Supporting Information

Synthesis of 3-acylindoles by oxidative rearrangement of 2-aminochalcone using a hypervalent iodine reagent and cyclization sequence

Akira Nakamura,^a Satoshi Tanaka,^a Akira Imamiya,^a Reo Tkane,^a Kazuma Fujimura,^a Tomohiro Maegawa^{*a} and Yasuyoshi Miki^{*a,b}

a. School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.

b. Research Organization of Science and Technology, Research Center for Drug Discovery and pharmaceutical Science, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.

Experimental Section

General. Column chromatography and TLC were performed on Merck Silica gel 60 (230–400 mesh) and Merck Silica gel F254 plates (0.25 mm), respectively. The melting point was measured using the Stuart[®] melting point apparatus SMP3 with an AC input of 100 V. ¹H and ¹³C NMR spectra were recorded on the JEOL JMN-400 spectrometer in CDCl₃ or DMSO- d_6 with tetramethylsilane as an internal standard. Data are reported as follows: chemical shift in ppm (δ), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet), and coupling constant (Hz). High-resolution mass spectra were obtained on the SHIMAZU IRAffinity-1 instrument with ionization voltages of 70 eV.

Materials: Unless otherwise noted, all reagents, including $PhI(OCOCH_3)_2$ (PIDA), PhI(OH)OTs and $PhI(OCOCF_3)_2$, and solvents were purchased from commercial suppliers and used without further purification.

General procedure for synthesis of chalcone

To the solution of aldehyde (1 equiv.) in toluene (0.2 M) was added ylide (1.2 equiv.) at 80 °C, and then stirred at same temperature. After cooling to room temperature, the resulting mixture was concentrated in vacuo. The residue was purified by SiO_2 column chromatography (eluent: Hexane/AcOEt) to give the desired chalcone.

(*E*)-2,2,2-Trifluoro-*N*-(5-methoxy-2-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl)phenyl)acetamide (1a)

According to the general procedure, aldehyde (443 mg, 1.60 mmol) in toluene (8.0 mL) was added ylide (722 mg, 1.76 mmol) at 80 °C, then

stirred at same temperature in 15 h. The resulting mixture was concentrated in vacuo. The residue was purified by SiO_2 column chromatography (Hexane/AcOEt = 1/1) to give **1a** (537 mg, 89%) as ocher solid.

mp 170-171 °C ¹H-NMR (CDCl₃) δ : 3.87 (3H, s, OMe), 3.88 (3H, s, OMe), 6.88 (1H, dd, J = 2.4, 8.8 Hz), 6.95 (2H, d, J = 8.8 Hz), 7.40 (1H, d, J = 15.6 Hz), 7.45 (1H, d, J = 2.4 Hz), 7.65 (1H, d, J = 8.8 Hz), 7.84 (1H, d, J = 16.0 Hz), 7.96 (2H, d, J = 8.8 Hz), 8.54 (1H, s, NH); ¹³C-NMR (CDCl₃) δ : 55.7, 55.9, 112.9, 114.2, 114.7, 116.3 (q, J = 287.3 Hz), 121.3, 123.6, 129.2, 130.7, 131.1, 136.1, 137.6, 155.9 (q, J = 37.1 Hz), 161.5, 163.4, 187.4; HRFABMS: calcd for C₁₉H₁₇NO₄F₃ [M+H]⁺: 380.1110, found 380.1086.

(*E*)-*N*-(2-(3-(4-Chlorophenyl)-3-oxoprop-1-en-1-yl)-5-methoxyphenyl)-2, 2,2-trifluoroacetamide (1b)

According to the general procedure, the reaction of aldehyde (395 mg, 1.60 mmol) with ylide (730 mg, 1.76 mmol) in toluene (8.0 mL) gave **1b** (580 mg,

93%) as ocher solid. Reaction time: 15 h. Eluent of SiO₂ column chromatography: Hexane/AcOEt = 2/1.

mp 173-174 °C; ¹H-NMR (CDCl₃) δ : 3.84 (3H, s, OMe), 7.01 (1H, d, J = 2.8 Hz), 7.06 (1H, dd, J = 2.4, 8.8 Hz), 7.63 (2H, d, J = 8.4 Hz), 7.71 (1H, d, J = 15.2 Hz), 7.83 (1H, d, J = 16.0 Hz), 8.16 (2H, d, J = 8.4 Hz), 8.19 (1H, d, J = 8.8 Hz), 11.42 (1H, s, NH); ¹³C-NMR (CDCl₃) δ : 55.9, 112.9, 114.7, 116.2 (q, J = 286.5 Hz), 120.9, 123.2, 129.1, 129.3, 130.6, 136.4, 136.5, 138.3, 139.0, 156.0 (q, J = 37.0 Hz), 161.8, 188.2; HRFABMS: calcd for C₁₈H₁₄NO₃F₃Cl [M+H]⁺ 384.0614, found 384.0625.

(*E*)-2,2,2-Trifluoro-*N*-(2-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl)-5-meth oxyphenyl)acetamide (1c)

According to the general procedure, the reaction of aldehyde (49.4 mg, 0.20 mmol) with ylide (87.6 mg, 0.22 mmol) in toluene (1.0 mL) gave **1c** (66.1 mg,

mp 168-169 °C; ¹H-NMR (CDCl₃) δ : 3.87 (3H, s, OMe), 6.89 (1H, dd, J = 2.4, 8.4 Hz), 7.15 (2H, t, J = 7.2 Hz), 7.37 (1H, d, J = 15.2 Hz), 7.41 (1H, d, J = 2.4 Hz), 7.67 (1H, d, J = 8.8 Hz), 7.85 (1H, d, J = 15.6 Hz), 7.99 (2H, dd, J = 5.6, 8.4 Hz), 8.44 (1H, s, NH); ¹³C-NMR (CDCl₃) δ : 55.7, 110.0, 114.3, 115.7, 115.8 (q, J = 286.5 Hz), 115.9 (d, J = 4.1 Hz), 120.9, 121.7, 128.9, 131.0 (d, J = 9.1 Hz), 134.1 (d, J = 2.5 Hz), 135.1, 138.3, 155.7 (q, J = 37.0Hz), 162.1, 165.7 (d, J = 254.6 Hz), 188.3; HRFABMS: calcd for C₁₈H₁₄NO₃F₄ [M+H]⁺ 368.0910, found 368.0958.

90%) as ocher solid. Reaction time: 2 h. Eluent of SiO₂ column chromatography: CH₂Cl₂.

(*E*)-2,2,2-Trifluoro-*N*-(5-methoxy-2-(3-oxo-3-(*o*-tolyl)prop-1-en-1-yl)phenyl) acetamide (1d)

To the solution of aldehyde (98.8 mg, 0.40 mmol) and phosphonium salts (190 mg, 0.40 mmol) in THF (4.0 mL) was added DBU (89 μ L, 0.6 mmol) at 40 °C.

Then stirred at same temperature in 20 h. The reaction was quenched with NH_4Cl aq. The organic layer was extracted with AcOEt, washed with brine, dried over with Na_2SO_4 and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (Hexane/AcOEt = 4/1) to give **1d** (111.4 mg, 77%) as ocher solid.

mp 130-131 °C; ¹H-NMR (CDCl₃) δ : 2.43 (3H, s, Me), 3.86 (3H, s, OMe), 6.89 (1H, dd, J = 2.8, 8.8 Hz), 7.04 (1H, d, J = 15.6 Hz), 7.24-7.28 (2H, m), 7.32 (1H, d, J = 2.4 Hz), 7.38 (1H, dt, J = 1.6, 8.0 Hz), 7.48 (1H, d, J = 8.8 Hz), 7.51 (1H, d, J = 15.6 Hz), 7.65 (1H, d, J = 8.8 Hz), 8.15 (1H, s, NH); ¹³C-NMR (CDCl₃) δ : 19.9, 55.5, 110.9, 114.4, 115.7 (q, J = 286.5 Hz), 121.7, 125.3, 126.0, 127.9, 128.5, 130.6, 131.2, 134.9, 136.8, 138.3, 139.8, 156.0 (q, J = 37.9 Hz), 161.9, 196.4; HRFABMS: calcd for C₁₉H₁₆NO₃F₃ [M]⁺ 363.1082, found 363.1091.

(*E*)-2,2,2-Trifluoro-*N*-(5-methoxy-2-(3-oxo-3-(thiophen-2-yl)prop-1-en-1-yl)p henyl)acetamide (1e)

According to general procedure, the reaction of aldehyde (49.4 mg, 0.20 mmol) with ylide (87.6 mg, 0.22 mmol) in toluene (1.0 mL) gave **1e** (66.1 mg, 90%) as

yellow solid. Reaction time: 2 h. Eluent of SiO₂ column chromatography: CH₂Cl₂. mp 213-214 °C, ¹H-NMR (CDCl₃) δ : 3.87 (3H, s, Me), 6.89 (1H, dd, *J* = 2.4, 8.8 Hz), 7.17 (1H, t, *J* = 4.0 Hz), 7.26 (1H, d, *J* = 7.6 Hz), 7.45 (1H, d, *J* = 2.4 Hz), 7.65-7.69 (2H, m), 7.80 (1H, d, *J* = 4.0 Hz), 7.89 (1H, d, *J* = 7.2 Hz), 8.57 (1H, s, NH); ¹³C-NMR (DMSO- d_6) δ : 55.7, 112.7, 114.5, 116.0 (q, J = 288.4 Hz), 121.0, 123.0, 128.9, 129.0, 133.6, 135.5, 136.1, 137.3, 145.6, 155.8 (q, J = 38.0 Hz), 161.5, 181.5; HRFABMS: calcd for C₁₆H₁₃NO₃F₃S [M+H]⁺ 356.0568, found 356.0548.

(E)-2,2,2-Trifluoro-N-(5-methoxy-2-(3-oxobut-1-en-1-yl)phenyl)acetamide (1f)

According to the procedure for 1d, the reaction of aldehyde (74.1 mg, 0.30 mmol) with (2-oxopropyl)triphenylphosphonium bromide (107 mg, 0.30 mmol) and DBU (67 μ L, 0.45 mmol) in THF (3.0 mL) gave 1f (66.2 mg, 77%) as colorless oil.

mp 122-123 °C; ¹H-NMR (CDCl₃) δ : 2.33 (3H, s, Me), 3.86 (3H, s, OMe), 6.61 (1H, d, J = 16.0 Hz), 6.88 (1H, dd, J = 2.8, 8.8 Hz), 7.28 (1H, d, J = 2.4 Hz), 7.52 (1H, d, J = 7.6 Hz), 7.57 (1H, d, J = 8.8 Hz), 8.30 (1H, s, NH); ¹³C-NMR (CDCl₃) δ : 27.7, 55.6, 110.8, 114.4, 115.8 (q, J = 284.9 Hz), 121.2, 126.6, 128.6, 134.7, 137.1, 156.1 (q, J = 37.9 Hz), 161.8, 198.5; HRFABMS: calcd for C₁₃H₁₃NO₃F₃ [M+H]⁺288.0848, found 288.0821.

Reaction time: 1 h. Eluent of SiO_2 column chromatography: Hexane/AcOEt = 4/1.

(*E*)-*N*-(2-(3-Cyclohexyl-3-oxoprop-1-en-1-yl)-5-methoxyphenyl)-2,2,2-trifluor oacetamide (1g)

To the solution of aldehyde (24.7 mg, 0.10 mmol) and phosphonium salts¹ (93.4 mg, 0.20 mmol) in THF (1.0 mL) and DMF (1.0 mL) was added DBU (22 μ L,

0.15 mmol) at 65 °C. Then stirred at same temperature in 25 h and quenched with NH_4Cl aq. The organic layer was extracted with AcOEt, washed with brine, dried over with Na_2SO_4 and concentrated in vacuo. The residue was purified by SiO₂ column chromatography (CH₂Cl₂) to give **1g** (22.4 mg, 63%) as white solid.

mp 137-138 °C; ¹H-NMR (CDCl₃) δ : 1.21-1.44 (5H, m), 1.60-1.90 (5H, m), 2.55 (1H, tt, J = 3.6, 7.6 Hz), 3.86 (3H, s, OMe), 6.72 (1H, d, J = 15.6 Hz), 6.86 (1H, dd, J = 2.8, 8.8 Hz), 7.42 (1H, d, J = 3.2 Hz), 7.58 (1H, d, J = 8.8 Hz), 7.62 (1H, d, J = 15.6 Hz), 8.16 (1H, s, NH); ¹³C-NMR (CDCl₃) δ : 25.6, 25.7, 28.4, 49.9, 55.6, 110.3, 114.3, 115.9 (q, J = 287.3 Hz), 121.1, 124.2, 128.5, 135.1, 136.1, 155.9 (q, J = 37.9 Hz), 161.7, 202.9; HRFABMS: calcd for C₁₈H₂₀NO₃F₃ [M]⁺ 355.1395, found 355.1351.

(*E*)-2,2,2-Trifluoro-*N*-(2-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl)phenyl)a cetamide (1h)

According to the general procedure, the reaction of aldehyde (65.1 mg, 0.30 mmol) with ylide (131 mg, 0.33 mmol) in toluene (1.5 mL) gave **1h** (91.1 mg,

87%) as pale yellow solid. Reaction time: 2 h. Eluent of SiO₂ column chromatography: CH₂Cl₂. mp 203-204 °C; ¹H-NMR (DMSO-*d*₆) δ : 3.87 (3H, s, OMe), 7.10 (1H, d, *J* = 8.4 Hz), 7.41 (1H, d, *J* = 7.6 Hz), 7.47 (1H, d, *J* = 7.6 Hz), 7.53 (1H, d, *J* = 7.6 Hz), 7.72 (1H, d, *J* = 15.6 Hz), 7.94 (1H, d, *J* = 15.6 Hz), 8.16-8.21 (3H, m), 11.4 (1H, s, NH); ¹³C-NMR (CDCl₃) δ :55.6, 114.1, 116.1 (q, *J* = 288.4 Hz), 123.7, 127.6, 127.8, 128.0, 130.2, 130.9, 131.0, 134.2, 137.4, 155.8 (d, *J* = 37.1 Hz), 163.4, 187.3 ; HRFABMS: calcd for $C_{18}H_{15}NO_3F_3$ [M+H]⁺ 350.1004, found 350.0963.

(*E*)-*N*-(5-Bromo-2-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl)phenyl)-2, 2,2-trifluoroacetamide (1i)

According to the general procedure, the reaction of aldehyde (355 mg, 1.20 mmol) with ylide (541 mg, 1.32 mmol) in toluene (6 mL) gave **1i** (456 mg,

89%) as pale yellow solid. Reaction time: 12 h. Eluent of SiO₂ column chromatography: Hexane/AcOEt = 1/1. mp 202-203 °C; ¹H-NMR (DMSO- d_6) δ : 3.86 (3H, s, OMe), 7.08 (1H, d, J = 8.8 Hz), 7.62-7.71 (3H, m), 7.99 (2H, d, J = 15.6 Hz), 8.16 (2H, d, J = 8.8 Hz), 11.5 (1H, s, NH); ¹³C-NMR (CDCl₃) δ : 55.6, 114.1, 115.9 (q, J = 287.6 Hz), 123.2, 124.3, 129.3, 130.15, 130.23, 130.4, 130.9, 131.1, 135.5, 136.3, 155.9 (q, J = 36.3 Hz), 163.4, 187.2; HRFABMS: calcd for C₁₈H₁₄NO₃ F₃Br [M+H]⁺ 428.0109, found 428.0102.

(*E*)-*N*-(4,5-Dimethoxy-2-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl)ph enyl)-2,2,2-trifluoroacetamide (1j)

According to the general procedure, the reaction of aldehyde (443 mg, 1.6 mmol) with ylide (722 mg, 1.76 mmol) in toluene (8 mL) gave **1j** (622 mg,

95%) as pale yellow solid. Reaction time: 16 h. Eluent of SiO₂ column chromatography: Hexane/AcOEt = 1/1. mp 210-212 °C; ¹H-NMR (DMSO- d_6) δ : 3.82 (3H, s, OMe), 3.87 (3H, s, OMe), 3.93 (3H, s, OMe), 7.00 (1H, s), 7.10 (2H, d, J = 8.8 Hz), 7.65 (1H, s), 7.67 (1H, d, J = 15.2 Hz), 7.87 (1H, d, J = 15.2 Hz), 8.17 (2H, d, J = 8.8 Hz), 11.27 (1H, s, NH); ¹³C-NMR (DMSO- d_6) δ 55.5, 55.9, 56.1, 109.2, 110.9, 114.0, 116.1 (q, J = 288.4 Hz), 121.3, 123.3, 128.4, 130.5, 130.9, 137.6, 148.4, 151.1, 155.9 (q, J = 36.3 Hz), 163.2, 187.3; HRFABMS: calcd for C₂₀H₁₉F₃NO₅ [M+H]⁺410.1215, found 410.1218.

General procedure for synthesis of 3-acylindole

To the solution of chalcone (0.1 mmol) in CH(OMe)₃ (1 ml) was added $BF_3 \cdot Et_2O$ (0.25 mmol) at room temperature. The resulting mixture was added PhI(OAc)₂ (0.15 mmol), then stirred at same temperature for 1 h. THF and 30% aqueous K₂CO₃ were then added, and the mixture was stirred at 60 °C for an appropriate time.. The organic layer was extracted with CH₂Cl₂, washed with brine, dried over with Na₂SO₄ and concentrated *in vacuo*. The residue was purified by SiO₂ column chromatography (eluent: hexane/AcOEt) to give the desired 3-acylindole.

(6-Methoxy-1*H*-indol-3-yl)(4-methoxyphenyl)methanone (3a)

99%; Eluent of SiO₂ column chromatography: Hexane/AcOEt = 2/1; white solid; mp 216-217 °C; ¹H-NMR (DMSO- d_6) δ : 3.80 (3H, s, OMe), 3.85 (3H, s, OMe), 6.86 (1H, dd, J = 1.6, 8.8 Hz), 7.00 (1H, s), 7.06 (2H, d, J = 8.8 Hz), 7.79 (2H, d, J = 8.8 Hz), 7.80 (1H, s), 8.07 (1H, d, J = 8.8 Hz), 11.79 (1H, s,

NH); ¹³C-NMR (CDCl₃) δ : 55.4, 55.6, 95.3, 111.7, 113.8, 115.3, 120.6, 122.3, 130.7, 133.1, 134.1, 137.7, 156.7, 161.9, 188.8; HRFABMS: calcd for C₁₇H₁₆NO₃ [M+H]⁺282.1130, found 282.1118.

(4-Chlorophenyl)(6-methoxy-1*H*-indol-3-yl)methanone (3b)

99%; Eluent of SiO₂ column chromatography: Hexane/AcOEt = 1/1; yellow solid; mp 251-253 °C; ¹H-NMR (DMSO-*d*₆) δ : 3.80 (3H, s, OMe), 6.90 (1H, dd, *J* = 2.0, 8.8 Hz), 7.00 (1H, d, *J* = 2.0 Hz), 7.59 (2H, d, *J* = 7.6 Hz), 7.79 (2H, d, *J* = 8.4 Hz), 7.84 (1H, d, *J* = 2.8 Hz), 8.09 (1H, d, *J* = 8.8 Hz), 11.93 (1H, s, s)

NH); ¹³C-NMR (DMSO- d_6) δ : 55.4, 95.5, 112.0, 115.1, 120.3, 122.3, 128.6, 130.4, 135.3, 136.0, 137.9, 139.3, 156.9, 188.7; HRFABMS: calcd for C₁₆H₁₃NO₂Cl [M+H]⁺ 286.0635, found 286.0620.

(4-Fluorophenyl)(6-methoxy-1*H*-indol-3-yl)methanone (3c)

91%; Eluent of SiO₂ column chromatography: Hexane/AcOEt = 2/1; ocher solid; mp 241-243 °C; ¹H-NMR (DMSO d_6) δ : 3.80 (3H, s, OMe), 6.88 (1H, dd, J = 1.6, 8.8 Hz), 7.00 (1H, d, J = 2.0 Hz), 7.35 (2H, t, J = 8.8 Hz), 7.82-7.87 (3H, m), 8.09 (1H, d, J = 8.8 Hz), 11.91 (1H, s, NH) ; ¹³C-NMR (125.8 MHz,

DMSO- d_6) 55.2, 95.2, 111.7, 114.9, 115.3 (d, J = 21.6 Hz), 120.2, 122.1, 130.9 (d, J = 9.1 Hz), 134.8, 137.0 (d, J = 3.0 Hz), 137.6, 156.6, 163.7 (d, J = 248.4 Hz), 188.3; HRFABMS: calcd for C₁₆H₁₃NO₂F [M+H]⁺ 270.0930, found 270.0970.

(6-Methoxy-1*H*-indol-3-yl)(*o*-tolyl)methanone (3d)

84%; Eluent of SiO₂ column chromatography: Hexane/AcOEt = 2/1; yellow solid; mp 216-217 °C; ¹H-NMR (DMSO- d_6) δ : 2.26 (3H, s, Me), 3.79 (3H, s, OMe), 6.87 (1H, dd, J = 2.0, 8.8 Hz), 6.99 (1H, d, J = 1.6 Hz), 7.28-7.32 (2H, m), 7.36-7.41 (2H, m), 7.46 (1H, d, J = 2.4 Hz), 8.03 (1H, d, J = 8.8 Hz), 11.82 (1H, s, NH); ¹³C-NMR

 $(DMSO-d_6) \ \delta: 19.4, 55.4, 95.6, 112.0, 116.9, 119.8, 122.1, 125.4, 127.4, 129.3, 130.7, 135.0, 135.6, 138.0, 141.1, 156.8, 192.1; HRFABMS: calcd for C_{17}H_{16}NO_2 \ [M+H]^+ 266.1181, found 266.1139.$

MeC

(6-Methoxy-1*H*-indol-3-yl)(thiophen-2-yl)methanone (3e)

94%; Eluent of SiO₂ column chromatography: Hexane/AcOEt = 2/1; ocher solid; mp 229-231 °C; ¹H-NMR (DMSO- d_6) δ : 3.80 (3H, s, OMe), 6.87 (1H, dd, J = 2.4, 8.8 Hz), 7.00 (1H, d, J = 2.4 Hz), 7.25 (1H, dd, J = 4.0, 4.8 Hz), 7.91-7.93 (2H, m), 8.07 (1H, d, J = 8.8 Hz), 8.22 (1H, d, J = 2.8 Hz), 11.92 (1H, s, NH); ¹³C-NMR

(DMSO-*d*₆) δ: 45.0, 95.2, 111.6, 114.6, 120.2, 122.0, 128.2, 131.1, 132.1, 133.1, 137.4, 145.1, 156.6, 180.5; HRFABMS: calcd for C₁₄H₁₂NO₂S [M+H]⁺ 258.0589, found 258.0598.

1-(6-Methoxy-1*H*-indol-3-yl)ethan-1-one (3f)²

91%; Eluent of SiO₂ column chromatography: Hexane/AcOEt = 1/1; ocher solid; ¹H-NMR (DMSO- d_6) δ : 2.41 (3H, s, Me), 3.77 (3H, s, OMe), 6.80 (1H, d, J = 8.8 Hz), 6.93 (1H, s), 8.01 (1H, d, J = 8.4 Hz), 8.16 (1H, s), 11.71 (1H, s, NH).

Cyclohexyl(6-methoxy-1*H*-indol-3-yl)methanone (3g)

89%; Eluent of SiO₂ column chromatography: Hexane/AcOEt = 2/1; beige solid; mp 161-163 °C; ¹H-NMR (CDCl₃) δ : 1.25-1.42 (3H, m), 1.58-1.75 (3H, m), 1.84-1.93 (4H, m), 3.03 (1H, tt, *J* = 3.2, 12.0 Hz), 3.80 (3H, s, OMe), 6.86 (1H, d, *J* = 2.4 Hz), 6.93 (1H, dd, *J* = 2.4, 8.8 Hz), 7.79 (1H, d, *J* = 2.8 Hz), 8.27 (1H, d, *J* = 8.8 Hz),

9.06 (1H, s, NH); ¹³C-NMR (DMSO- d_6) δ : 25.3, 25.7, 29.7, 46.0, 55.2, 95.0, 111.4, 115.2, 119.7, 122.1, 132.4, 137.7, 156.2, 198.7; HRFABMS: calcd for C₁₆H₂₀NO₂ [M+H]⁺258.1494, found 258.1447.

(1H-Indol-3-yl)(4-methoxyphenyl)methanone (3h)³

81%; Eluent of SiO₂ column chromatography: Hexane/AcOEt = 2/1; beige solid; ¹H-NMR (DMSO-*d*₆) δ : 3.34 (3H, s), 7.06 (2H, d, *J* = 8.8 Hz), 7.20-7.26 (2H, m), 7.50 (1H, d, *J* = 7.2 Hz), 7.80 (2H, d, *J* = 8.8 Hz), 7.93 (1H, d, *J* = 3.2 Hz), 8.22 (1H, d, *J* = 7.2 Hz), 12.00 (1H, s, NH).

(6-Bromo-1*H*-indol-3-yl)(4-methoxyphenyl)methanone (3i)

51%; Eluent of SiO₂ column chromatography: Hexane/AcOEt = 2/1; beige solid; mp 208-209 °C; ¹H-NMR (DMSO- d_6) δ : 3.85 (3H, s, OMe), 7.07 (2H, d, J = 8.8 Hz), 7.36 (1H, d, J = 8.4 Hz), 7.71 (1H, s), 7.81 (2H, d, J = 8.8 Hz), 8.00 (1H, s), 8.15 (1H, d, J = 8.4 Hz), 12.1 (1H, s, NH); ¹³C-NMR (DMSO- d_6)

 δ : 55.4, 113.7, 114.8, 115.0, 115.5, 123.2, 124.6, 125.5, 130.7, 132.5, 135.6, 137.5, 161.9, 188.6; HRFABMS: calcd for C₁₆H₁₂NO₂Br [M+H]⁺ 330.0130, found 330.0102.

(5,6-Dimethoxy-1*H*-indol-3-yl)(4-methoxyphenyl)methanone (3j)

74%; Eluent of SiO₂ column chromatography: Hexane/AcOEt = 2/1; beige solid; mp 216-217 °C; ¹H-NMR (CDCl₃) δ : 3.90 (3H, s, OMe), 3.92 (3H, s, OMe), 3.95 (3H, s, OMe), 6.90 (1H, s), 7.01 (1H, d, *J* = 8.8 Hz), 7.05 (1H, s), 8.01 (1H, d, *J* = 8.8 Hz), 9.54 (1H, s, NH); ¹³C-NMR (DMSO-*d*₆) δ : 55.4,

113.7, 114.8, 115.0, 115.5, 123.2, 124.6, 125.5, 130.1, 132.5, 135.6, 137.5, 161.9, 188.6; HRFABMS: calcd for C₁₈H₁₈NO₄ [M+H]⁺ 312.1236, found 312.1247.

2,2,2-Trifluoro-*N*-(2-formyl-5-methoxyphenyl)acetamide (5)

To the solution of 4-methoxy-2-nitrobenzaldehyde (300 mg, 1.57 mmol) in EtOH (5 mL) and water (5 mL) was added Fe (292 mg, 4.71 mmol) and NH₄Cl (466 mg, 7.85

mmol) then stirred at 60 °C for 1 h. Fe was removed by filtration and the solvent was extracted with CH_2Cl_2 . The organic layer was concentrated in vacuo, and then added CH_2Cl_2 (8 mL). Trifluoroacetic anhydride (TFAA) was slowly added to the solution at 0 °C. After 12 min, the reaction was quenched with sat. NaHCO₃ solution. The organic layer was extracted with CH_2Cl_2 , washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The

residue was purified by SiO_2 column chromatography (Hexane/AcOEt = 4/1) to give 5 (308 mg, 72%) as yellow solid.

¹H-NMR (CDCl₃) δ : 3.93 (3H, s, OMe), 6.85 (1H, dd, J = 2.4, 8.4 Hz), 7.65 (1H, d, J = 8.4 Hz), 8.25 (1H, d, J = 2.0 Hz), 9.80 (1H, s), 12.49 (1H, s, NH); ¹³C-NMR (CDCl₃) δ : 56.0, 105.2, 111.5, 115.4 (q, J = 287.3 Hz), 116.5, 137.9, 140.6, 156.0 (q, J = 37.9 Hz), 165.9, 193.7; HRFABMS: calcd for C₁₀H₉NO₃ F₃ [M+H]⁺ 248.0535, found 248.0525.

(*E*)-2,2,2-Trifluoro-*N*-(5-methoxy-2-(3-oxo-3-(3,4,5-trimethoxyphenyl) prop-1-en-1-yl)phenyl)acetamide (7)

According to the procedure for **1a**, the reaction of aldehyde **5** (45.3 mg, 0.18 mmol) with ylide (94.7 mg, 0.20 mmol) in toluene (1.0 mL) gave **7**

(78.5 mg, 98%) as ocher solid. Reaction time: 22 h. Eluent of SiO₂ column chromatography: CH₂Cl₂. mp 167-168 °C; ¹H-NMR (DMSO- d_6) δ : 3.75 (3H, s, OMe), 3.83 (3H, s, OMe), 3.89 (3H, s, OMe), 7.00 (1H, d, J = 2.4 Hz), 7.06 (1H, dd, J = 2.0, 8.8 Hz) 7.40 (2H, s), 7.68 (1H, d, J = 15.6 Hz), 7.82 (1H, d, J = 15.2 Hz), 8.18 (1H, d, J = 8.8 Hz), 11.40 (1H, s, NH); ¹³C-NMR (DMSO- d_6) δ : 55.7, 56.2, 60.2, 106.1, 112.7, 114.5, 116.1 (d, J = 287.6 Hz), 121.0, 123.3, 129.2, 133.0, 136.1, 138.1, 142.0, 153.0, 155.8 (q, J = 37.2 Hz), 161.5, 187.9; HRFABMS: calcd for C₂₁H₂₁NO₆F₃ [M+H]⁺440.1321, found 440.1293.

(6-Methoxy-1*H*-indol-3-yl)(3,4,5-trimethoxyphenyl)methanone (SCB01A)

To the solution of **7** (44.0 mg, 0.10 mmol) in CH(OMe)₃ (2.0 mL) was added BF₃•Et₂O (64 μ L, 0.51 mmol) at room temperature. The resulting mixture was added PhI(OAc)₂ (64.4 mg, 0.20 mmol), then stirred at same temperature for 1 h. The resulting mixture was added THF (4.0 mL) and 30%

 K_2CO_3 (1.0 mL) then stirred at 60 °C in 5 h. The organic layer was extracted with CH_2Cl_2 , washed with brine, dried over with Na_2SO_4 and concentrated in vacuo. The residue was purified by SiO_2 column chromatography (Hexane/AcOEt = 1/1) to give **SCB01A** (32.4 mg, 95%) as pale yellow solid.

mp 187-188 °C; ¹H-NMR (DMSO-*d*₆) δ : 3.76 (3H, s, OMe), 3.80 (3H, s, OMe), 3.86 (6H, s, OMe), 6.88 (1H, dd, J = 2.0, 8.8 Hz), 7.00 (1H, d, J = 2.0 Hz), 7.09 (2H, s), 7.97 (1H, d, J = 2.4 Hz), 8.11 (1H, d, J = 8.8 Hz), 11.84 (1H, s, NH); ¹³C-NMR (DMSO-*d*₆) δ : 55.2, 55.9, 60.1, 95.1, 106.0, 111.6, 114.9, 120.4, 122.1, 134.7, 135.8, 137.6, 140.0, 152.6, 156.5, 188.8; HRFABMS: calcd for C₁₉H₂₀NO₅ [M+H]⁺ 342.1341, found 342.1327.

References

- 1. L. Luqing, R. Ciro and M. Clement, J. Am. Chem. Soc., 2016, 138, 10344.
- De Luca, Laura; Barreca, Maria Letizia; Ferro, Stefania; Iraci, Nunzio; Michiels, Martine; Christ, Frauke; Debyser, Zeger; Witvrouw, Myriam and Chimirri, Alba, *Bioorg. Med. Chem. Lett.*, 2008, 18, 2891.
- 3. D. Tuluma, C. Amarnath and S. Amitabha, Tetrahedron Lett., 2014, 55, 719.

1a

1c

1h

1i

3b

3c

3g

3i

7

