Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Iodine-catalyzed oxidative multiple C-H bonds functionalization of isoquinolines with methylarenes: an efficient synthesis of isoquinoline-1,3,4(2H)-triones

Di Zhu, Wen-Kun Luo, Luo Yang, and Da-You Ma

Table of Contents

I. General information	S1
II. General experimental procedures	S1
III. Condition optimization	
Table S1. Optimization of the catalyst	S1
Table S2. Optimization of the oxidants	S2
Table S3. Optimization of the reactants ratio	S2
Table S4. Optimization of the solvent	
Table S5. Optimization of the reaction time	S3
Table S6. Optimization of the temperature	
IV. Mechanistic experiments	
V. Synthesis of intermediate 7	S8
VI. Spectra data of products 3a-n, 4b-e	
VII. Copies of ¹ H and ¹³ C NMR spectra of 3a-n, 4b-e and 7	S17-56

I. General information

Unless otherwise noted, all commercially available compounds (Energy-Chemical Company in Shanghai, China) were used as provided without further purification. Dry solvents (toluene) were used as commercially available; Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) or Sorbent Silica Gel 60 F254 plates. The developed chromatography was analyzed by UV lamp (254 nm). High-resolution mass spectra (HRMS) were obtained from a JEOL JMS-700 instrument (ESI). Melting points are uncorrected. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature. Chemical shifts for ¹H NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (chloroform: δ 7.26 ppm). Chemical shifts for ¹³C NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCl₃: δ 77.16 ppm). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet), coupling constant (Hz), and integration.

II. General experimental procedures

A general experimental procedure is described as following:

Method A: (for 3a-3j, 4b-4e and 5) an oven-dried reaction vessel was successively charged with isoquinoline (1a, 0.4 mmol, 1 equiv), iodine (0.1 mmol, 25 mol %.), toluene (2a, 3.2 mmol, 8 equiv), TBHP (4.0 mmol, 10 equiv, 70% in water) under air. The vessel was sealed and heated at 110 °C (oil bath temperature) for 24 h. Afterwards the resulting mixture was cooled to room temperature, transferred to silica gel column directly and purified by column chromatography on silica gel with petroleum ether and ethyl acetate (8:1) as eluent to give *N*-benzylisoquinoline-1,3,4(2*H*)-trione (3a, 78.7 mg) in 74% yield.

Method B: (for 3k-3n): an oven-dried reaction vessel was successively charged with isoquinoline (**1a**, 0.4 mmol, 1 equiv), iodine (0.1 mmol, 25 mol %.), *p*-xylene (**2k**, 0.8 mmol, 2 equiv), TBHP (4.0 mmol, 10 equiv, 70% in water) and chlorobenzene (1.0 mL) as solvent under air. The vessel was sealed and heated at 110 °C (oil bath temperature) for 24 h. Afterwards the resulting mixture was cooled to room temperature, transferred to silica gel column directly and purified by column chromatography on silica gel with petroleum ether and ethyl acetate (8:1) as eluent to give 2-(4-methylbenzyl)isoquinoline-1,3,4(2H)-trione (**3k**, 67.1 mg) in 60% yield.

III. Condition optimization

Table S1. Optimization of the catalyst^[a]

entry	catalyst (mol %)	yield (%) ^[b]
1	I ₂ (25)	38
2	KI (50)	n.d.
3	NIS (50)	17
4	CuI (50)	n.d.
5	-	n.d.

^[a] A solution of **1a** (0.4 mmol, 1 equiv), TBHP (2 mmol, 5 equiv, 70% in H₂O) and toluene (**2a**, 3.2 mmol, 8 equiv) was added with vigorous stirring. The reaction mixture was stirring at 120 °C for 12 h under air. ^[b] Isolated yields. NIS = *N*-iodosuccinimide, n.d. = not detected.

Table S2. Optimization of the oxidants^[a]

lia	$ \begin{array}{c} H \\ N \\ N \\ 2a \end{array} $ (0) ($ \begin{array}{c} l_2 \\ l_2 \\ 120 \end{array} $	<mark>5 equiv)</mark> 5 mol %) ℃, 12 h	
entry	oxidant (equiv)		yield (%) ^[b]
1[c]	Aqueous TBHP		38
2	TBHP in decane		18
3	TBP		n.d.
3	H_2O_2		n.d.
4	air		n.d.

^[a] A solution of **1a** (0.4 mmol, 1 equiv), I_2 (0.1 mmol, 25 mol %), oxidant (2 mmol, 5 equiv) and toluene (**2a**, 3.2 mmol, 8 equiv) was added with vigorous stirring. The reaction mixture was stirring at 120 °C for 12 h under air. ^[b] Isolated yields; n.d. = not detected. ^[c] 70% in H₂O.

Table S3. Optimization of the reactants ratio^[a]

H N + $H-1a$ $2a$		TBHP (X equiv) I ₂ (Y mol %) 120 °C, 12 h	
entry	I ₂ (X mol %)	TBHP (Y equiv)	yield (%) ^[b]
1	10	5	12
2	20	5	17
3	30	5	23

4	50	5	13
5	25	5	38
6	25	6	45
7	25	8	54
8	25	10	65
9	25	12	35

^[a] A solution of **1a** (0.4 mmol, 1 equiv), TBHP (X equiv, 70% in H₂O), I₂ (Y mol %.) and toluene (**2a**, 3.2 mmol, 8 equiv) was added with vigorous stirring. The reaction mixture was stirring at 120 °C for 12 h under air. ^[b] Isolated yields.

Table S4. Optimization of the solvent^[a]

la	H N + [X] (2 Solv 2a °C,	(10 equiv) 5 mol %) /ent L) 120 12 h	
entry	toluene (Z equiv)	solvent	yield (%) ^[b]
1	11	Chlorobenzene	43
2	8	Chlorobenzene	62
3	5	Chlorobenzene	32
4	2	Chlorobenzene	21
5	8	Acetonitrile	45
6	8	DMSO	n.d.
7	8	$o-C_6H_4Cl_2$	48
8	8	DMF	n.d.
9	8	Ethanediol	<10
10	8	-	65
11	11	-	43

^[a] A solution of **1a** (0.4 mmol, 1 equiv), I₂ (0.1 mmol, 25 mol %), TBHP (4 mmol, 10 equiv, 70% in H₂O), toluene (**2a** , Z equiv) and solvent (1 mL) was added with vigorous stirring. The reaction mixture was stirring at 120 °C for 12 h under air. ^[b] Isolated yields, n.d. = not detected.

Table S5. Optimization of the reaction time^[a]

entry	time (W h)	yield (%) ^[b]
1	6	40
2	12	65
3	18	67
4	24	71
5	36	70

^[a] A solution of **1a** (0.4 mmol, 1 equiv) and I₂ (0.2 mmol, 50 mol %), TBHP (3.5 equiv, 1.4 mmol, 70% in H₂O) and toluene (**2a**, 3.2mmol, 8 equiv) was added with vigorous stirring. The reaction mixture was stirring at 120 °C for given time under air. ^[b] Isolated yields.

Table S6. Optimization of the temperature^[a]

H		TBHP (10 equiv) I ₂ (25 mol %) T ^o C, 24 h	
entry	temp (°C)		yield (%) ^[b]
1	130		54
2	120		71
3	110		74
4[c]	110		73
5[d]	110		71
6 ^[e]	110		54
7	100		66

^[a] A solution of **1a** (0.4 mmol, 1 equiv) and I₂ (0.1 mmol, 25 mol %), TBHP (4 mmol, 10 equiv, 70% in H₂O) and toluene (**2a**, 3.2 mmol, 8 equiv) was added with vigorous stirring. The reaction mixture was stirring at given temperature for 24 h under air. ^[b] Isolated yields. ^[c] Under O₂ atmosphere. ^[d] Under Ar atmosphere. ^[e] I₂ (0.04 mmol, 10 mol %) was added.

IV. Mechanistic experiments

To gain more insight into the reaction mechanism, control experiments were carried out as follows.

entry	isotope	abundance ratio	
		M ₂₆₅ : M ₂₆₇	
A1	H_2O^{16}	97:3	
A2	H_2O^{18}	77:23	
A2'	H_2O^{18}	79:21	

(a) A mixture of isochroman-1,3-dione (7, 0.4 mmol, 1 equiv), iodine (0.1 mmol, 25 mol %.), PhCl (1 mL, dried by CaH₂), TBHP (6 equiv, 5.5 M in dodecane) and H₂O¹⁶ or H₂O¹⁸ (4 mmol, 10 equiv) was stirred at 100 °C for 12 h under air. Afterwards the resulting mixture was cooled to room temperature, transferred to silica gel column directly and purified by column chromatography on silica gel with petroleum ether and ethyl acetate (8:1) as eluent to give 2benzylisoquinoline-1,3,4(2H)-trione (**3a**, 78.4 mg) in 73% yield. When **H₂O¹⁶** was added, the percentage composition of [M+2]⁺ was found to be 3% in entry **A1**. When **H₂O¹⁸** was added, the percentage raised to 23% in entry **A2** (parallel test was run to examine operational error, the percentage was found to be 21% in entry **A2**²). All percentages were detected by GC-MS analysis with an EI detector. (The GC-MS were copied as below.)

(b) A mixture of 2-benzylisoquinolin-1(*2H*)-one (**6**, 0.4 mmol, 1 equiv), iodine (0.1 mmol, 25 mol %.), PhCl (1 mL, dried by CaH₂), TBHP (4 equiv, 5.5 M in dodecane) and H₂O¹⁶ or H₂O¹⁸ (4 mmol, 10 equiv) was stirred at 100 °C for 12 h under air. Afterwards the resulting mixture was cooled to room temperature, transferred to silica gel column directly and purified by column chromatography on silica gel with petroleum ether and ethyl acetate (8:1) as eluent to give 2-benzylisoquinoline-1,3,4(2H)-trione (**3a**, 73.0 mg) in 69% yield. When H₂O¹⁶ was added, the percentage composition of [M+2]⁺ was found to be 3% and no [M+4]⁺ was found in entry **B1**. When H₂O¹⁸ was added, the percentage of [M+2]⁺ (because of containing one O¹⁸) raise to be 40%, [M+4]⁺ (because of containing two O¹⁸) was found to be 9% in entry **B2** (parallel test was run to examine operational error, the percentage was found to be 46:43:11 in entry **B2**). All percentages were detected by GC-MS analysis with an EI detector.

(The	GC-MS	were	copied	as	below.
			Copied	a b	0010

GC-MS of B1:

m/z-->

V. Synthesis of intermediate 7 [Ref: Holmes, B.; Lee, J.; Landon, K. A.; Benavides-Serrato, A.; Bashir, T.; Jung, M. E.; Lichtenstein, A.; Gera, J. J. Biol. Chem., 2016, 291, 14146-14159.]

A mixture of 7a (isochroman-1,3-dione, 642 mg, 4.0 mmol), 7b (benzylamine, 1.2 equiv, 514 mg), and toluene (2.5 mL) was refluxed for 24 h under argon. Afterwards the resulting mixture was cooled to room temperature, transferred to silica gel column directly and purified by column chromatography on silica gel with petroleum ether and ethyl acetate (6:1) as eluent to give intermediate 7 in 75% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, J = 7.6, 0.8 Hz, 1H), 7.58 (td, J = 7.6, 1.2 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.33 – 7.23 (m, 4H), 5.19 (s, 2H), 4.07 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.94, 164.87, 137.13, 134.17, 133.73, 129.30, 129.05, 128.48, 127.78, 127.58, 127.18, 125.40, 43.32, 36.54. MS (EI) m/z (%): 251(100) [M]⁺, 222(35), 207(30), 146(10), 132(30), 118(65), 91(75).

VI. Spectra data of products

(3a) 2-benzylisoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between isoquinoline (1a) with toluene (2a), and purified by flash column chromatography as light yellow solid (78.7 mg, 74%). Melting point: 190-191 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 7.8, 1.0 Hz, 1H), 8.21 (dd, J = 7.6, 1.0 Hz, 1H), 7.90 (td, J = 7.6, 1.4 Hz, 1H), 7.83 (dt, J = 7.6, 1.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.35 – 7.27 (m, 3H), 5.25 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.66, 162.22, 157.03, 136.17, 135.91, 134.58, 130.82, 130.00, 129.86, 129.54, 128.67, 128.12, 127.87, 44.36. IR: 3066, 3032, 2972, 1678, 1584 cm⁻¹. MS (EI) m/z (%):265(90) [M]⁺, 237(10), 222(20), 207(30), 174(15), 132(20), 104(100), 90(35). HRMS: calcd. for [M+H]⁺C₁₆H₁₂O₃N: 266.08117, found: 266.08076.

(3b) 2-(4-fluorobenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between isoquinoline (1a) with *p*-fluorotoluene (2b), and purified by flash column chromatography as light yellow solid (80.7 mg, 71%). Melting point: 210-211 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 7.8, 0.8 Hz, 1H), 8.21 (dd, J = 7.6, 1.0 Hz, 1H), 7.91 (td, J = 7.6, 0.8 Hz, 1H), 7.83 (td, J = 7.6, 1.2 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.04 – 6.93 (m, 2H), 5.21 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.65, 162.59 (d, J = 245.4 Hz), 162.26, 157.05, 136.25, 134.71, 131.84(d, J = 3.2 Hz), 131.65 (d, J = 8.1 Hz), 130.93, 130.08, 129.89, 127.99, 115.59(d, J = 21.4 Hz), 43.71. IR: 3077, 3046, 2973, 1678, 1595 cm⁻¹. MS (EI) m/z (%): 283(100) [M]⁺, 255(10), 237(15), 174(20), 132(250, 104(75), 90(20). HRMS: calcd. for [M+H]⁺ C₁₆H₁₁O₃NF: 284.07175, found: 284.07123.

(3c) 2-(4-chlorobenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between isoquinoline (1a) with *p*-chlorotoluene (2c), and purified by flash column chromatography as light yellow solid (94.3mg, 79%). Melting point: 187-188 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, J = 7.8, 0.8 Hz, 1H), 8.22 (dd, J = 7.6, 1.0 Hz, 1H), 7.91 (td, J = 7.6, 1.2 Hz, 1H), 7.84 (td, J = 7.6, 1.2 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 5.20 (s, 2H); ¹³C NMR (100MHz, CDCl₃) δ 174.57, 162.24, 157.03, 136.27, 134.75, 134.40, 134.13, 131.12, 130.89, 130.08, 129.80, 128.89, 128.01, 43.76. IR: 3077, 3038, 2975, 1680, 1593 cm⁻¹. MS (EI) m/z (%): 299(70)[M]⁺, 255(15), 236(40), 207(15),174(20), 132(35), 104(100), 90(30). HRMS: calcd. for [M+H]⁺C₁₆H₁₁O₃NCI: 300.04220, found: 300.04154.

(3d) 2-(4-bromobenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between isoquinoline (1a) with *p*-bromotoluene (2d), and purified by flash column chromatography as light yellow solid (105.6 mg, 77%). Melting point: 178-179 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, J = 8.0, 0.8 Hz, 1H), 8.21 (dd, J = 7.6, 0.8 Hz, 1H), 7.91 (td, J = 7.6, 1.2 Hz, 1H), 7.84 (td, J = 7.6, 1.2 Hz, 1H), 7.47 – 7.32 (m, 4H), 5.19 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.57, 162.25, 157.05, 136.29, 134.92, 134.77, 131.89, 131.43, 130.92, 130.11, 129.82, 128.04, 122.34, 43.85.. IR: 3077, 3038, 2970, 1678, 1595 cm⁻¹. MS (EI) m/z (%):343(60) [M]⁺, 300(10),236(40), 208(10), 174(20), 132(40), 104(100), 90(50). HRMS: calcd. for [M+H]⁺C₁₆H₁₁O₃NBr: 343.99168, found: 343.99091.

(3e) 2-(3-bromobenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between isoquinoline (1a) with *m*-bromotoluene (2e), and purified by flash column chromatography as light yellow solid (104.1 mg, 76%). Melting point: 167-168 $^{\circ}$ C.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 7.8, 1.0 Hz, 1H), 8.22 (dd, J = 7.6, 1.0 Hz, 1H), 7.92 (td, J = 7.6, 1.4 Hz, 1H), 7.84 (td, J = 7.6, 1.2 Hz, 1H), 7.65 (t, J = 1.6 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.19 (t, J = 7.8 Hz, 1H), 5.20 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.38, 162.27, 157.03, 148.51, 137.76, 136.44, 135.71, 135.00, 130.94, 130.26, 129.82, 129.59, 128.18, 124.48, 123.31, 43.75. IR: 3077, 3043, 2958, 1678, 1590 cm⁻¹. MS (EI) m/z (%): 343(50)[M]⁺, 300(10), 236(30), 174(15), 132(40), 104(100), 90(40). HRMS: calcd. for [M+H]⁺ C₁₆H₁₁O₃NBr: 343.99168, found: 343.99110.

(3f) 2-(2-bromobenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between isoquinoline (1a) with *o*-bromotoluene (2f), and purified by flash column chromatography as light white solid (94.8 mg, 69%). Melting point: 185-186 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 7.6 Hz, 1H), 8.27 (d, J = 7.6 Hz, 1H), 7.94 (td, J = 7.4, 1.0 Hz, 1H), 7.88 (td, J = 7.6, 1.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.24 – 7.18 (m, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.06 (d, J = 7.6 Hz, 1H), 5.36 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.53, 162.15, 157.09, 136.37, 134.85, 134.55, 133.19, 131.00, 130.21, 129.73, 129.13, 128.09, 127.67, 127.64, 123.09, 44.86. IR: 3077, 2998, 2964, 1669, 1581 cm⁻¹. MS (EI) m/z (%):343(1) [M]⁺, 264(100), 236(20), 207(5), 130(10), 104(30), 90(10). HRMS: calcd. for [M+H]⁺ C₁₆H₁₁O₃NBr: 343.99168, found: 343.99088.

(3g) 2-(3-nitrobenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between isoquinoline (1a) with *m*-nitrotoulene (2g), and purified by flash column chromatography as light yellow solid (70.9 mg, 57%). Melting point: 186-187 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, J = 7.8, 1.2 Hz, 1H), 8.35 (t, J = 1.8 Hz, 1H), 8.24 (dd, J = 7.6, 1.0 Hz, 1H), 8.19 – 8.09 (m, 1H), 7.94 (td, J = 7.6, 1.4 Hz, 1H), 7.89 – 7.82 (m, 1H), 7.52 (t, J = 8.0 Hz, 1H), 5.33 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.47, 162.37, 157.12, 148.58, 137.85, 136.54, 135.82, 135.09, 131.03, 130.35, 129.91, 129.68, 128.28, 124.58, 123.40, 43.84. IR: 3080, 2363, 2329, 1683, 1587, 1533 cm⁻¹. MS (EI) m/z (%): 310(40)[M]⁺, 265(35), 235(25), 174(10),132(20),104(100), 90(25). HRMS: calcd. for [M+H]⁺ C₁₆H₁₁O₅N₂: 311.06625, found: 311.06549.

(3h) 4-((1,3,4-trioxo-3,4-dihydroisoquinolin-2(1H)-yl)methyl)benzonitrile

The title compound was prepared according to the general procedure described above by the reaction between isoquinoline (1a) with *p*-methylbenzonitrile (2h), and purified by flash column chromatography as light white solid (62.5 mg, 54%). Melting point: 226-227 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, *J* = 7.8, 0.8 Hz, 1H), 8.24 (dd, *J* = 7.6, 1.0Hz, 1H), 7.93 (td, *J* = 7.6, 1.2 Hz, 1H), 7.86 (td, *J* = 7.6, 1.2 Hz, 1H), 7.62 (s, 2H), 5.28 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.36, 162.25, 157.02, 140.96, 136.43, 134.99, 132.61, 130.92, 130.21, 129.60, 128.18, 118.62, 112.18, 44.05. IR: 3077, 2981, 2227, 1714, 1675, 1595 cm⁻¹. MS (EI) m/z (%): 290(70)[M]⁺, 262(25), 244(10), 174(10), 132(40), 104(100), 90(25). HRMS: calcd. for [M+H]⁺ C₁₇H₁₁O₃N₂: 291.07642, found: 291.07578.

(3i) methyl 4-((1,3,4-trioxo-3,4-dihydroisoquinolin-2(1H)-yl)methyl)benzoate

The title compound was prepared according to the general procedure described above by the reaction between isoquinoline (1a) with methyl *p*-methylbenzoate (2i), and purified by flash column chromatography as light yellow solid (70.8 mg, 55%). Melting point: 197-198 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 8.0 Hz, 1H), 8.23 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.92 (t, *J* = 7.6 Hz, 1H), 7.84 (t, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 5.28 (s, 1H), 3.89 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.53, 166.78, 162.25, 157.05, 140.81, 136.30, 134.80, 130.93, 130.13, 130.04, 129.92, 129.76, 129.33, 128.05, 52.27, 44.15. IR: 3049, 2995, 2944, 2848, 2355, 1717, 1678, 1595 cm⁻¹. MS (EI) m/z (%): 323(100)[M]⁺, 294(10), 280(15), 264(5), 236(50), 207(15), 174(10), 132(40), 118(10), 104(100),90(40). HRMS: calcd. for [M+H]⁺ C₁₈H₁₄O₅N: 324.08665, found: 324.08589.

(3j) 2-(4-methoxybenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between isoquinoline (**1a**) with 1-methoxy-4-methylbenzene (**2j**), and purified by flash column chromatography as light yellow solid (56.9 mg, 48%). Melting point: 163- 164 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, *J* = 7.8, 1.0 Hz, 1H), 8.20 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.89 (td, *J* = 7.6, 1.0 Hz, 1H), 7.81 (td, *J* = 7.6, 1.2 Hz, 1H), 7.53 – 7.44 (m, 2H), 6.88 – 6.77 (m, 2H), 5.18 (s, 2H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.75, 162.25, 159.42, 157.05, 136.11, 134.52, 131.18, 130.88, 129.96, 128.23, 127.83, 113.98, 55.33, 43.83. IR: 3006, 2978, 2938, 2834, 1672, 1590, 1510 cm⁻¹. MS (EI) m/z (%): 295(90)[M]⁺, 267(5), 252(15), 224(15), 135(20), 121(100), 104(30), 90(40). HRMS: calcd. for [M+Na]⁺ C₁₇H₁₃O₄NNa: 318.07368, found: 318.07327.

(3k) 2-(4-methylbenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the procedure by the reaction between isoquinoline (**1a**, **1** equiv) with *p*-xylene (**2k**, **2** equiv) in chlorobenzene (0.5 mL), and purified by flash column chromatography as light yellow solid (67.1 mg, 60%). Melting point: 222-223 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, *J* = 7.8, 1.0 Hz, 1H), 8.20 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.89 (td, *J* = 7.6, 1.2 Hz, 1H), 7.82 (td, *J* = 7.6, 1.2 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 5.21 (s, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.74, 162.24, 157.07, 137.96, 136.15, 134.56, 133.03, 130.87, 130.01, 129.58, 129.36, 127.87, 44.16, 21.25. IR: 3043, 2984, 2924, 1714, 1680, 1587, 1516 cm⁻¹. MS (EI) m/z (%): 279(100)[M]⁺, 26595), 251(5), 236(50), 222(10), 207(50), 174(20), 132(20), 118(30), 104(70), 90(20). HRMS: calcd. for [M+H]⁺ C₁₇H₁₄O₃N: 280.09682, found: 280.09633.

(3l) 2-(3-methylbenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the procedure by the reaction between isoquinoline(**1a**, **1equiv**) with *m*-xylene (**2l**, **2 equiv**) in chlorobenzene(0.5 mL), and purified by flash column chromatography as light yellow solid (75.8 mg, 68%). Melting point: 168-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, *J* = 7.8, 1.0 Hz, 1H), 8.21 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.90 (td, *J* = 7.6, 1.4 Hz, 1H), 7.82 (td, *J* = 7.6, 1.2 Hz, 1H), 7.30 (d, *J* = 7.0 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.90 (td, *J* = 7.6, 1.4 Hz, 1H), 7.82 (td, *J* = 7.6, 1.2 Hz, 1H), 7.30 (d, *J* = 7.0 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.81 (td, *J* = 7.6, 1.2 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.81 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 1H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.0 Hz, 2H), 7.20 (td, *J* = 7.6 Hz, 1H), 7.20 (td, *J* = 7.6

1H), 7.08 (d, J = 7.4 Hz, 1H), 5.21 (s, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.72, 162.23, 157.08, 138.41, 136.14, 135.88, 134.56, 130.90, 130.14, 130.03, 129.97, 128.87, 128.58, 127.87, 126.54, 44.37, 21.44. IR: 3057, 2972, 2919, 1709, 1669, 1595 cm⁻¹. MS (EI) m/z (%): 279(100)[M]⁺, 265(5), 251(7.5), 236(25), 222(10), 207(15), 174(20), 160(10), 132(25), 118(30), 104(100), 90(20). HRMS: calcd. for [M+H]⁺C₁₇H₁₄O₃N: 280.09682, found: 280.09627.

(3m) 2-(2-methylbenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the procedure by the reaction between isoquinoline (1a, 1 equiv) with *o*-xylene (2m, 2 equiv) in chlorobenzene (0.5 mL), and purified by flash column chromatography as light yellow solid (71.1 mg, 64%). Melting point: 178-179 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 7.8, 1.0 Hz, 1H), 8.25 (dd, J = 7.6, 1.0 Hz, 1H), 7.92 (td, J = 7.6, 1.4 Hz, 1H), 7.85 (td, J = 7.6, 1.4 Hz, 1H), 7.17 – 7.08 (m, 4H), 5.27 (s, 2H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.68, 162.37, 157.24, 136.24, 134.67, 133.81, 130.95, 130.62, 130.12, 129.93, 127.95, 127.67, 126.96, 126.25, 41.89, 19.56. IR: 3083,3018, 2984, 1663, 1584 cm⁻¹. MS (EI) m/z (%): 279(20)[M]⁺, 251(10),236(5), 207(10),174(15), 160(15), 104(100), 90(10). HRMS: calcd. for [M+H]⁺C₁₇H₁₄O₃N: 280.09682, found: 280.09630.

(3n) 2-(3,5-dimethylbenzyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the procedure by the reaction between isoquinoline (**1a**, **1 equiv**) with mesitylene (**2n**, **2 equiv**) in chlorobenzene (0.5 mL), and purified by flash column chromatography as light yellow solid (52.7 mg, 45%). Melting point: 191-192 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 7.6 Hz, 1H), 8.21 (d, *J* = 7.0 Hz, 1H), 7.90 (t, *J* = 6.8 Hz, 1H), 7.82 (t, *J* = 7.4 Hz, 1H), 7.11 (s, 2H), 6.91 (s, 1H), 5.17 (s, 2H), 2.28 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.71, 162.20, 157.05, 138.25, 136.11, 135.79, 134.50, 130.86, 130.01, 129.98, 129.73, 127.82, 127.17, 44.30, 21.30. IR: 3089, 2924, 2363, 1703, 1675, 1587 cm⁻¹. MS (EI) m/z (%): 293(100)[M]⁺, 250(25), 222(10), 174915),132(25), 118(20), 104(45), 91(15). HRMS: calcd. for [M+H]⁺C₁₈H₁₆O₃N:294.11247, found: 294.11192.

(4b) 2-benzyl-6-methylisoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between 6-methylisoquinoline (1b) with toluene (2a), and purified by flash column chromatography as light yellow solid (80.4 mg, 72%). Melting point:160-160 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 1H), 8.00 (d, *J* = 0.5 Hz, 1H), 7.68 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.35 – 7.23 (m, 3H), 5.23 (s, 2H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.94, 162.31, 157.25, 146.02, 137.06, 136.11, 130.78, 130.11, 129.52, 128.69, 128.09, 127.51, 44.31, 21.79. IR: 3035, 2363, 1714, 1651, 1666, 1601 cm⁻¹. MS (EI) m/z (%): 279(100)[M]⁺, 251(10), 233(25), 208(10), 188(20), 146(25), 118(100), 105(25), 91(40). HRMS: calcd. for [M+H]⁺C₁₇H₁₄O₃N: 280.09682, found: 280.09636.

(4c) 2-benzyl-6-(tert-butyl)isoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between 6-tertbutylisoquinoline (1c) with toluene (2a), and purified by flash column chromatography as light yellow oil (88.2 mg, 69%).

¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.2 Hz, 1H), 8.20 (d, J = 2.0 Hz, 1H), 7.91 (dd, J = 8.2, 2.0 Hz, 1H), 7.49 (dd, J = 8.2, 1.0 Hz, 2H), 7.36 – 7.19 (m, 4H), 5.23 (s, 2H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 175.01, 162.26, 159.04, 157.33, 136.07, 133.54, 130.65, 130.03, 129.42, 128.64, 128.02, 127.39, 124.64, 44.22, 35.71, 30.96. IR: 2970, 2356, 2332, 1709, 1684, 1600 cm⁻¹. MS (EI) m/z (%): 321(100)[M]⁺, 293(10), 278(35), 250(10), 208(15), 188(15), 160(90), 131(10), 117(35), 91(35). HRMS: calcd. for [M+H]⁺C₂₀H₂₀O₃N:322.14337, found: 322.14309.

(4d) 2-benzyl-6-chloroisoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between 6-chloroisoquinoline (1d) with toluene (2a), and purified by flash column chromatography as light yellow solid (80.3 mg, 67%). Melting point: 159-160 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 2.4 Hz, 1H), 7.84 (dd, J = 8.4, 2.0 Hz, 1H), 7.50 (dd, J = 7.6, 1.6 Hz, 2H), 7.35 – 7.27 (m, 3H), 5.23 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.90, 161.53, 156.62, 141.83, 136.31, 135.76, 131.90, 131.67, 129.62, 128.80, 128.31, 128.17, 127.67, 44.58. IR: 3097, 3069, 3035, 2364, 2335, 1703, 1669, 1581 cm⁻¹. MS (EI) m/z (%): 299(100)[M]⁺, 271(10), 253(25), 208(30), 166(20), 138(75), 124(15), 110(35). HRMS: calcd. for [M+H]⁺ C₁₆H₁₁O₃NCI: 300.04220, found:300.04166.

(4e) 2-benzyl-6-bromoisoquinoline-1,3,4(2H)-trione

The title compound was prepared according to the general procedure described above by the reaction between 6-bromoisoquinoline (1e) with toluene (2a), and purified by flash column chromatography as light yellow solid (86.3 mg, 63%). Melting point: 215-216 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 2.0 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 8.01 (dd, J = 8.4, 2.0 Hz, 1H), 7.49 (d, J = 6.4 Hz, 2H), 7.35 – 7.27 (m, 3H), 5.23 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.78, 161.67, 156.51, 139.22, 135.71, 131.79, 131.56, 130.65, 130.12, 129.59, 128.75, 128.54, 128.26, 44.54. IR: 3074, 3032, 1663, 1578 cm⁻¹. MS (EI) m/z (%):345(100)[M]⁺, 315300(25),286(10), 252(15), 208(25), 182(75), 168(15), 154(25), 130(10), 106(50), 91(80). HRMS: calcd. for [M+H]⁺C₁₆H₁₁O₃NBr: 343.99168, found: 343.99101.

(5) 1-benzylquinolin-2(1H)-one¹

The title compound was prepared according to the general procedure described above by the reaction between quinoline (1f) with toluene (2a), and purified by flash column chromatography as light red solid. Melting point: 69-70 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 6.4 Hz, 1H), 7.42 (d, J = 6.0 Hz, 1H), 7.27-7.22 (m, 7H), 6.82 (d, J = 8.8 Hz, 1H), 5.57 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.57, 139.69, 139.36, 136.26, 130.67, 128.85, 128.78, 127.26, 126.55, 122.27, 121.52, 120.92, 115.05, 45.90. IR: 3060, 1651, 1598 cm⁻¹. MS (EI) m/z (%): 65(15), 91(98), 129(80), 158(20), 216(15), 235(100)[M]⁺.

¹ Lanni, E. L.; Bosscher, M. A.; Ooms, B. D.; Shandro, C. A.; Ellsworth, B. A.; Anderson, C. E. J. Org. Chem. 2008, 73, 6425.

VII. Copies of 1H and 13C NMR spectra of products

s19

