 Hz, 1H), 7.91-7.94 (m, 3H), 7.72 (d, J = 8.0 Hz, 2H), 7.50 (t, J = 8.0 Hz, 2H), 7.40 (t, J = 8.0 Hz, 1H), 6.84 (s, 1H), 6.65 (s, 1H), 4.28 (d, J = 16.0 Hz, 1H), 3.80-3.91 (m, 9H), 3.16-3.28 (m, 3H), 2.68-2.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.5, 147.6, 147.5, 146.5, 140.5, 138.7, 132.8, 129.1, 129.0, 128.9, 128.8, 128.6, 127.6, 127.4, 127.2, 126.2, 125.0, 111.3, 108.2, 59.7, 58.0, 55.9, 55.8, 51.5, 40.9, 29.0; HRMS (EI) m/z calcd for C₂₈H₂₆N₂O₂ (M) 422.1994, found 422.1995. (Chiralpak OD-3, *i*-PrOH/hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 210$

nm): $t_{major} = 19.84 \text{ min}, t_{minor} = 29.97 \text{ min}, e.r. = 76:24; [\alpha] = 21.8^{\circ} (c = 0.2, CH_2Cl_2).$


(*S*)-11-(3,5-bis(Trifluoromethyl)phenyl)-2,3-dimethoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-g][1,6]naphthyridine (3f): yellow solid, 43% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.15 (m, 3H), 7.99 (d, *J* = 8.0 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 2H), 6.84 (s, 1H), 6.66 (s, 1H), 4.31 (d, *J* = 16.0 Hz, 1H), 3.82-3.94 (m, 9H), 3.17-3.31 (m, 3H), 2.71-2.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 147.7, 146.9, 142.6, 135.6, 133.0, 132.5, 132.2, 129.7, 129.3, 128.8, 128.1, 127.4, 127.1, 126.2, 125.9, 124.7, 122.0, 121.2, 111.3, 108.2, 59.6, 57.9, 55.9, 55.8, 51.5, 41.0, 29.0; HRMS (EI) m/z calcd for C₃₀H₂₄F₆N₂O₂ (M) 558.1742, found 558.1735. (Chiralpak OD-3, *i*-PrOH/hexane = 20/80, flow rate = 1.0 mL/min, λ = 210 nm): t_{minor} = 18.00 min, t_{major} = **1**

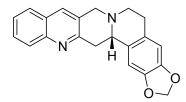
22.70 min, e.r. = 88:12; $[\alpha] = 44.7^{\circ} (c = 0.15, CH_2Cl_2).$

(*S*)-2,3-Dimethoxy-6,8,17,17a-tetrahydro-5H-isoquinolino[2,1-g]naphtho[2,3b][1,6]naphthyridine (3g): yellow solid, 84% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.60 (s, 1H), 8.35 (s, 1H), 8.00-8.07 (m, 3H), 7.50 (t, *J* = 4.0 Hz, 2H), 6.86 (s, 1H), 6.66 (s, 1H), 4.34 (d, *J* = 16.0 Hz, 1H), 3.87- 3.96 (m, 9H), 3.19-3.32 (m, 3H), 2.71-2.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 158.1, 147.7, 143.7, 133.8, 132.4, 131.6, 129.1, 128.5, 128.0, 127.9, 126.2, 126.1, 126.0, 125.9, 125.8, 125.7, 111.3, 108.3, 104.6, 59.8, 58.3, 56.0, 55.9, 51.6, 41.4, 29.0; HRMS (EI) m/z calcd for C₂₆H₂₄N₂O₂ (M) 396.1838, found 396.1834. (Chiralpak OD-3, *i*-PrOH/hexane = 15/85, flow rate = 1.0 mL/min, λ


= 254 nm): t_{major} = 32.55 min, t_{minor} = 50.00 min, e.r. = 92:8; [α] = 6.6° (c = 0.2, CH₂Cl₂).

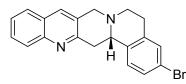
(*S*)-6,8,15,15a-Tetrahydro-5H-benzo[b]isoquinolino[2,1-g][1,6]naphthyridine (3i): yellow solid, 75% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.87 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.66 (t, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 1H), 7.36

(d, J = 8.0 Hz, 1H), 7.17-7.28 (m, 3H), 4.26 (d, J = 16.0 Hz, 1H), 3.81-3.91 (m, 3H), 3.21-3.30 (m, 3H), 2.72-2.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.6, 147.1, 137.3, 134.2, 132,6, 129.0, 128.9, 128.5, 128.2, 127.2, 127.0, 126.4, 126.0, 125.6, 60.1, 58.0, 51.3, 40.7, 29.5; HRMS (EI) m/z calcd. for C₂₀H₁₈N₂ (M) 286.1470, found 286.1469. (Chiralpak AD-3, *i*-PrOH/hexane = 20/80, flow rate = 1.0 mL/min, λ = 210


nm): $t_{minor} = 8.49 \text{ min}, t_{major} = 12.36 \text{ min}, \text{ e.r.} = 73:27; [\alpha] = -25.7^{\circ} (c = 0.15, CH_2Cl_2).$

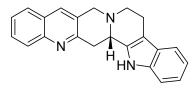
(S)-3-Methoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-

g][1,6]naphthyridine (3j): yellow solid, 84% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 8.0 Hz, 1H), 7.86 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.26-7.28 (m, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.70 (s, 1H), 4.25 (d, J = 16.0 Hz, 1H), 3.78-3.90 (m, 6H), 3.17-3.27 (m, 3H), 2.67-2.81 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 157.9, 156.6, 147.1, 135.5, 132.6, 129.6, 129.0, 128.5, 128.2, 127.2, 127.0, 126.6, 125.9, 113.3, 112.6, 59.7, 58.0, 55.3, 51.3, 40.9, 29.7; HRMS (EI) m/z calcd for C₂₁H₂₀N₂O (M) 316.1576, found 316.1583. (Chiralpak AD-3, *i*-PrOH/hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 210$ nm): t_{minor} = 11.94 min, λ


 $t_{major} = 23.58 \text{ min}, \text{ e.r.} = 76:24; [\alpha] = 32.9^{\circ} (c = 0.2, CH_2Cl_2).$

(S)-6,8,15,15a-Tetrahydro-5H-[1,3]dioxolo[4',5':6,7]isoquinolino[2,1-

g]benzo[b][1,6]naphthyridine (3k): yellow solid, 82% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 8.0 Hz, 1H), 7.79 (s, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.58 (t, J = 8.0 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 6.73 (s, 1H), 6.54 (s, 1H), 5.87 (s, 2H), 4.16 (d, J = 16.0 Hz, 1H), 3.63-3.81 (m, 3H), 3.05-3.15 (m, 3H), 2.57-2.65 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.4, 147.1, 146.4, 146.2, 132.6, 130.2, 129.1, 128.4, 128.1, 127.4, 127.2, 127.0, 126.0, 108.4, 105.5, 100.9, 60.0, 57.9, 51.3, 40.9, 29.5; HRMS (EI) m/z calcd for C₂₁H₁₈N₂O₂ (M) 330.1368, found 330.1364. (Chiralpak AD-3, *i*-PrOH/hexane = 20/80, flow rate = 1.0 mL/min, λ = 210 nm): t_{minor} = 12.73 min, t_{major} = **13**


24.99 min, e.r. = 71:29; $[\alpha]$ = -30.7° (c = 0.2, CH₂Cl₂).

(S)-3-Bromo-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-

g][1,6]naphthyridine (31): yellow solid, 55% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 8.0 Hz, 1H), 7.86 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.32 (s, 1H), 7.21 (d, J = 8.0 Hz, 1H), 4.24 (d, J = 16.0 Hz, 1H), 3.75-3.90 (m, 3H), 3.17-3.23 (m, 3H), 2.64-2.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 147.1, 136.6, 136.4, 132.7, 131.6, 129.5, 129.2, 128.4, 128.0, 127.3, 127.2, 127.0, 126.1, 120.2, 59.7, 57.8, 50.9, 40.5, 29.3; HRMS (EI) m/z calcd for C₂₀H₁₇BrN₂ (M) 364.0575, found 364.0571. (Chiralpak AD-3, *i*-PrOH/hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 210$ nm): t_{minor} = 11.26 min, t_{major} =

18.33 min, e.r. = 62:38; $[\alpha]$ = 23.5° (c = 0.15, CH₂Cl₂).

(S)-5,6,8,15,15a,16-Hexahydrobenzo[b]indolo[2',3':3,4]pyrido[1,2-

g][1,6]naphthyridine (3m): yellow solid, 62% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 8.0 Hz, 1H), 7.91 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.49-7.56 (m, 2H), 7.37 (d, J = 8.0 Hz, 1H), 7.12-7.21 (m, 2H), 4.35 (d, J = 16.0 Hz, 1H), 3.96-4.00 (m, 2H), 3.67 (d, J = 16.0 Hz, 1H), 3.32-3.41 (m, 2H), 3.08-3.11 (m, 1H), 2.81-2.91 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 155.4, 146.9, 136.5, 133.8, 133.2, 129.3, 128.3, 128.2, 127.3, 127.1, 127.0, 126.2, 121.8, 119.5, 118.2, 111.1, 108.5, 57.2, 56.5, 52.3, 38.7,21.5; HRMS (EI) m/z calcd for C₂₂H₁₉N₃ (M) 325.1579, found 325.1577. (Chiralpak AD-3, *i*-PrOH/hexane = 20/80, flow rate = 1.0 mL/min, λ **15** = 210 nm): t_{minor} = 14.19 min, t_{major} = 22.38 min, e.r. = 63:37; [α] = 54.1° (c = 0.17, CH₂Cl₂).

5. Determination of X-ray crystallographic structure 3b

The data were collected on an Agilent Technologies Gemini Atlas Ultra diffractometer using a ultra Cu radiation (l=1.54184Å) with collimating mirror monochromators and at 293 K. Data collection, unit cell refinement and data reduction were performed using Agilent Technologies CrysAlisPro V 1.171.35.11.1 The structure was solved by direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for the non-H atoms using Olex2/ SHELXTL program package.2 The hydrogen atoms on carbon were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5xUeq for methyl hydrogen atoms). The hydrogen atoms bound to nitrogen were located in a Δ F map and

refined with isotropic displacement parameters.

1. CrysAlisPro, Agilent Technologies, Version 1.171.35.11 (release 16-05-2011 CrysAlis171.NET) (compiled May 16 2011, 17:55:39) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. *J. Appl. Cryst.* **2009**, *42*, 339-341.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) t_0m_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.	CIF dictionary	Interpreting this report
The second s		

Datablock: t_0m_a

Bond precision:	C-C = 0.0050 A	Wavelen	gth=1.54178
Cell:	a=9.1340(3)	b=10.0111(4)	c=11.6697(4)
	alpha=66.936(2)	beta=86.111(2)	gamma=76.562(2)
Temperature:	301 K		
	Calculated	Report	ed
Volume	954.60(6)	954.60	(6)
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C22 H21 Br N2 O2	C22 H2	1 Br N2 O2
Sum formula	C22 H21 Br N2 O2	C22 H2	1 Br N2 O2
Mr	425.31	425.32	
Dx,g cm-3	1.480	1.480	
Z	2	2	
Mu (mm-1)	3.089	3.089	
F000	436.0	436.0	
F000'	435.70		
h,k,lmax	11,12,14	11,12,	14
Nref	3487	3426	
Tmin, Tmax	0.566,0.539		
Tmin'	0.513		
Correction meth	nod= Not given		
Data completene	ess= 0.983	Theta(max) = 68	.291
R(reflections)=	= 0.0451(2646)	wR2(reflection	s)= 0.1247(3426)
S = 1.006	Npar=	246	

The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level. Click on the hyperlinks for more details of the test.

PLAT	052 ALE 906 ALE	Level C <u>RT 1 C</u> Info on Absorption Correction Method Not Given <u>RT 3 C</u> Large K value in the Analysis of Variance <u>RT 3 C</u> Missing # FCF Refl Between THmin & STh/L= 0.600		Do ! Check Report
. A	lert	Level G		
		RT 1 G The s.u.'s on the Cell Angles are Equal (Note)	0.002	Degree
PLAT	793 ALE	RT 4 G The Model has Chirality at Cl1 (Centro SPGR)	S	Verify
PLAT	912 ALE	RT 4 G Missing # of FCF Reflections Above STh/L= 0.600	7	Note
PLAT	913 ALE	RT 3 G Missing # of Very Strong Reflections in FCF	1	Note
PLAT	978 ALE	RT 2 G Number C-C Bonds with Positive Residual Density	6	Note
0 3	ALERT	<pre>level A = Most likely a serious problem - resolve or explai level B = A potentially serious problem, consider carefully level C = Check. Ensure it is not caused by an omission or level G = General information/check it is not something une</pre>	/ oversigh	
2	ALERT	type 1 CIF construction/syntax error, inconsistent or missi	ng data	
		type 2 Indicator that the structure model may be wrong or d	and the second se	t
3	ALERT	type 3 Indicator that the structure quality may be low		
-				
2	ALERT	type 4 Improvement, methodology, query or suggestion		

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 11/08/2016; check.def file version of 04/08/2016

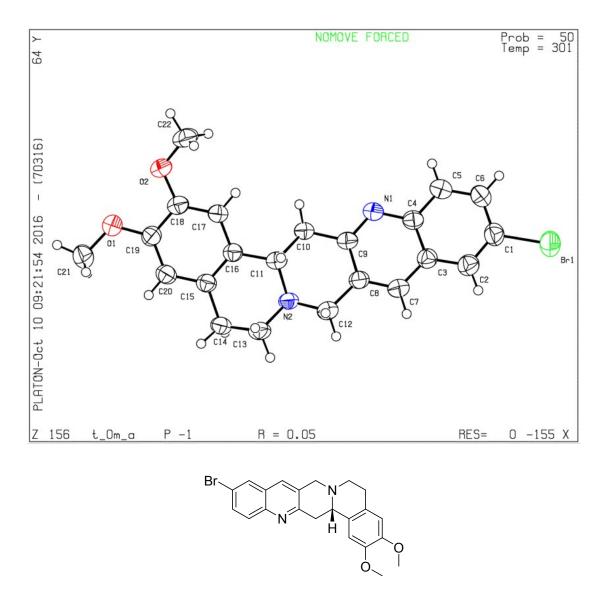
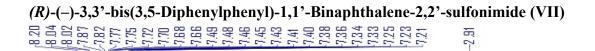


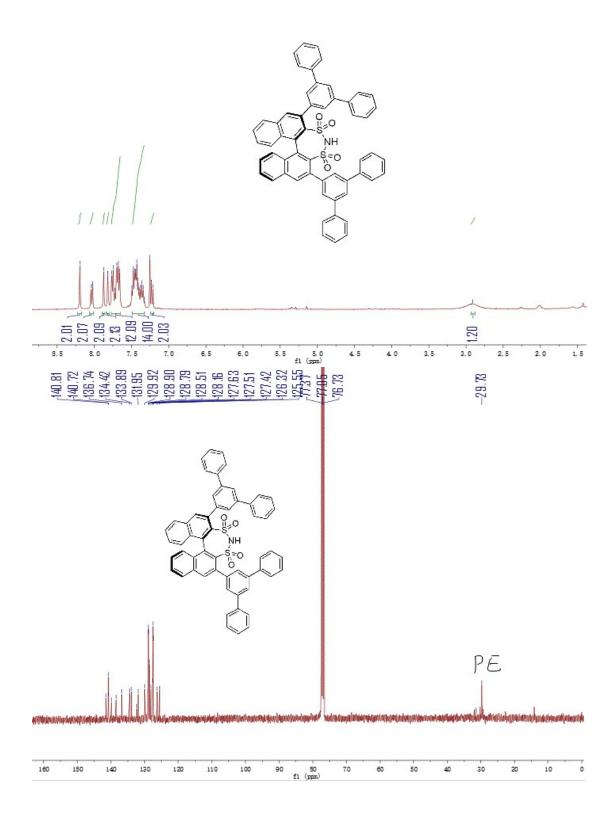
Fig S1. The X-ray crystallographic structure of compound 3b

6. References

[1] (a) He, H.; Chen, L. Y.; Wong, W. Y.; Chan, W. H.; Lee, A. W. M. Eur. J. Org. Chem. 2010, 4181-4184. (b) Hisashi Morita; Junji Itoh; Kohei Fuchibe; Takahiko Akiyama Org. Lett., 2005, 7, 2583-2585. (c) Boris J. Nachtsheim; Rene M. Koenigs; Winai Ieawsuwan; Magnus Rueping Chem. Eur. J. 2010, 16, 13116-13126. (d) Berkessel, A.; Christ, P.; Leconte, N.; Neudörfl, J. M.; Schafer, M. Eur. J. Org. Chem. 2010, 5165-5170. (e) Shengjun Ni; Veluru Ramesh Naidu; Johan Franzén Eur. J. Org. Chem. 2016, 1708-1713. (f) Jia-Hui Tay; Alonso J. Arguelles; Pavel Nagorny Org. Lett., 2015, 17, 3774-3777. (g) Mahlau, M.; García-García, P.; List, B. Chem.-Eur. J. 2012, 18, 16283-16287. (h) Qinggang Wang; Markus Leutzsch; Manuel van Gemmeren; Benjamin List J. Am. Chem. Soc. 2013, 135, 15334-15337.

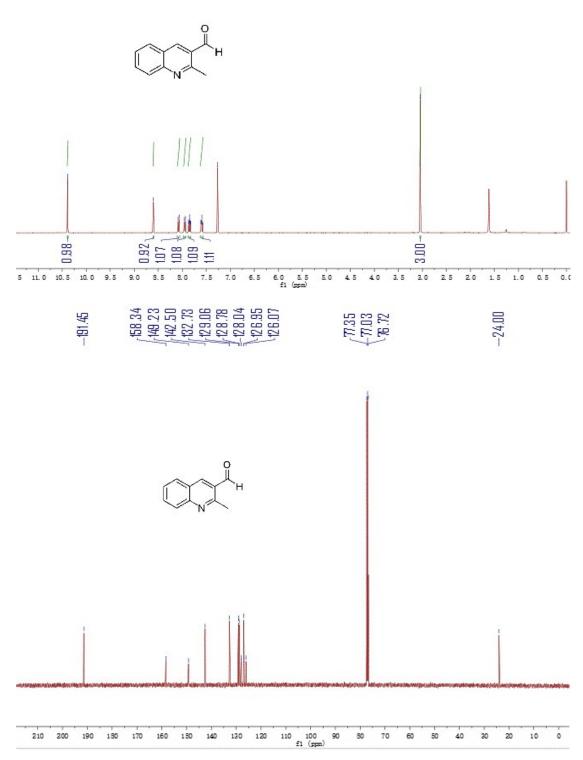
[2] Jia, M. Q.; You, S. L. ACS Catal. 2013, 3, 622-624.


[3] Matteo Chiurato; Rajaa Boulahjar; Sylvain Routier; Yves Troin; Gérald Guillaumet *Tetrahedron*, **2010**, *66*, 4647-4653.

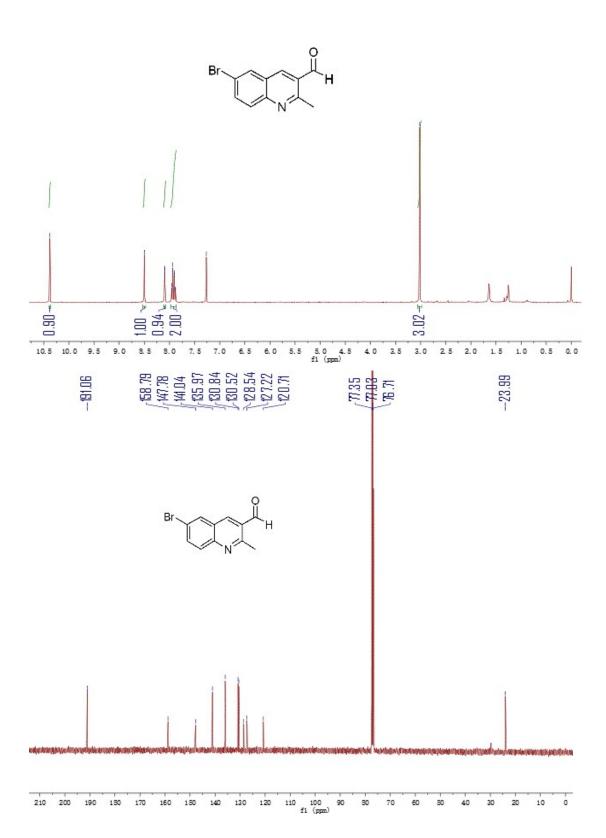

[4] Shen Q.; Yu J. J.; Liu, M. T.; Qiu J.; Fang L.; Guo F. L.; Tang J.; Wang, L. M

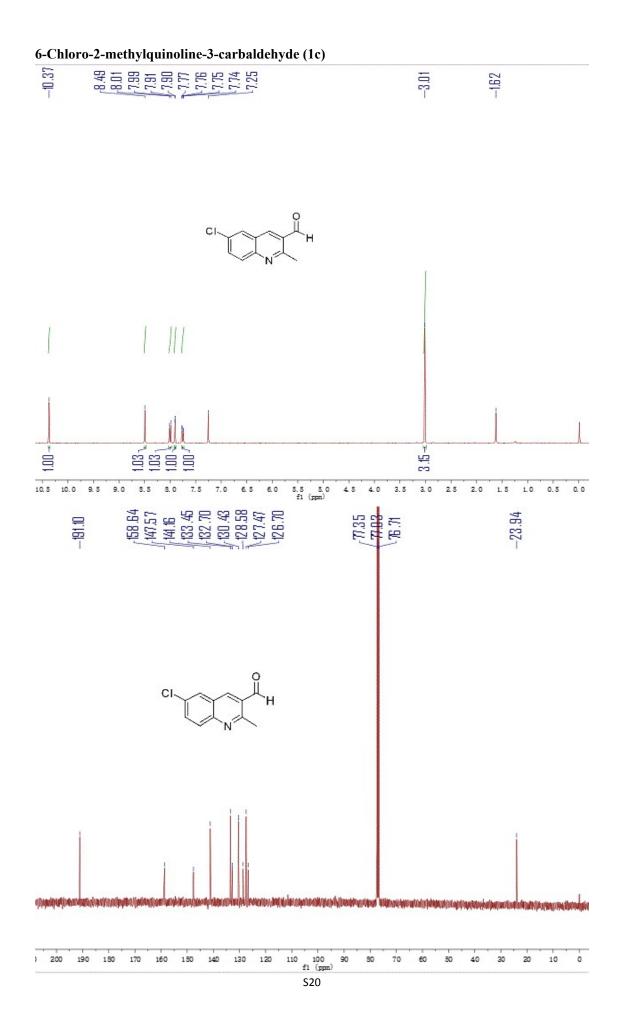
Synthesis, 2012, 44, 389-392

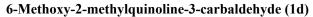
[5] Kaliyamoorthy Alagiri, Kandikere Ramaiah Prabhu Org. Biomol. Chem., **2012**, *10*, 835-842.

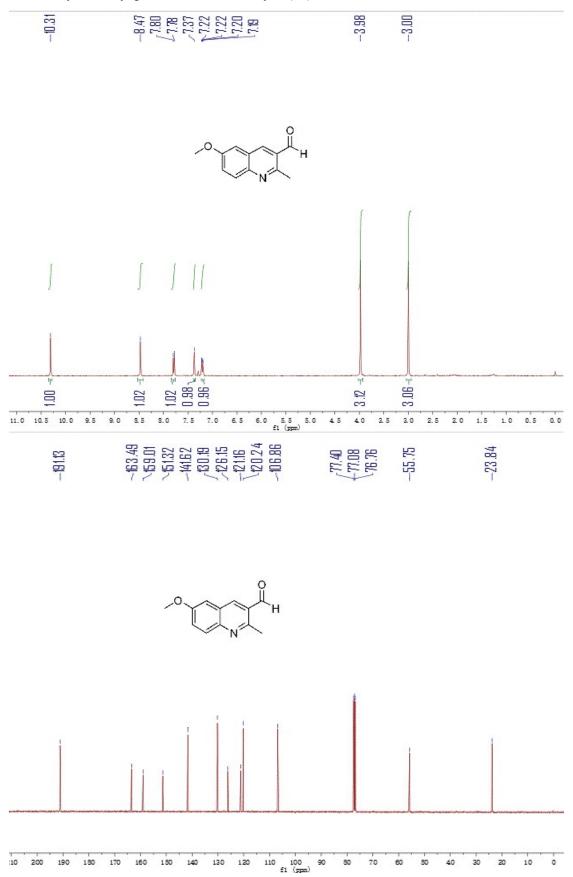

7. ¹H and ¹³C-NMR spectra

2-Methylquinolin-3-carbaldehyde (1a)

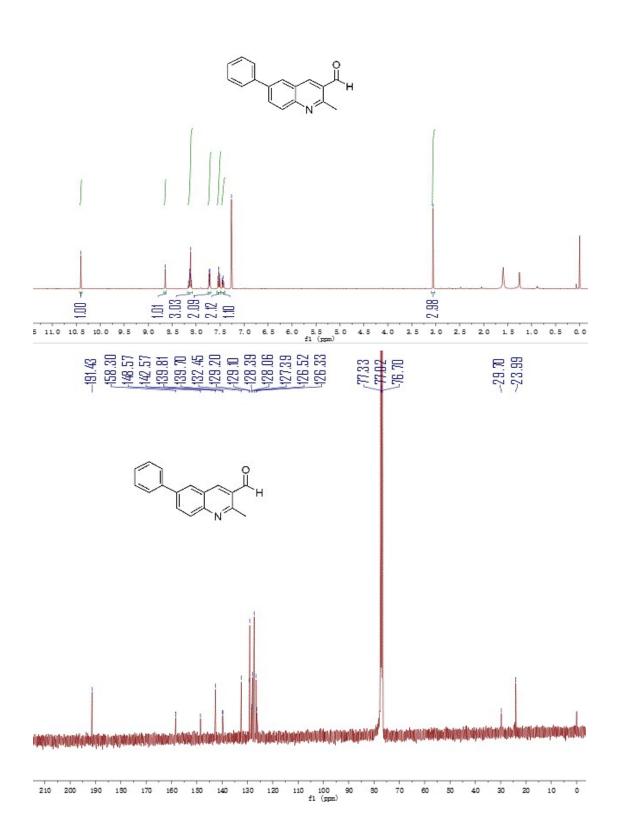


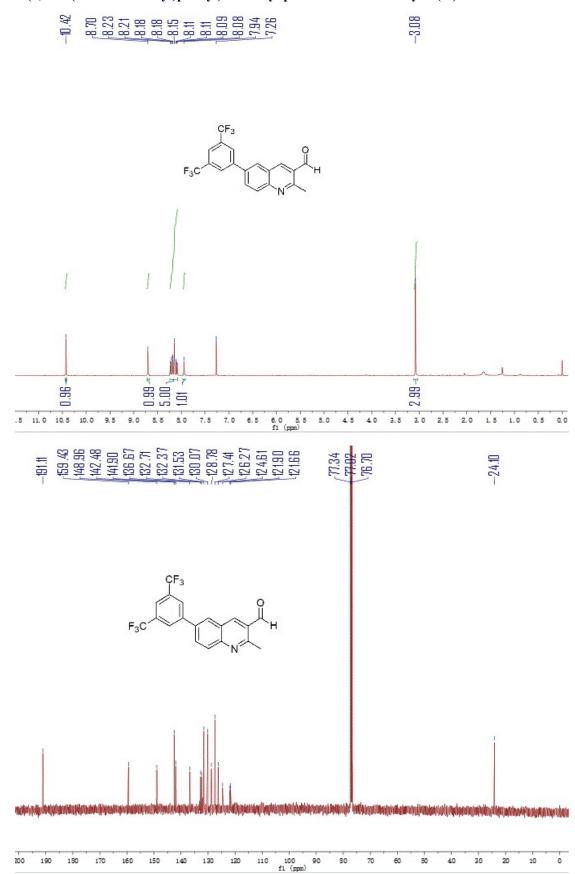



6-Bromo-2-methylquinoline-3-carbaldehyde (1b)

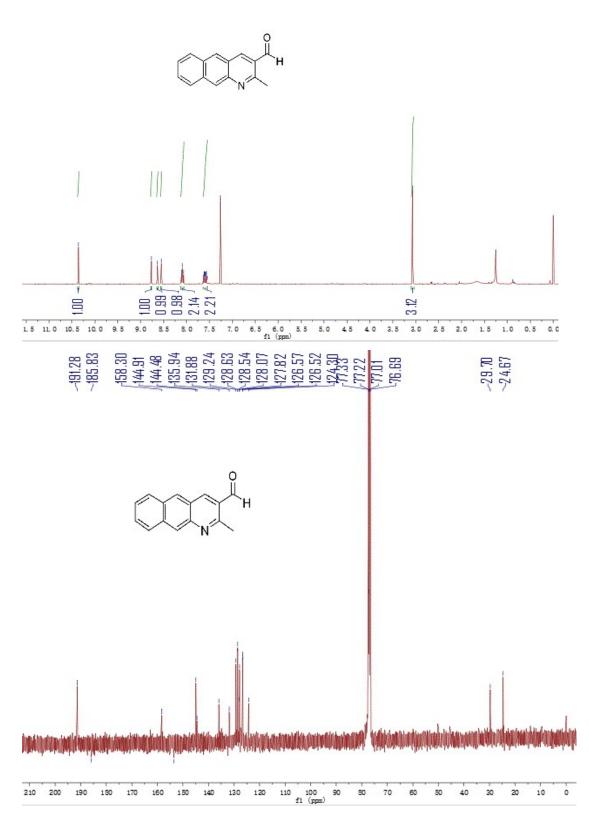


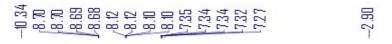
-3.02

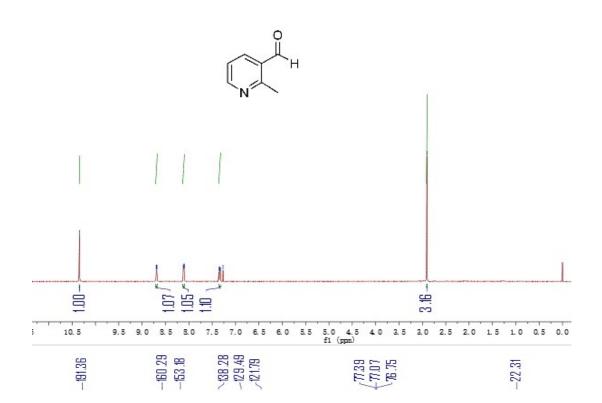


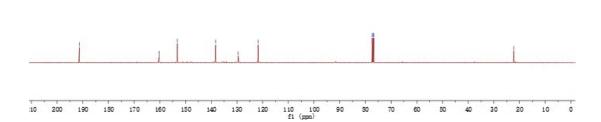


2-Methyl-6-phenylquinoline-3-carbaldehyde (1e)

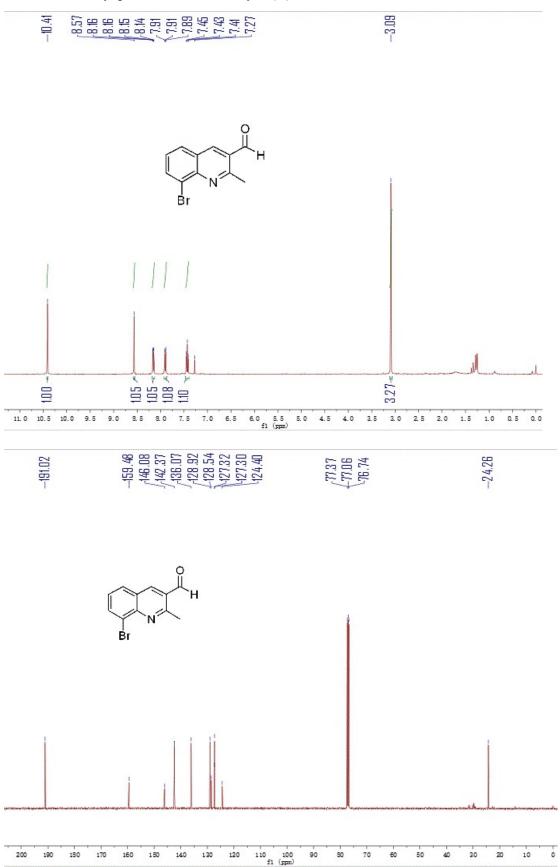


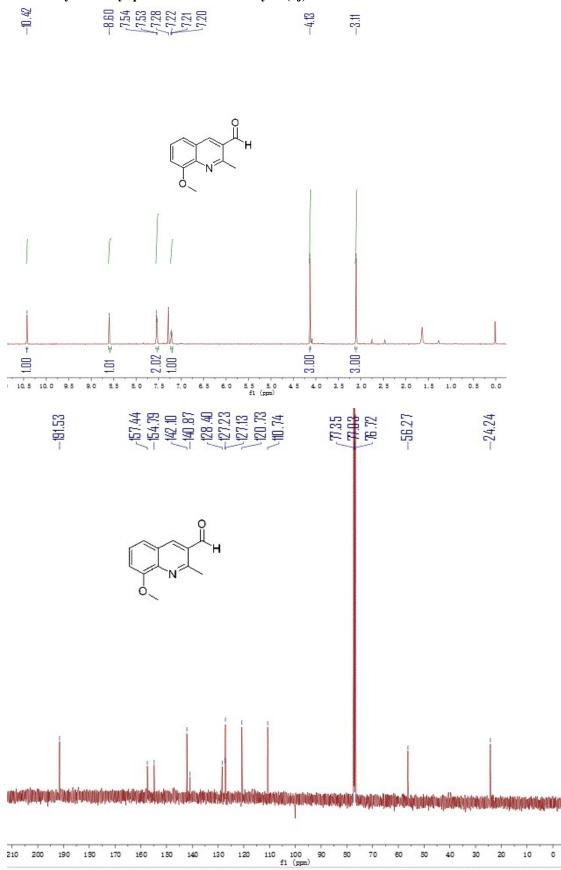

6-(3,5-bis(Trifluoromethyl)phenyl)-2-methylquinoline-3-carbaldehyde (1f)

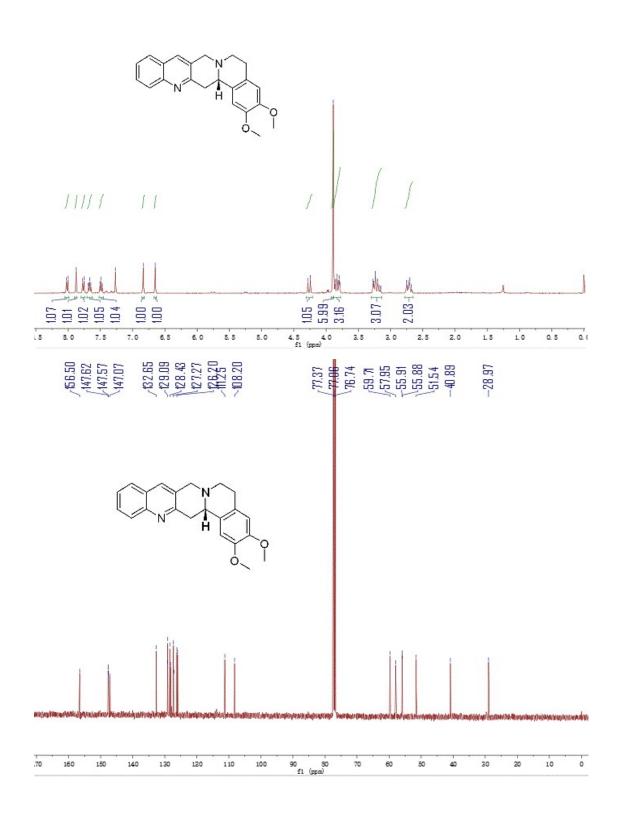

2-Methylbenzo[g]quinoline-3-carbaldehyde (1g)

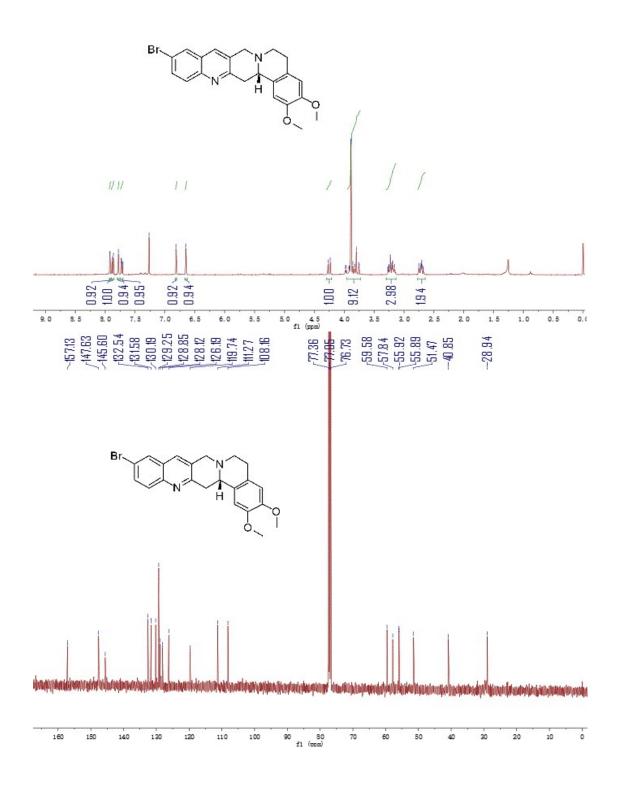


2-Methylnicotinaldehyde (1h)



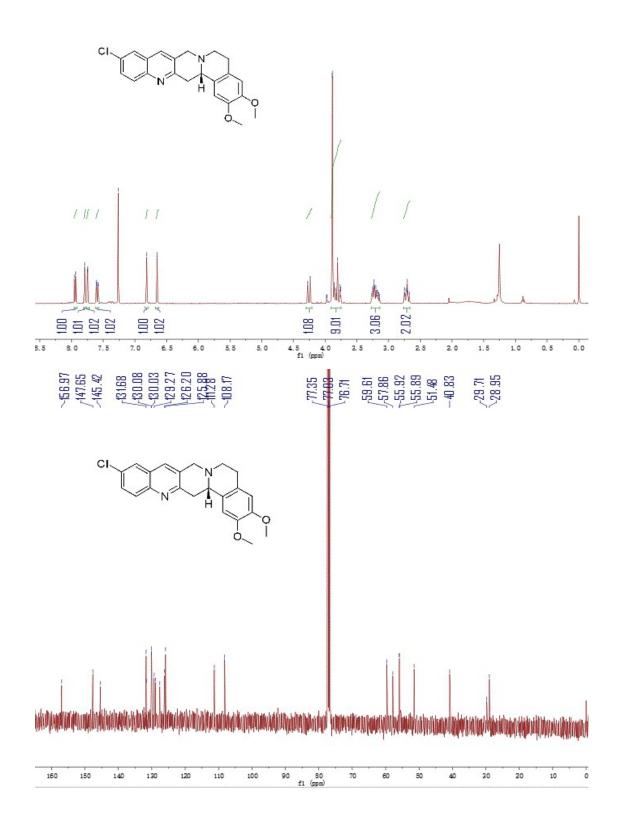


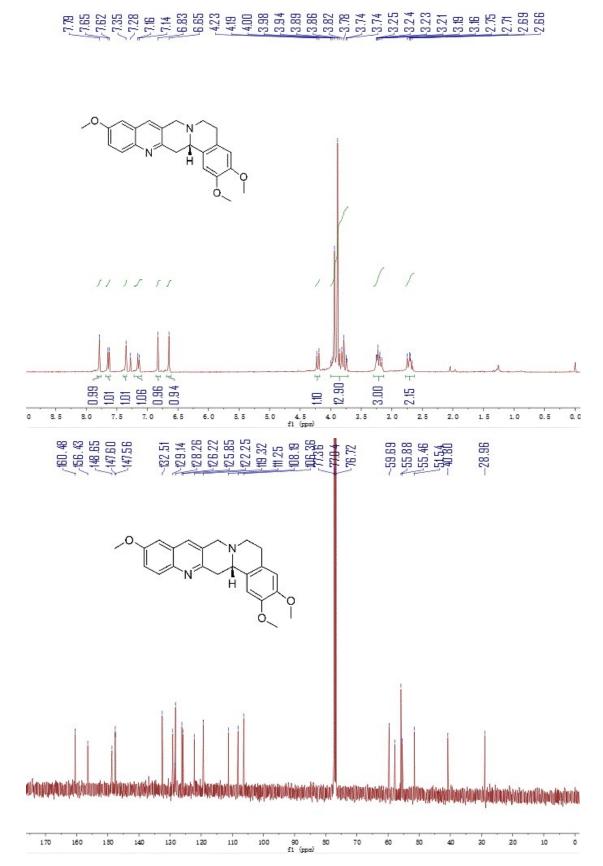



(S)-2,3-Dimethoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-g][1,6]naphthyridine (3a)

(S)-11-Bromo-2,3-dimethoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-

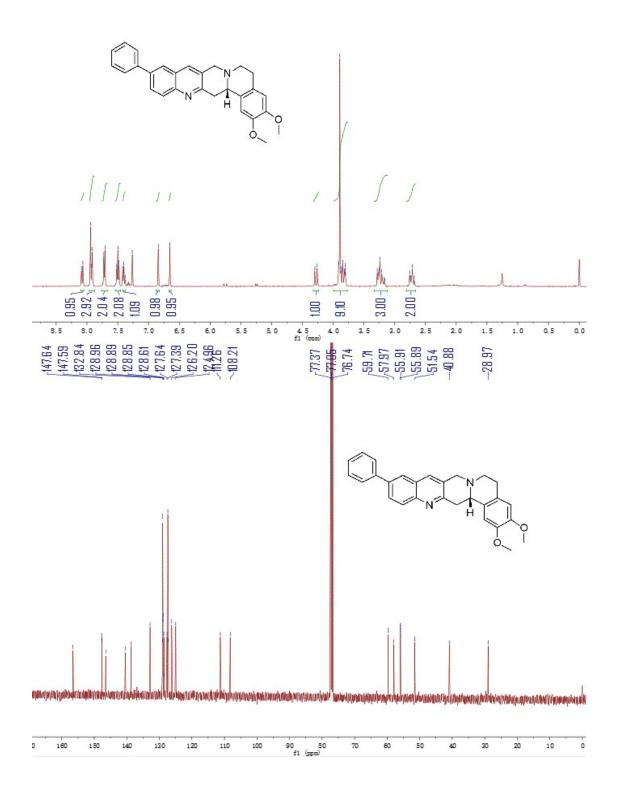
g][1,6]naphthyridine (3b)


888244338888833	
ふれれれるのですででもも	440000000000000000000000000000000000000
and the second s	

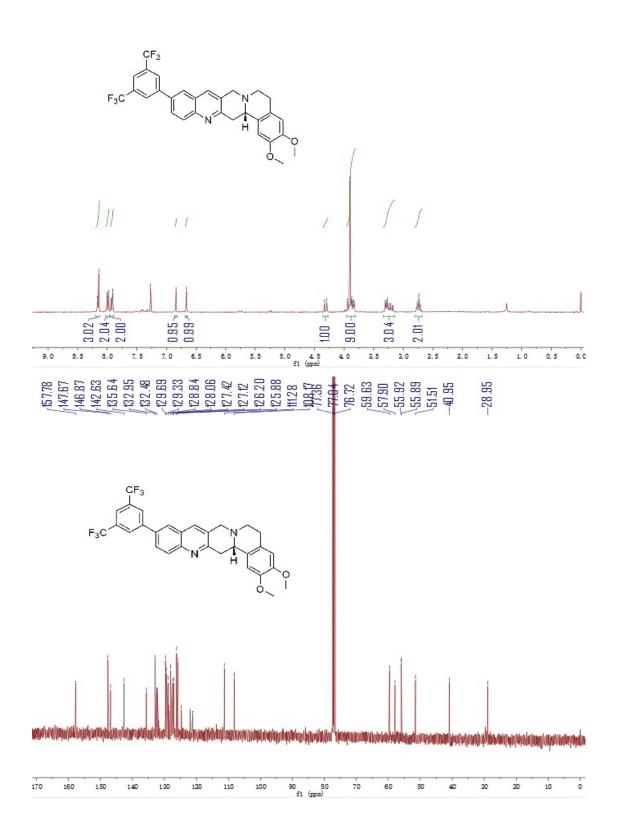

(S)-11-Chloro-2,3-dimethoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-

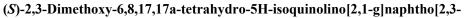
g][1,6]naphthyridine (3c)

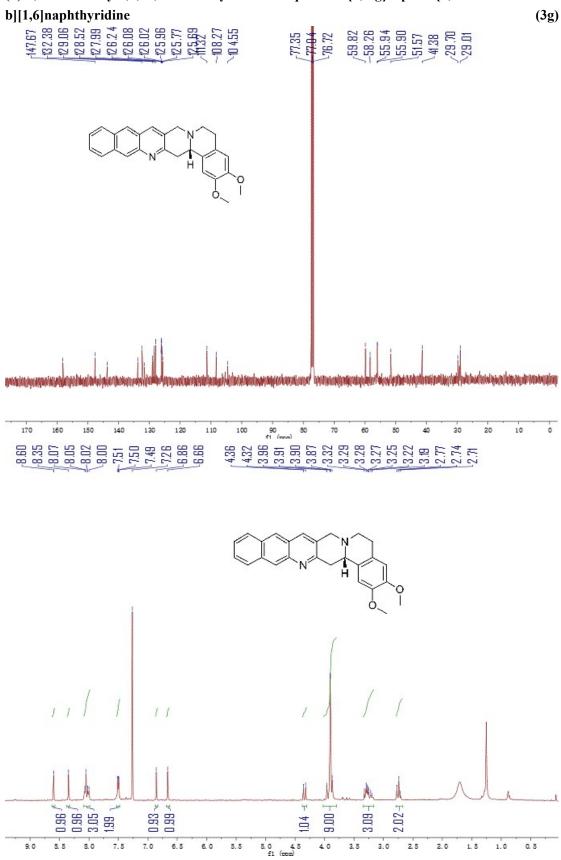
7.95 7.73 7.73 7.75 7.74 7.75 7.76 7.75 7.75 7.75 7.75 7.75 7.75	427 3389 3389 3389 3389 3389 3389 3389 338



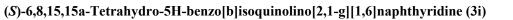
(S)-2,3,11-Trimethoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-g][1,6]naphthyridine (3d)

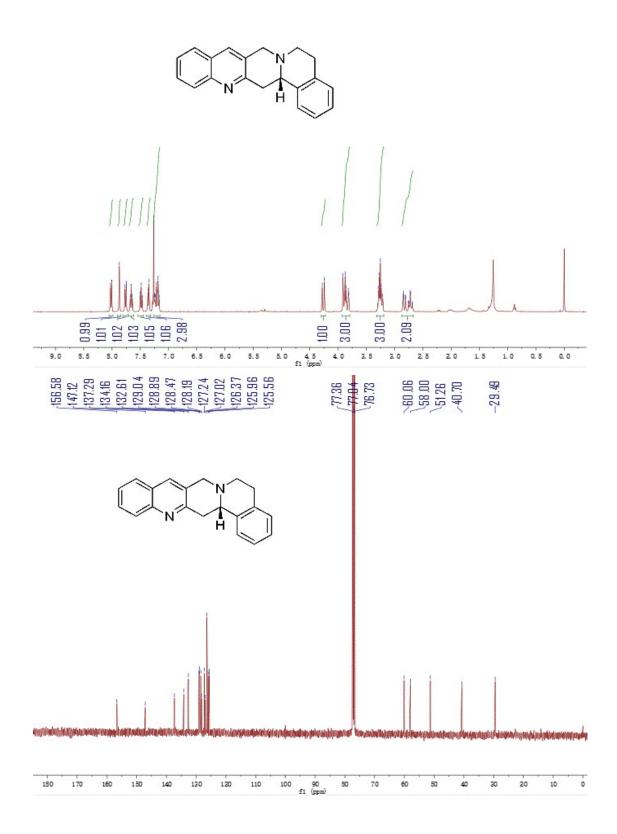

(*S*)-2,3-Dimethoxy-11-phenyl-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1g][1,6]naphthyridine (3e)

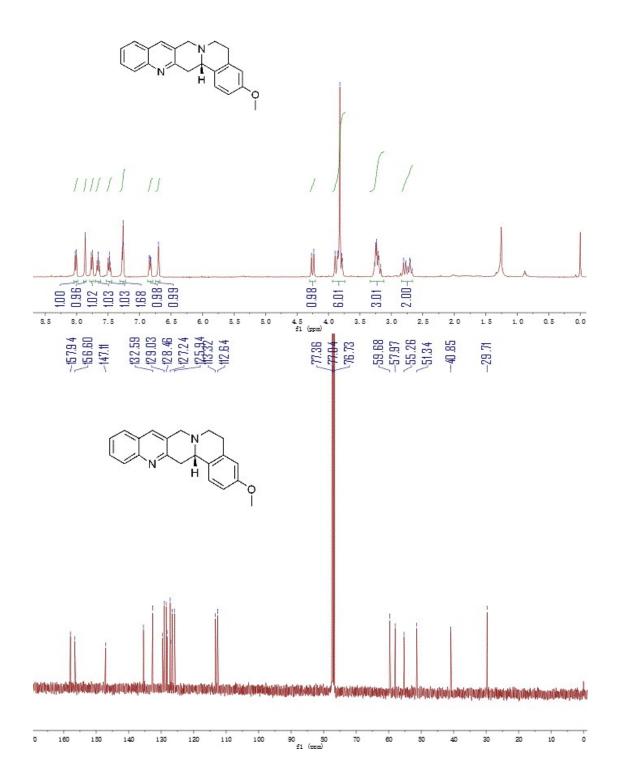

000000000000000000000000000000000000000	C C C C C C 4 4 C	3387 3387 3387 3387 3387 3387 3387 3387



(*S*)-11-(3,5-bis(Trifluoromethyl)phenyl)-2,3-dimethoxy-6,8,15,15a-tetrahydro-5Hbenzo[b]isoquinolino[2,1-g][1,6]naphthyridine (3f)

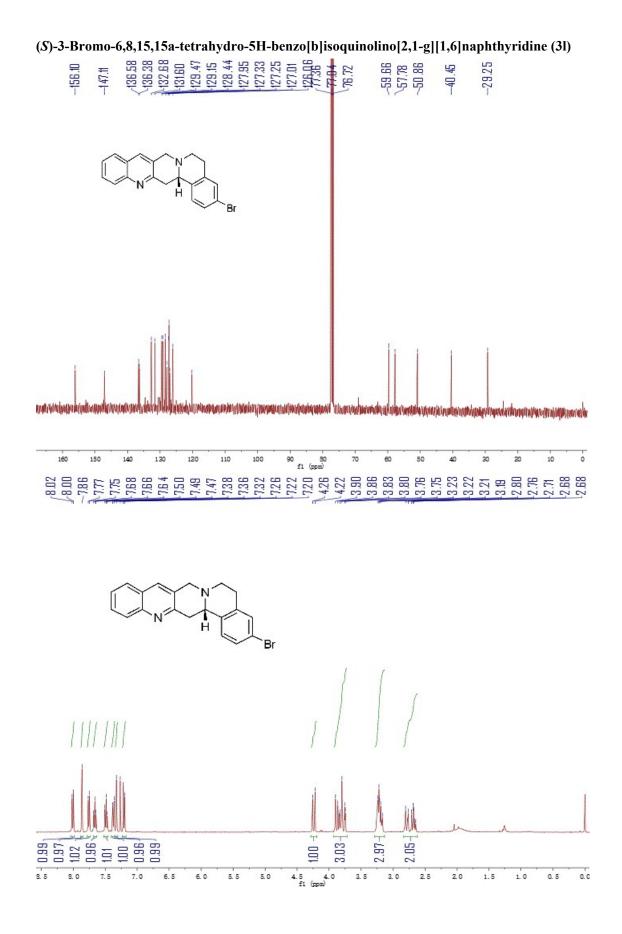

8.16 8.14 8.14 8.10 7.19 4.23 6.68 4.23 19 4.23 10 6.68 4.23 10 10 10 10 10 10 10 10 10 10 10 10 10	22.73 23.23

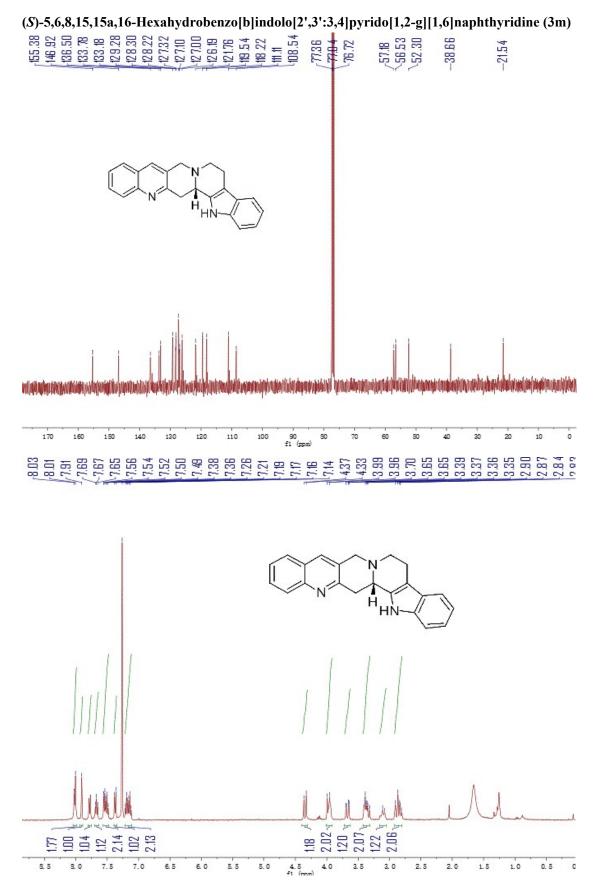


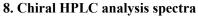

S34

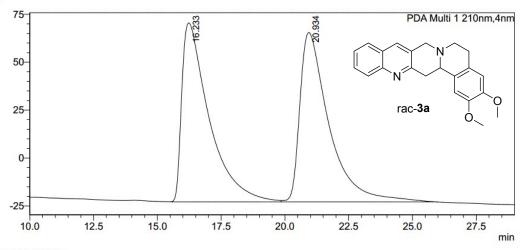
C 10 10 10 10 10 10 10 10 10 10 10 10 10	48 48 333 339 48	12288888888888888888888888888888888888
0000000000000000		



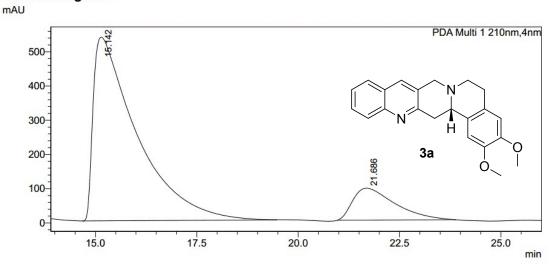

(S)-3-Methoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-g][1,6]naphthy	yridine (3j)
800 800 800 800 800 800 800 800	


(S)-6,8,15,15a-Tetrahydro-5H-[1,3]dioxolo[4',5':6,7]isoquinolino[2,1-g]benzo[b][1,6]naphthyridine(3k)

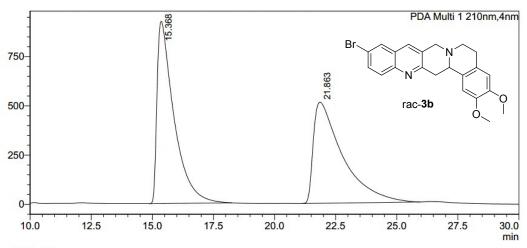

7.95 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69	4414 4414 33333333333333333333333333333
1/100000	The second

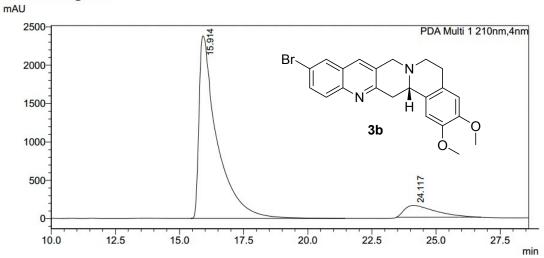


S38



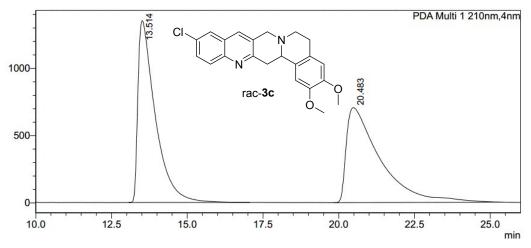
<Peak Table>


PDAC	n1 210nm				8	27	8
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	16.233	6947623	93405	49.719	%	SV	RT:16.233
2	20.934	7026182	88335	50.281	%	SV	RT:20.934
Total		13973805	181741				


PDA C	h1 210nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.142	40224330	536771	85.668	%		RT:15.142
2	21.686	6729656	93048	14.332	%		RT:21.686
Total		46953986	629819				

<Peak Table>

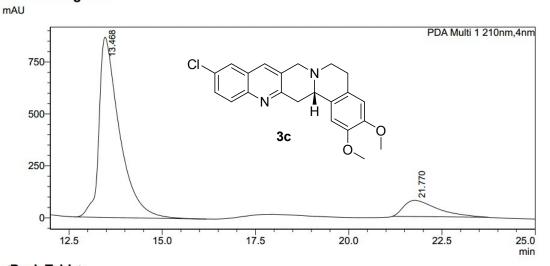
PDA C	h1 210nm		5.500 WI.C				
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.368	44517336	925091	51.012	%		RT:15.368
2	21.863	42750723	513323	48.988	%		RT:21.863
Total		87268059	1438413				



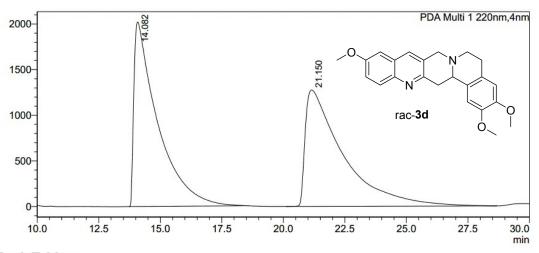
<Peak Table>

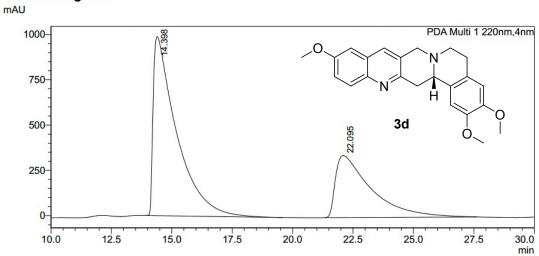
PDA C	h1 210nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.914	116500609	2378902	89.942	%		RT:15.914
2	24.117	13028161	153852	10.058	%		RT:24.117
Total		129528770	2532755				

<Chromatogram>



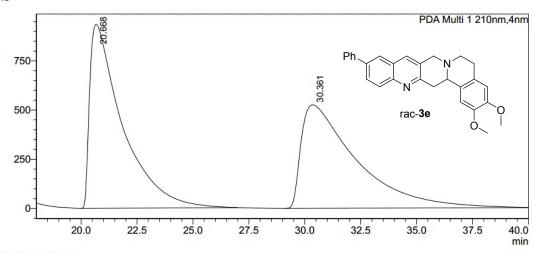
<Peak Table>


PDA C	h1 210nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.514	53860753	1350776	49.582	%		RT:13.514
2	20.483	54769239	705480	50.418	%		RT:20.483
Total		108629991	2056256				


PDA C	h1 210nm						40
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.468	33155378	867208	87.048	%		RT:13.468
2	21.770	4933360	77780	12.952	%		RT:21.770
Tota		38088737	944989				

<Peak Table>

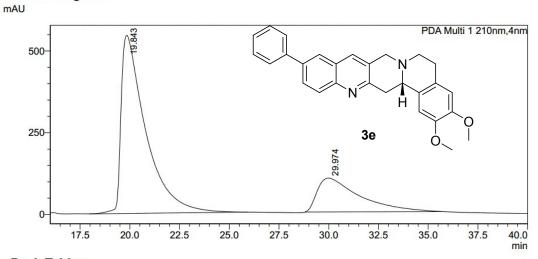
PDA	Ch1 220nm						1
Peak	# Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	1 14.082	135195674	2021199	49.859	%		RT:14.082
	2 21.150	135958307	1275340	50.141	%		RT:21.150
Tot	al	271153980	3296539				



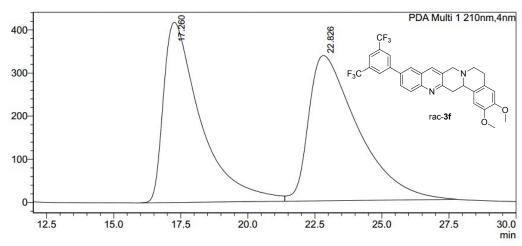
<Peak Table>

PDA C	h1 220nm						NO 02.0
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.398	66348104	988553	65.505	%		RT:14.398
2	22.095	34939467	341219	34.495	%		RT:22.095
Total		101287571	1329771				

<Chromatogram>

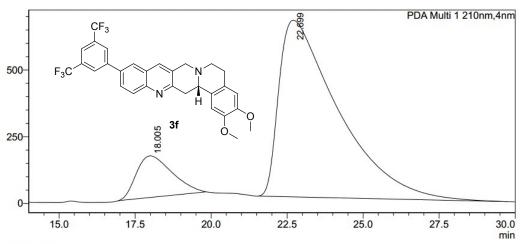


<Peak Table>


<Chromatogram>

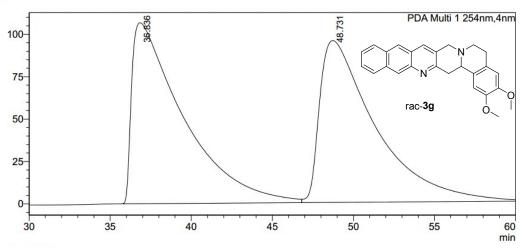
PDA C	h1 210nm	S	e	9		N9	
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	20.668	94869944	935940	51.182	%		RT:20.668
2	30.361	90487284	526128	48.818	%		RT:30.361
Total		185357228	1462069				

PDA C	h1 210nm			a			
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	19.843	46899831	544586	75.422	%	S	RT:19.843
2	29.974	15282993	103228	24.578	%		RT:29.974
Total		62182824	647814				

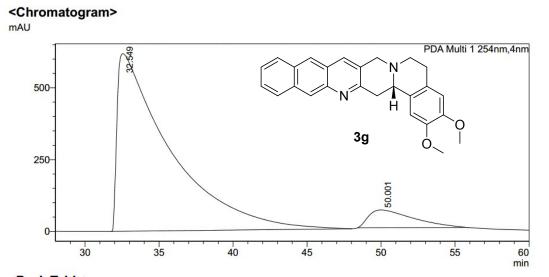


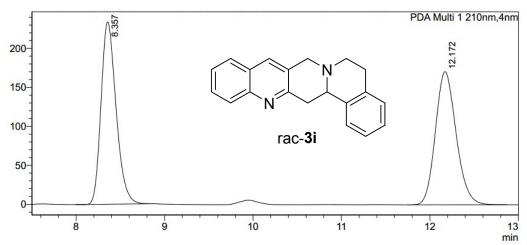
<Peak Table>

PDA C	h1 210nm						N. CONC.
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.260	40297887	417528	48.345	%		RT:17.260
2	22.826	43056956	336701	51.655	%	V	RT:22.826
Tota		83354843	754229				


<Chromatogram>

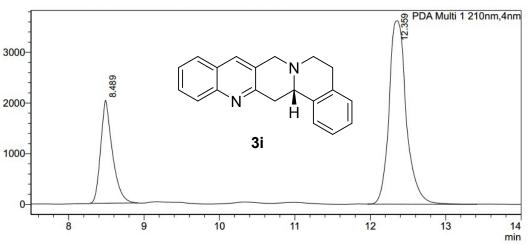
mAU


PDA C	h1 210nm		nondari Maria		and the second second		
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	18.005	12720563	155673	12.356	%		RT:18.005
2	22.699	90225962	662381	87.644	%		RT:22.699
Total		102946525	818054		S 1/981		

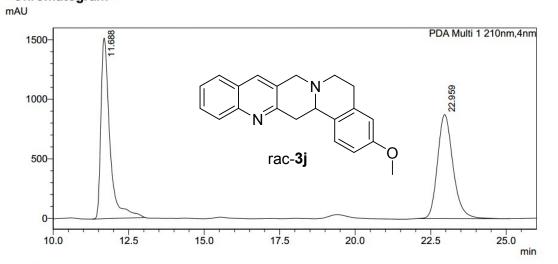

<Peak Table>

PDAC	n1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	36.836	23572235	106709	50.671	%		RT:36.836
2	48.731	22947718	95468	49.329	%	SV	RT:48.731
Total		46519953	202177				and a second second second

PDA C	h1 254nm		101210113		605.00	1.523(0).	
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	32.549	153654060	618178	92.295	%		RT:32.549
2	50.001	12828045	61383	7.705	%		RT:50.001
Total		166482105	679561				

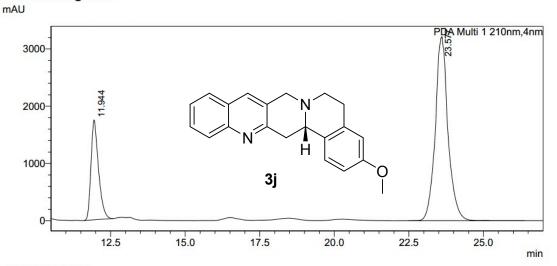


<Peak Table>

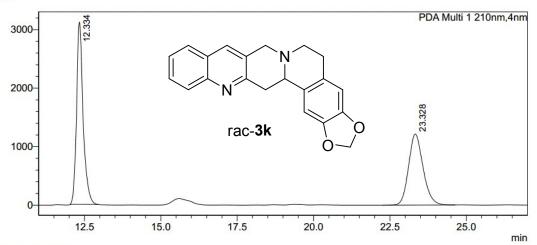

PDA C	h1 210nm						S
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.357	2760198	227935	49.751	%	M	RT:8.357
2	12.172	2787862	169641	50.249	%	12.5 m	RT:12.172
Total		5548060	397576				

<Chromatogram>

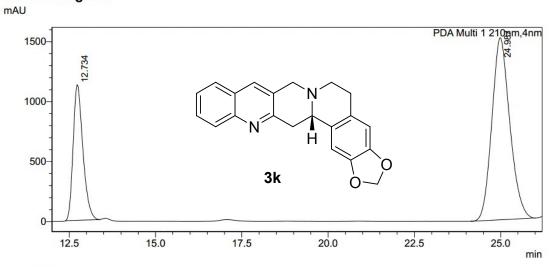
mAU


PDA C	h1 210nm		p	10			87
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.489	21885599	2031733	27.517	%		RT:8.489
2	12.359	57650011	3615642	72.483	%		RT:12.359
Total		79535610	5647375				

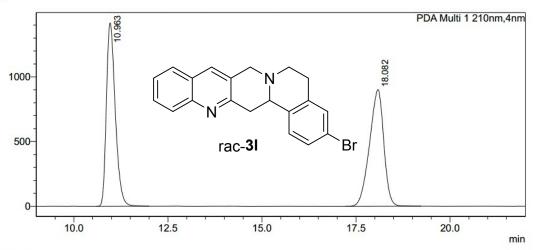
<Peak Table>


PDAC	n1 210nm		C 201242 COVUE OF 1	8			
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.688	31333809	1516358	50.108	%		RT:11.688
2	22.959	31198711	873313	49.892	%		RT:22.959
Total		62532519	2389670				

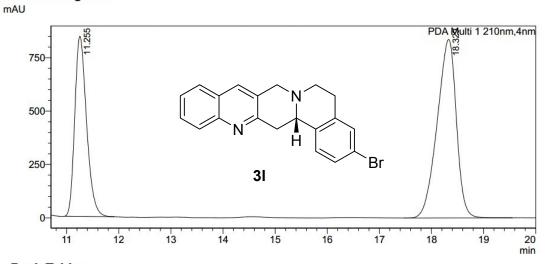
PDA C	h1 210nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.944	30426970	1742190	24.179	%	0.01	RT:11.944
2	23.577	95415069	3190786	75.821	%	S	RT:23.577
Total		125842039	4932976				



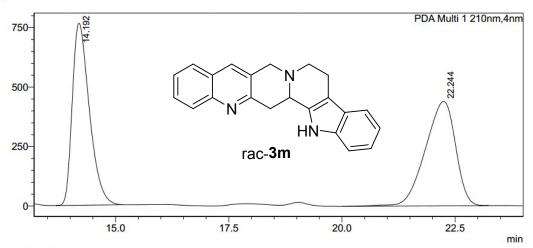
<Peak Table>


PDA C	n1 210nm		The second second					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	12.334	46440122	3118335	53.752	%		RT:12.334	
2	23.328	39956661	1213567	46.248	%		RT:23.328	
Total		86396782	4331902	100.000			And the second state of the second	

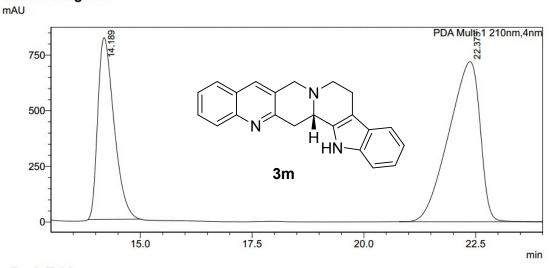
PDA C	h1 210nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.734	22199881	1129525	28.848	%		RT:12.734
2	24.987	54754828	1518513	71.152	%		RT:24.987
Tota		76954709	2648038				



<Peak Table>

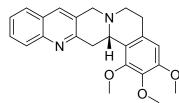

PDA C	h1 210nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.963	23271217	1417022	49.520	%		RT:10.963
2	18.082	23722105	900559	50.480	%		RT:18.082
Total		46993322	2317582				

PDA C	h1 210nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.255	13248869	844339	38.258	%		RT:11.255
2	18.329	21381638	836298	61.742	%	S	RT:18.329
Tota		34630507	1680637				



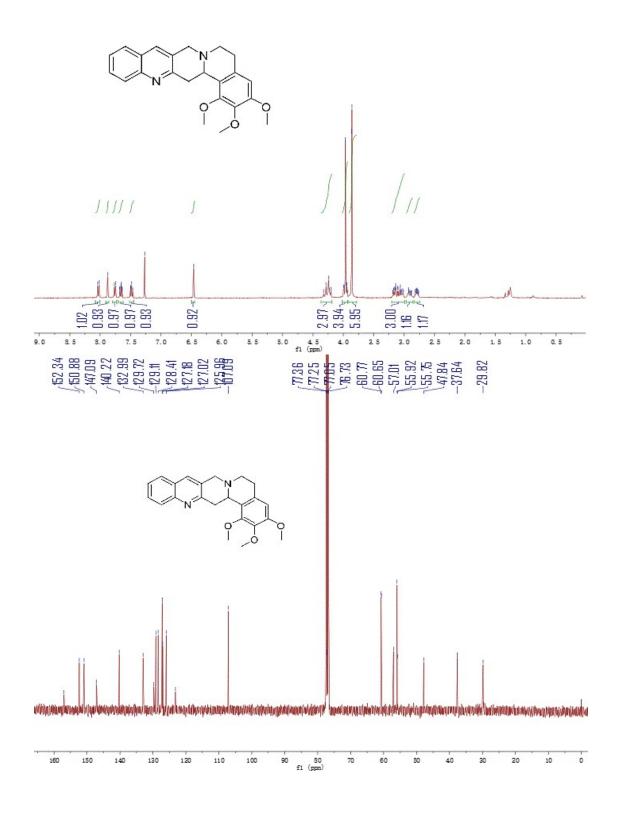
<Peak Table>

PDA C	h1 210nm	1010	0.000222.00		100812-008	10000000000	12010
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.192	20090465	765292	49.617	%		RT:14.192
2	22.244	20400559	439358	50.383	%		RT:22.244
Total		40491024	1204650	Startin Maria	de l'Institu		

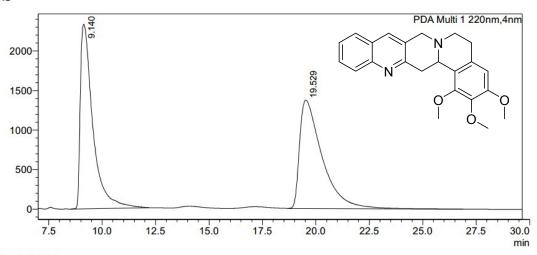


PDA C	h1 210nm	100	10.0012/01016/06	117.00	5/6/14/5/14	100000000	110.01
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.189	20753320	817352	37.169	%		RT:14.189
2	22.373	35081515	719207	62.831	%		RT:22.373
Total		55834835	1536559				

9. Other Substrates

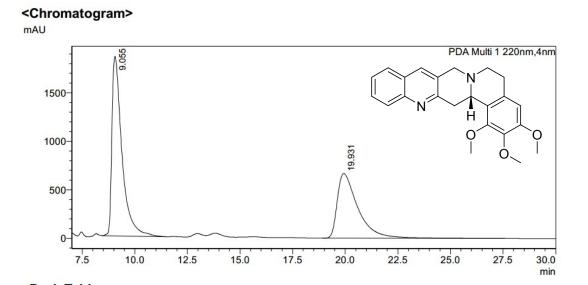


(*S*)-1,2,3-Trimethoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1g][1,6]naphthyridine: yellow solid, 94% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 8.0 Hz, 1H), 7.88 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.66 (t, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 1H), 6.46 (s, 1H), 4.20-4.32 (m, 3H), 3.93-4.00 (m, 1H), 3.96 (s, 3H), 3.86 (s, 6H), 3.01-3.19 (m, 3H), 2.88-2.93 (m, 1H), 2.76-2.82 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 156.9, 152.3, 150.9, 147.1, 140.2, 133.0, 129.7, 129.1, 128.4, 127.3, 127.2, 127.0, 125.9, 123.2, 107.1, 60.8, 60.7, 57.0, 55.9, 55.8, 47.8, 37.6, 29.8; HRMS (EI) m/z calcd for C₂₃H₂₄N₂O₃ (M) 376.1787, found 376.1788.


(S)-1,2,3-Trimethoxy-6,8,15,15a-tetrahydro-5H-benzo[b]isoquinolino[2,1-

g][1,6]naphthyridine

2085586688888888888888888888888888888888	8222866666888899944
www.c.c.c.c.c.c.c.c.c.c.c.	44440000000000000000000



<Peak Table>

PDA C	h1 220nm							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	9.140	95166961	2334574	48.593	%		RT:9.140	
2	19.529	100676140	1370386	51.407	%		RT:19.529	
Total		195843101	3704960	and a strength for				

PDA C	h1 220nm		1000	0.000		12.22	11000
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.055	61703446	1848361	57.331	%		RT:9.055
2	19.931	45923854	666574	42.669	%		RT:19.931
Total		107627299	2514935				