Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Pd-catalyzed regioselective C-H halogenation of quinazolinones and benzoxazinones

Minoo Dabiri,* Noushin Farajinia Lehi, Siyavash Kazemi Movahed and Hamid Reza

Khavasi

Faculty of Chemistry, Shahid Beheshti University; Tehran 1983969411 Islamic Republic of Iran, E-mail: m-dabiri@sbu.ac.ir Experimental section

General

All starting materials were obtained from Merck Millipore or Sigma-Aldrich, and were used without further purification. Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. Mass spectra were recorded on an Agilent Technology (HP) 5973 Network Mass Selective Detector operating at an ionization potential of 70 eV. IR spectra were recorded on a Bomem MB-Series FT-IR spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a BRUKERDRX-300AVANCEspectrometer at 300 and 75 MHz and 500AVANCEspectrometer at 500 and 126 MHz, respectively. ¹H and ¹³CNMR spectra were obtained in DMSO- d_6 using TMS as internal standard. Elemental analyses were performed using a Heraeus CHN-O Rapid analyzer.

Procedure for the Synthesis of quinazolin-4(3H)-one derivatives

Anthranilamide (15 mmol) and an aldehyde (18 mmol) were dissolved in DMSO (40 mL). Then, the reaction mixture was stirred at 100 °C in an open flask and monitored by TLC. After complete consumption of the starting materials, the reaction mixture was cooled to room temperature. When water (100 mL) was added to the reaction mixture, the precipitate was formed and collected by filtration. Recrystallization in ethanol afforded quinazolinone.^[S1]

1a 2-Phenylquinazolin-4(3*H*)-one (1a) White solid, Yield: 84%, mp: 240-242 °C (lit.^[S2] mp: 235-236 °C); ¹H NMR (300 MHz, DMSO- d_6) δ 12.56 (br s, 1H), 8.20 - 8.15 (m, 3H), 7.91 - 7.80 (m, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.60 - 7.50 (m, 4H).

2-(*p*-Tolyl)quinazolin-4(3*H*)-one (1b) White solid, Yield: 78%, mp: 235-237 °C (lit.^[S2] mp: 237-238 °C); ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.47 (br s, 1H), 8.09-8.16 (m, 3H), 7.86 – 7.79 (m, 1H), 7.73 (d, *J* = 8.2 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 2H), 2.39 (s, 3H).

Cl_{2-(4-Chlorophenyl)quinazolin-4(3*H*)-one (1c) White solid, Yield: 65%, mp: 305-307 °C (lit.^[S3] mp: 306-308 °C); ¹H NMR (300 MHz, DMSO- d_6) δ 12.61 (br s, 1H), 8.26 – 8.11 (m, 3H), 7.83 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 7.4 Hz, 1H), 7.67 – 7.58 (m, 2H), 7.52 (d, J = 7.3 Hz, 1H).}

 $NO_2 2-(4-Nitrophenyl)$ quinazolin-4(3*H*)-one (1d) White solid, Yield: 52%, mp: 361-363 °C (lit.^[S3] mp: 362-364 °C); ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.78 (br s, 1H), 8.44 - 8.35 (m, 4H), 8.26 - 8.17 (m, 1H), 7.90 - 7.73 (m, 2H), 7.58 (t, *J* = 7.7 Hz, 1H).

Cl 2-(3-Chlorophenyl)quinazolin-4(3*H*)-one (1e) White solid, Yield: 56%, mp: 292-295 °C (lit.^[S4] mp: 292-294 °C); ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.53 (s, 1H), 8.15 – 8.21 (m, 3H), 7.91 – 7.71 (m, 2H), 7.50-7.64 (m, 3H).

Procedure for the Synthesis of benzo[d][1,3]oxazin-4-one derivatives

To a stirred solution of anthranilic acid derivative (15 mmol) in pyridine (50 mL), arenoyl chloride (15 mmol) was added drop wise, maintaining the temperature near 0-6 °C for 1 h. The reaction

mixture was stirred for another 3 h at room temperature until a solid product was separated. The reaction mixture was neutralized with saturated sodium bicarbonate solution and the pale yellow solid which separated was filtered, washed with water and recrystallised from ethanol.^[S5]

3a 2-phenyl-4*H*-benzo[*d*][1,3]oxazin-4-one (3a) White solid, Yield: 89%, mp: 121-122 °C (lit.^[S5a] mp: 123-125 °C). ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.28 – 8.08 (m, 3H), 7.99 – 7.89 (m, 1H), 7.77 – 7.52 (m, 5H).

3b 6,7-dimethoxy-2-phenyl-4*H*-benzo[*d*][1,3]oxazin-4-one (3b) White solid, Yield: 80%, mp: 198-201 °C (lit.^[S6] mp: 197-198 °C); ¹H NMR (300 MHz, DMSO- d_6) δ 8.18 – 8.08 (m, 2H), 7.66 – 7.54 (m, 2H), 7.46 – 7.38 (m, 2H), 7.17 – 7.16 (m, 1H), 3.94 (s, 3H), 3.89 (s, 3H)

3C 6-bromo-2-phenyl-4*H*-benzo[*d*][1,3]oxazin-4-one (3c) White solid, Yield: 72%, mp: 196-197 °C (lit.^[S7] mp: 200-201 °C). ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.28 – 8.16 (m, 3H), 8.12 – 8.08 (m, 1H), 7.75 – 7.55 (m, 4H).

30 2-(p-tolyl)-4*H*-benzo[*d*][1,3]oxazin-4-one (3d) White solid, Yield: 69%, mp: 152-154 °C (lit.^[S7] mp: 155-156 °C). ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.14 – 8.06 (m, 3H), 7.94 (t, *J* = 7.7, 1H), 7.69 (d, *J* = 8.1 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 2.40 (s, 3H).

Cl 2-(4-chlorophenyl)-4*H*-benzo[*d*][1,3]oxazin-4-one (3e)

White solid, Yield: 81%, mp: 191-193 °C (lit.^[S7] mp: 192-193 °C).¹H NMR (300 MHz,) δ 8.25 – 8.11 (m, 3H), 7.99 – 7.93 (m, 1H), 7.77 – 7.58 (m, 4H).

Procedure for the Preparation of *N*-Iodosuccinimide (NIS).

NaI (10 mmol) and NCS (10 mmol) were individually dissolved in acetone (25 mL). The two solutions were mixed in a 100 mL round-bottomed flask equipped with a magnetic stirring bar. After it stirred for 15 min, the NaCl formed during the course of reaction was filtered; the filtrate was concentrated under reduced pressure. To remove iodine from the crude product, the solid was washed several times with 15 mL portions of diethyl ether until a bright yellow-colored powder was obtained. The NIS produced using this procedure was used without further purification.^[S8] White solid, Yield: 89%; mp. = 197–200 °C [lit.^[S8] mp: 196-198 °C].

General procedure for the halogenation of quinazolinones and benzoxazinones

To a 10 mL single-neck round-bottom flask equipped with a magnetic stir bar were added the quinazolinones or benzoxazinones (1 mmol), NXS (1.2 mmol), *p*-TsOH.H₂O (0.5 mmol) and Pd(OAc)₂ (0.1 mmol,) in turn. Subsequently, the solvent (DCE, 3 mL) was added. The reaction mixture was stirred at 100 °C, and the completion of the reaction was monitored using TLC. After the reaction had been completed, the solvent was evaporated under vacuum. The residue diluted with ethyl acetate (2×10 mL) and the organic layer was further washed with brine solution. The organic layers were dried over Na₂SO₄, filtered, and concentrated. Finally, the halogenated product was purified by thin layer chromatography to afford the desired pure coupling product.

Procedure for Gram-Scale Reaction.

2-phenylquinazolin-4(3*H*)-one (7 mmol, 1.54 g), NBS (8.4 mmol, 1.49 g), *p*-TsOH.H₂O (3.5 mmol, 0.67 g), and Pd(OAc)₂ (0.7 mmol, 0.16 g) were added to a balloon equipped with a magnetic stirring bar followed by the addition of DCE (15 mL). The reaction mixture was stirred at 100 °C and the completion of the reaction was monitored using TLC (*n*-hexane). After the reaction was completed, the solvent was evaporated by vacuum. The residue diluted with ethyl acetate (2×20 mL) and the organic layer was further washed with brine solution. Afterward, the organic layer was separated and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure using a rotary evaporator. Purification was accomplished using column chromatography using silica gel as the stationary phase (*n*-hexane).

Br 2-(2-Bromophenyl)quinazolin-4(3*H*)-one (2a) White solid, Yield: 76%, mp: 171-173 °C (lit.^[S9] mp: 175-179 °C); IR (KBr) (v_{max} /cm⁻¹): 1672, 1602, 1469, 1296; ¹H NMR (500 MHz, DMSO- d_6) δ 12.63 (br s, 1H), 8.19 (d, J = 8.0 Hz, 1H), 7.87 (t, J = 7.8 Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.66 – 7.64 (m, 1H), 7.62 – 7.46 (m, 3H); ¹³C NMR (75 MHz, DMSO- d_6) δ 161.90, 153.81, 149.04, 136.34, 135.05, 133.11, 132.13, 131.25, 128.14, 127.95, 127.51, 126.31, 121.75, 121.45; MS (m/z): 300 (M⁺); Anal. Calcd for C₁₄H₉BrN₂O: C, 55.84; H, 3.01; N, 9.30. Found: C, 56.03; H, 3.09; N, 9.21.

²⁰ Cl 2-(2-Chlorophenyl)quinazolin-4(3*H*)-one (2b) White solid, Yield: 63%, mp: 167-169 °C (lit.^[s9] mp: 172-174 °C); IR (KBr) (v_{max} /cm⁻¹): 1673, 1605, 1434, 1295; ¹H NMR (300 MHz, DMSO- d_6) δ 12.67 (br s, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.4 Hz, 1H), 7.73 – 7.46 (m, 5H); ¹³C NMR (126 MHz, , DMSO- d_6) δ 162.21, 153.33, 148.80, 135.84, 134.22, 132.86, 132.35, 130.52, 129.57, 129.06, 128.17, 126.81, 122.03, 121.59; MS (m/z): 255 (M⁺-1); Anal. Calcd for C₁₄H₉ClN₂O: C, 65.51; H, 3.53; N, 10.91. Found: C, 65.68; H, 3.59; N, 11.02.

2. 2-(2-Iodophenyl)quinazolin-4(3*H*)-one (2c) White solid, Yield: 79%, mp: 213-215 °C (lit.^[S10] mp: 217-219 °C); IR (KBr) (v_{max} /cm⁻¹): 1660, 1606, 1465, 1415; ¹H NMR (500 MHz, DMSO- d_6) δ 12.69 (br s, 1H), 8.21 (d, J = 7.8 Hz, 1H), 8.01 – 7.99 (m, 2H), 7.92 – 7.54 (m, 4H), 7.00 (t, J = 7.9 Hz, 1H); ¹³C NMR (75 MHz, DMSO- d_6) δ 162.09, 157.10, 149.01, 138.77, 135.14, 133.27, 133.19, 132.63, 128.11, 127.77, 126.32, 124.66, 121.91, 97.21; MS (m/z): 347 (M⁺-1); Anal. Calcd for C₁₄H₉IN₂O: C, 48.30; H, 2.61; N, 8.05. Found: C, 48.45; H, 2.71; N, 8.00.

Br \sim 2-(2-Bromo-4-methylphenyl)quinazolin-4(3*H*)-one (2d) White solid, Yield: 83%, mp: 175-177 °C IR (KBr) (v_{max} /cm⁻¹): 1656, 1599, 1461, 1295; ¹H NMR (500 MHz, DMSO- d_6) δ 12.56 (br s, 1H), 8.18 (dd, J = 7.9, 1.9 Hz, 1H), 7.89 – 7.82 (m, 1H), 7.74 – 7.65 (m, 1H), 7.64 – 7.49 (m, 3H), 7.34 (dd, *J* = 7.9, 1.6 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (126 MHz, DMSO d_6) δ 162.26, 154.24, 149.50, 142.73, 135.45, 133.77, 132.95, 131.43, 129.13, 128.35, 127.86, 126.71, 122.10, 121.63, 21.36; MS (m/z): 314 (M⁺); Anal. Calcd for C₁₅H₁₁BrN₂O: C, 57.16; H, 3.52; N, 8.89. Found: C, 57.34; H, 3.57; N, 8.83.

2-(2-iodo-4-methylphenyl)quinazolin-4(3*H*)-one (2e) White solide, Yield: 76%, mp: 224-226 °C; IR (KBr) (v_{max} /cm⁻¹): 1674, 1602, 1550, 1466, 1289; ¹H NMR (300 MHz, DMSO- d_6) δ 12.43 (br s, 1H), 8.15 – 8.08 (m, 2H), 7.82 (t, J = 7.6 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 7.8 Hz, 2H), 2.39 (s, 3H).¹³C NMR (75 MHz, DMSO- d_6) δ 161.89, 152.25, 147.36, 140.03, 135.18, 132.56, 132.16, 132.00, 130.15, 128.93, 127.59, 126.30, 125.07, 121.51, 20.17. MS (m/z): 362 (M⁺); Anal. Calcd for C₁₅H₁₁IN₂O: C, 49.75; H, 3.06; N, 7.74. Found: C, 49.98; H, 3.10; N, 7.71.

Br Cl 2-(2-Bromo-4-chlorophenyl)quinazolin-4(3*H*)-one (2f) White solid, Yield: 75%, mp: 264-266 °C; IR (KBr) (v_{max} /cm⁻¹): 1676, 1607, 1469, 1296; ¹H NMR (300 MHz, DMSO- d_6) δ 12.62 (br s, 1H), 8.26 - 8.15 (m, 1H), 7.98 – 7.79 (m, 2H), 7.79 – 7.48 (m, 4H); ¹³C NMR (75 MHz, DMSO- d_6) δ 161.86, 152.96, 148.94, 135.82, 135.26, 135.11, 132.53, 132.44, 128.33, 127.97, 127.67, 126.32, 122.42, 121.77; MS (m/z): 336 (M⁺); Anal. Calcd for C₁₄H₈BrClN₂O: C, 50.11; H, 2.40; N, 8.35. Found: C, 50.36; H, 2.49; N, 8.26.

Br \sim NO₂2-(2-Bromo-4-nitrophenyl)quinazolin-4(3*H*)-one (2g) White solid, Yield: 51%, mp: 255-266 °C; IR (KBr) (v_{max} /cm⁻¹): 1677, 1608, 1525, 1469, 1350; ¹H NMR (300 MHz, DMSO- d_6) δ 12.81 (br s, 1H), 8.65 - 8.59 (m, 1H), 8.38 (dd, J = 8.4, 2.3 Hz, 1H), 8.24 – 8.18 (m, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.93 – 7.85 (m, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 166.12, 160.97, 149.54, 149.21, 135.66, 132.92, 128.47, 128.26, 127.51, 126.81, 124.13, 123.63, 122.78, 122.35; MS (m/z): 345 (M⁺); Anal. Calcd for C₁₄H₈BrN₃O₃: C, 48.58; H, 2.33; N, 12.14. Found: C, 48.73; H, 2.38; N, 12.04.

Br² 2-(2-Bromo-5-chlorophenyl)quinazolin-4(3*H*)-one (2h) White solid, Yield: 64%, mp: 227-229 °C IR (KBr) (v_{max} /cm⁻¹): 1674, 1606, 1468, 1295; ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.65 (br s, 1H), 8.22 – 8.16 (m, 1H), 7.91 – 7.77 (m, 3H), 7.72 (dt, *J* = 7.9, 3.8 Hz, 1H), 7.62 – 7.54 (m, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.09, 157.02, 149.30, 138.26, 135.55, 135.22, 132.47, 132.35, 131.42, 130.02, 128.41, 126.74, 122.28, 119.18; MS (m/z): 336 (M⁺); Anal. Calcd for C₁₄H₈BrClN₂O: C, 50.11; H, 2.40; N, 8.35. Found: C, 50.32; H, 2.46; N, 8.26.

2-(2,5-Dichlorophenyl)quinazolin-4(3*H*)-one (2i) White solid, Yield: 50%, mp: 220-225 °C; IR (KBr) (v_{max} /cm⁻¹): 1695, 1606, 1554, 1468, 1295; ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.71 (br s, 1H), 8.19 (d, *J* = 8.0 Hz, 1H), 7.94 – 7.50 (m, 6H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.25, 151.91, 149.10, 136.01, 135.58, 132.68, 132.31, 132.21, 131.44, 131.27, 128.50, 128.21, 126.77, 122.18; MS (m/z): 290 (M⁺); Anal. Calcd for C₁₄H₈Cl₂N₂O: C, 57.76; H, 2.77; N, 9.62. Found: C, 57.89; H, 2.81; N, 9.59.

2-(5-chloro-2-iodophenyl)quinazolin-4(3*H*)-one (2j) White solide, Yield: 55%, mp: 218-220 °C; IR (KBr) (v_{max} /cm⁻¹): 1670, 1606, 1464, 1247; ¹H NMR (300 MHz,) δ 12.92 (br s, 1H), 8.09 (d, J = 7.9 Hz, 1H), 7.88 (s, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.64 – 7.45 (m, 3H), 7.21 (d, *J* = 8.3 Hz, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 160.42, 152.09, 147.11, 136.08, 133.97, 133.88, 132.16, 130.98, 129.47, 128.72, 126.36, 126.03, 125.08, 120.10. MS (m/z): 381 (M⁺-1); Anal. Calcd for C₁₄H₈ClIN₂O: C, 43.95; H, 2.11; N, 7.32. Found: C, 44.12; H, 2.13; N, 7.30.

Br 2-(2-Bromophenyl)-4*H*-benzo[*d*][1,3]oxazin-4-one (4a) White solid, Yield: 61%, mp: 127-130 °C (lit.^[S11] mp: 118 °C); IR (KBr) (v_{max} /cm⁻¹): 1759, 1617, 1593, 1435; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.26 – 8.23 (m, 3H), 8.18 – 8.13 (m, 1H), 7.71 (dd, *J* = 8.5, 6.0 Hz, 1H), 7.68 – 7.58 (m, 2H), 7.56 – 7.49 (m, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 159.31, 157.94, 145.02, 140.79, 134.04, 130.80, 130.26, 130.02, 128.94, 128.89, 128.58, 122.09, 119.89, 114.14; MS (m/z): 301 (M⁺); Anal. Calcd for C₁₄H₈BrNO₂: C, 55.66; H, 2.67; N, 4.64. Found: C, 55.72; H, 2.76; N, 4.58.

Cl 2-(2,6-Dichlorophenyl)-4*H*-benzo[*d*][1,3]oxazin-4-one (4b) White solid, Yield: 45%, mp: 161-162 °C (lit.^[S12] mp: 167-169 °C); IR (KBr) (v_{max} /cm⁻¹): 1779, 1680, 1600, 1435; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.67 (d, J = 8.9 Hz, 1H), 8.02 (d, J = 6.9 Hz, 2H), 7.64 – 7.50 (m, 3H), 7.12 (d, J = 8.0 Hz, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 160.21, 157.19, 147.78, 137.61, 131.70, 130.52, 130.44, 129.19, 127.92, 122.77, 119.13; MS (m/z): 291 (M⁺). Anal. Calcd for C₁₄H₇Cl₂NO₂: C, 57.56; H, 2.42; N, 4.80. Found: C, 57.64; H, 2.44; N, 4.71.

2-(2-iodophenyl)-4*H*-benzo[*d*][1,3]oxazin-4-one (4c) White solid, Yield: 49%, mp: 175-180 °C; IR (KBr) (v_{max} /cm⁻¹): 1753, 1643, 1600, 1099; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.33 – 8.26 (m, 1H), 8.13 – 8.07 (m, 1H), 8.04 (d, *J* = 8.1 Hz, 2H), 7.88 – 7.77 (m, 2H), 7.08 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 159.84, 159.62, 146.19, 142.06, 139.29, 138.86, 134.49, 131.26, 129.42, 128.40, 117.06, 97.24. MS (m/z): 475 (M⁺). Anal. Calcd for C₁₄H₇I₂NO₂: C, 35.40; H, 1.49; N, 2.95. Found: C, 35.49; H, 1.51; N, 2.94.

2-(2-Bromobenzamido)-4,5-dimethoxybenzoic acid (5a) White solid, Yield: 41%, mp: 275-280 °C decomp. IR (KBr) (v_{max} /cm⁻¹): 1693, 1674, 1657, 1607, 1525, 1481; ¹H NMR (500 MHz, DMSO- d_6) δ 11.69 (br s, 1H), 8.41 (s, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.58 – 7.43 (m, 3H), 3.88 (s, 3H), 3.79 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 170.22, 166.20, 154.14, 144.93, 139.25, 137.16, 134.26, 132.86, 129.80, 129.04, 119.59, 113.79, 108.90, 104.02, 56.57, 56.54; MS (m/z): 379 (M⁺); Anal. Calcd for C₁₆H₁₄BrNO₅: C, 50.55; H, 3.71; N, 3.68. Found: C, 55.78; H, 3.79; N, 3.62.

one (4d) White solid, Yield: 43%, mp: 206-210 °C; IR (KBr) (v_{max} /cm⁻¹): 1743, 1609, 1509, 1289, ¹H NMR (300 MHz, DMSO- d_6) δ 7.65-7.73 (m, 3H), 7.55 (s, 1H), 7.35 (s, 1H), 3.97 (s, 3H), 3.95 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 159.03, 157.59, 153.44, 153.39, 151.33, 142.28, 134.08, 131.39, 129.50, 109.70, 109.57, 108.35, 57.42, 57.09; MS (m/z): 351 (M⁺); Anal. Calcd for C₁₆H₁₁Cl₂NO₄: C, 54.57; H, 3.15; N, 3.98. Found: C, 54.71; H, 3.21; N, 3.93.

Cl² ← 6-Bromo-2-(2-chlorophenyl)-4*H*-benzo[*d*][1,3]oxazin-4-one (4e) White solid, Yield: 54%, mp: 188-191 °C; IR (KBr) (v_{max} /cm⁻¹): 1767, 1608, 1573, 1451; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.38 (d, *J* = 2.3 Hz, 1H), 8.28 – 8.17 (m, 3H), 7.75 – 7.58 (m, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.00, 158.18, 143.26, 139.48, 134.26, 132.69, 130.53, 130.08, 129.96, 129.00, 125.42, 121.22, 120.91; MS (m/z): 335 (M⁺); Anal. Calcd for C₁₄H₇BrClNO₂: C, 49.96; H, 2.10; N, 4.16. Found: C, 50.19; H, 2.17; N, 4.23.

2-(2-bromo-4-methylbenzamido)benzoic acid (5b) White solid, Yield: 46%, mp: 168-170 °C; IR (KBr) (v_{max} /cm⁻¹): 1742, 1641, 1506, 1380; ¹H NMR (500 MHz, DMSO- d_6) δ 8.17 – 8.02 (m, 2H), 7.99 – 7.87 (m, 1H), 7.77 – 7.52 (m, 2H), 7.44 – 7.37 (m, 2H), 2.41 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 171.47, 166.25, 142.78, 136.89, 134.39, 133.13, 132.20, 130.24, 129.47, 128.03, 123.02, 120.15, 119.95, 119.66, 21.89; MS (m/z): 334 (M⁺); Anal. Calcd for C₁₅H₁₂BrNO₃: C, 53.91; H, 3.62; N, 4.19. Found: C, 54.16; H, 3.67; N, 4.15.

White solid, Yield: 51%, mp: 168-170 °C; IR (KBr) (v_{max} /cm⁻¹): 1761, 1643, 1593, 1518, 1468; ¹H NMR (500 MHz, DMSO- d_6) δ 8.29 (dd, J = 7.9, 1.5 Hz, 1H), 8.12 – 8.04 (m, 1H), 7.89 (s, 2H), 7.79 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 159.91, 159.72, 146.24, 144.98, 139.42, 138.77, 131.17, 129.64, 129.37, 128.37, 117.04, 96.78, 20.59; MS (m/z): 489 (M⁺); Anal. Calcd for C₁₅H₉I₂NO₂: C, 36.84; H, 1.86; N, 2.86. Found: C, 36.95; H, 1.90; N, 2.82.

White solid, Yield: 72%, mp: 147-150 °C; IR (KBr) (v_{max} /cm⁻¹): 1703, 1581, 1506, 1384; ¹H NMR (300 MHz, DMSO- d_6) δ 8.58 (d, J = 8.2 Hz, 1H), 8.27 – 8.17 (m, 1H), 7.88 (d, J = 1.8 Hz, 1H), 7.68 – 7.56 (m, 2H), 7.46 – 7.39 (m, 1H), 7.08 (t, J = 7.4 Hz, 1H); ¹³C NMR (75 MHz, DMSO- d_6) δ 159.18, 156.95, 144.26, 140.42, 138.52, 135.45, 132.94, 131.95, 131.69, 130.40, 128.58, 123.61, 120.33, 119.18, MS (m/z): 335 (M⁺); Anal. Calcd for C₁₄H₇BrClNO₂: C, 49.96; H, 2.10; N, 4.16. Found: C, 50.14; H, 2.15; N, 4.19.

White solid, Yield: 45%, mp: 117-119 °C; IR (KBr) (v_{max} /cm⁻¹): 1703, 1581, 1506, 1384; ¹H NMR (300 MHz, DMSO- d_6) δ 13.96 (br s, 1H), 11.11 (br s, 1H), 8.70 – 8.66 (m, 1H), 8.03 – 7.99 (m, 2H), 7.65 – 7.51 (m, 2H), 7.50 – 7.38 (m, 1H), 7.12 – 7.05 (m, 1H); ¹³C NMR (75 MHz, DMSO- d_6) δ 171.80, 163.62, 141.25, 140.72, 136.96, 134.41, 131.83, 130.63, 130.11, 129.48, 129.26, 122.58, 119.17; MS (m/z): 310 (M⁺); Anal. Calcd for C₁₄H₉Cl₂NO₃: C, 54.22; H, 2.93; N, 4.52. Found: C, 54.38; H, 2.98; N, 4.49.

Entry	Solvent	Temp.	Time	Yield ^b 5a	Yield ^b 4i
1	DCE	100	4	41%	Trace
2	CH_2CI_2	100	4	Trace	Trace
3	CH₃CN	100	4	10%	Trace
4	PhCH₃	100	4	Trace	Trace
5	DCE	80	4	26%	Trace
6	DCE	60	4	Trace	Trace
<mark>7</mark>	DCE	100	2	25%	Trace

^a 6,7-dimethoxy-2-phenyl-4*H*-benzo[*a*][1,3]oxazin-4-one (1 mmol), NBS (1.2 mol), Pd(OAc)₂ (10 mol %), *p*-TsOH (0.5 mmol). and solvent (3 mL); ^b Isolated yield.

Crystal	2d
Empirical formula	C15 H11 Br1 N2 O1
Color, habit	Colorless, Needle
Crystal system	Triclinic
Symmetry space group	P-1
Z	2
a (Á)	8.3615(14)
$b(\text{\AA})$	8.6790(16)
$c(\text{\AA})$	9.7121(16)
α (°)	87.261(14)
β (°)	86.850(13)
γ (°)	74.088(13)
Temperature (K)	298(2)
Volume (Å ³)	676.4(2)
D _{calcd} (Mg m ⁻³)	1.547
Radiation (Å)	Μο Κα 0.71073
Absorption coefficient (μ) (mm ⁻¹)	3.031
Absorption correction min	0.4521
Absorption correction max	0.8754
F (000)	316
θ range for data collection (°)	2.44-27.00
index ranges (h;k;l)	-10,10,-9,11,-12,12
R factor all	0.0851
R factor gt	0.0776
wR factor ref	0.1702
wR factor gt	0.1464
goodness-of-fit	0.978

X-ray crystal structure analysis of 2d

Crystal	4d
Empirical formula	C16 H11 Cl2 N1 O4
Color, habit	Colorless, Needle
Crystal system	Triclinic
Symmetry space group	P-1
Z	2
a (Á)	8.079(2)
$b(\text{\AA})$	8.088(3)
$c(\text{\AA})$	12.700(4)
α (°)	87.80(2)
β (°)	83.42(2)
γ (°)	71.65(2)
Temperature (K)	298(2)
Volume (Å ³)	782.5(4)
D _{calcd} (Mg m ⁻³)	1.547
Radiation (Å)	Μο Κα 0.71073
Absorption coefficient (μ) (mm ⁻¹)	0.434
Absorption correction min	0.5215
Absorption correction max	0.8456
F (000)	360
θ range for data collection (°)	2.67-27.00
index ranges (h;k;l)	-10,10,-10,10,-16,16
R factor all	0.0895
R factor gt	0.0521
wR factor ref	0.1751
wR factor gt	0.1512
goodness-of-fit	1.100

X-ray crystal structure analysis of 4d

Crystallographic data (excluding structure factors) for the structures reported in this work have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC: 1529594 (**2d**) and 1529593 (**4d**). Copy of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge DB2 1EZ,UK (fax:+ 44 (1223) 336033; e-mail: <u>deposit@ccdc.cam.ac.uk</u>).

References

[S1] N. Y. Kim and C.-H. Cheon, *Tetrahedron Lett.*, 2014, 55, 2340-2344.

[S2] Y. Feng, Y. Li, G. Cheng, L. Wang and X. Cui, J. Org. Chem., 2015, 80, 7099-7107.

[S3] N. Mulakayala, B. Kandagatla, Ismail, R. K. Rapolu, P. Rao, C. Mulakayala, C. S. Kumar,J. Iqbal and S. Oruganti, *Bioorg. Med. Chem. Lett.*, 2012, 22, 5063-5066

[S4] A. H. Romero, J. Salazar and S. E. Lopez, Synthesis, 2013, 45, 2043-2050.

[S5] a) S. T. Asundaria, N. S. Patel and K. C. Patel, *Med. Chem. Res.*, 2012, 21, 1199-1206; b)
M. Nayak, B.-H. Kim, J. Kwon, S. Park, J. Seo, J. Chung and S. Park, *Chem. Eur. J.*, 2010, 16, 7437–7447; c) P. M. Chandrika, T. Yakaiah, A. R. R. Rao, B. Narsaiah, N. C. Reddy, V. Sridhar and J. V. Rao, *Eur. J. Med. Chem.*, 2008, 43, 846-852.

[S6] Z.-Y. Ge, Q.-M. Xu, X.-D. Fei, T. Tang, Y.-M. Zhu and S.-J. Ji, *J. Org. Chem.*, 2013, 78, 4524–4529.

[S7] M.Yamashita and A. Iida, *Tetrahedron*, 2014, **70**, 5746-5751.

[S8] F. M. Moghaddam, G. Tavakoli, B. Saeednia, P. Langer and B. Jafari, *J. Org. Chem.*, 2016, 81, 3868–3876.

[S9] J. K. Laha, K. S. S. Tummalapalli and K. P. Jethava, Org. Biomol. Chem., 2016, 14, 2473– 2479

[S10] D. Zhao, Y.-R. Zhou, Q. Shen and J.-X. Li, RSC Adv., 2014, 4, 6486-6489.

[S11] D.I. Bain and R.K. Smalley, J. Chem. Soc. C: Organic, 1968, 1593-1597.

[S12] E. P. Papadopoulos and C. D. Torres, *Heterocycles*, 1982, 19, 1039-1042.