Electronic Supplementary Information

Ring Strain-Dictated Divergent Fluorinating Prins Cyclization or

Semipinacol Rearrangement

Yi Liu,^a Ying-Yeung Yeung^{a,b,*}

^a Department of chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
^b Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)
*Corresponding author: Email: yyyeung@cuhk.edu.hk; Tel: +852-39436377

Table of contents

S2-S11	Experimental procedures and physical data
S12-S65	¹ H and ¹³ C NMR Spectra
S66-S81	X-ray data of 3ab
S81	Reference

1. General Information

All reactions that required anhydrous conditions were carried out by standard procedures under nitrogen atmosphere unless otherwise stated. Commercially available reagents were used as received. The solvents were dried by distillation over the appropriate drying reagents. Infrared spectra were recorded on a Varian 3100 FTIR spectrophotometer and reported in wave numbers (cm⁻¹). Melting points were determined on a Stuart SMP3 melting point apparatus. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker ACF300 (300 MHz), Bruker DPX300 (300 MHz) or AMX500 (500 MHz) spectrometer. Chemical shifts (δ) are reported in ppm relative to TMS (δ 0.00) for the ¹H NMR and to chloroform (δ 77.0) for the ¹³C NMR measurements. Low resolution mass spectra were obtained on a Finnigan/MAT LCQ spectrometer in ESI mode. High resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. Analytical thin layer chromatography (TLC) was performed with Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel.

2. Experimental Procedures and physical data

3-bromobut-3-en-1-ol (3)¹

2,3-dibromopropene **2** (30 mmol, 6.0 g), paraformaldehyde (900 mg, 30 mmol) and tin powder (60 mmol, 7.08 g) were added to a 100 mL round-bottom flask in mixed solvent (H₂O/Et₂O; 30ml/30ml). Then, 48% HBr aqueous solution (0.5 mL) was added. Under nitrogen protection, the resultant mixture was stirred for 24 h at 25 °C. The reaction was diluted with Et₂O (100 mL) and the organic layer was separated. The aqueous layer was extracted with Et₂O (3 × 30 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluted with hexane/EtOAc (5:1) to yield **3** in 48% yield. Colorless oil. ¹H NMR (500 MHz, CDCl₃): δ 5.72 (1H), 5.55 (d, *J* = 1 Hz, 1H), 3.83 (t, *J* = 6.5 Hz, 2H), 2.68 (t, *J* = 6.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 130.48, 119.33, 60.06, 44.42.

((3-bromobut-3-en-1-yl)oxy)(tert-butyl)dimethylsilane (4)¹

3-Bromobut-3-en-1-ol (**3**) (2.2 g, 14.6 mmol) was added to a 50 mL round-bottom flask containing anhydrous dichloromethane (30 mL). The mixture was cooled to 0 °C and imidazole (1.49 g, 21.6 mmol) was added. Then, a solution of *tert*-butyldimethylsilyl chloride (3.26 g, 21.6 mmol) dissolved in anhydrous dichloromethane (15 mL) was added dropwise to the reaction mixture over 30 minutes. The resultant was allowed to rise to 25 °C and further stirred for 15 hours. The reaction was quenched by water (50 mL) and the organic layer was separated. The aqueous layer was extracted with dichloromethane (3 × 30 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified purified by silica gel chromatography eluted with hexane/EtOAc (20:1) to yield **4** in 95% yield. ¹H NMR (300 MHz, CDCl₃): δ 5.67 (d, *J* = 1.5 Hz, 1H), 5.49 (d, *J* = 1.5 Hz, 1H), 3.83 (t, *J* = 6.3 Hz, 2H), 2.66 (t, *J* = 6.3 Hz, 2H), 0.93 (s, 9H), 0.11 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 130.76, 118.31, 60.76, 44.71, 25.79, 18.21, -5.42.

1-(4-hydroxybut-1-en-2-yl)cyclohexanol (1a)

((3-bromobut-3-en-1-yl)oxy)(*tert*-butyl)dimethylsilane **4** (1.06 g, 4.0 mmol) was added to a 50 mL schlenk flask containing tetrahydrofuran (15 mL) at -78 °C. *n*-butyl lithium (4.8 mmol, 3 ml, 1.6 M in hexane) was added dropwise over 30 minutes. The resultant mixture was stirred for additional 30 minutes at the same temperature. Then, a solution of cyclohexanone (490 mg, 5 mmol) in THF (10 mL) was added dropwise over 30 minutes. The reaction was allowed to warm to 25 °C and stirred for 10 hours. Water (10 mL) was added to quench the reaction and most of THF was removed under reduced pressure. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was dissolved in THF (10 mL) and transferred to a 25 mL round-bottom flask. A

solution of TBAF (1 M in THF, 5 ml, 5 mmol) was added at 0 °C. The resultant mixture was stirred at 25 °C for 3 hours. The solvent was then removed under reduced pressure and the residue was diluted with water (20 mL). The aqueous layer was extracted with dichloromethane (3 × 20 mL). The combined organic phases were washed with brine (5 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified purified by silica gel chromatography eluted with hexane/EtOAc (2:1) to yield **1a** (500 mg, 74%). ¹H NMR (500 MHz, CDCl₃): δ 5.15 (1H), 4.93 (1H), 3.77 (t, *J* = 6.2 Hz, 2H), 2.42 (t, *J* = 6.1 Hz, 2H), 1.70 – 1.55 (m, 10H); ¹³C NMR (125 MHz, CDCl₃): δ 153.34, 110.99, 73.19, 63.24, 36.53, 34.74, 25.62, 22.07. HRMS (ESI): C₁₀H₁₈O₂, calculated for [M+Na]: C₁₀H₁₈O₂Na, 193.1199, found 193.1195.

1-(4-hydroxybut-1-en-2-yl)cycloheptanol (1b)

((3-bromobut-3-en-1-yl)oxy)(tert-butyl)dimethylsilane 4 (1.06 g, 4.0 mmol) was added to a 50 mL schlenk flask containing tetrahydrofuran (15 mL) at -78 °C. n-butyl lithium (4.8 mmol, 3 ml, 1.6 M in hexane) was added dropwise over 30 minutes. The resultant mixture was stirred for additional 30 minutes at the same temperature. Then, a solution of cycloheptanone (560 mg, 5 mmol) in THF (10 ml) was added dropwise over 30 minutes. The reaction was allowed to warm to 25 °C and stirred for 10 hours. Water (10 mL) was added to quench the reaction and most of THF was removed under reduced pressure. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was dissolved in THF (10 mL) and transferred to a 25 mL round-bottom flask. A solution of TBAF (1 M in THF, 5 ml, 5 mmol) was added at 0 °C. The resultant mixture was stirred at 25 °C for 3 hours. Then, most of THF was removed under reduced pressure and water (20 mL) was added. The aqueous layer was extracted with dichloromethane (3 × 20 mL). The combined organic phases were washed with brine (5 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluted with hexane/EtOAc (2:1) to yield 1b (530 mg, 72%) Colorless oil. IR (cm⁻¹): 3348, 2926, 2858, 1634, 1456, 1194, 1037. ¹H NMR (300 MHz, CDCl₃) δ 4.89 (d, *J* = 1.0 Hz, 1H), 4.66 (d, *J* = 1.0 Hz, 1H), 3.54 (t, J = 6.0 Hz, 2H), 2.19 (t, J = 6.0, 2H), 1.67 (m, 2H), 1.59 - 1.15 (m, 10H). ¹³C NMR (75 MHz, $\mathsf{CDCl}_3)\,\delta\,153.91,\,110.17,\,77.19,\,63.25,\,40.29,\,34.78,\,29.34,\,22.35.$

1-(4-hydroxybut-1-en-2-yl)cyclopentanol (1c)

((3-bromobut-3-en-1-yl)oxy)(*tert*-butyl)dimethylsilane **4** (1.06 g, 4.0 mmol) was added to a 50 mL schlenk flask containing tetrahydrofuran (15 mL) at -78 °C. *n*-butyl lithium (4.8 mmol, 3 ml, 1.6 M in hexane) was added dropwise over 30 minutes. The resultant mixture was stirred for additional 30 minutes at the same temperature. Then, a solution of cyclopentanone (420 mg, 5 mmol) in THF (10 mL) was added dropwise over 30 minutes. The reaction was allowed to warm to 25 °C and stirred for 10 hours. Water (10 mL) was added to quench the reaction and most of THF was removed under reduced pressure. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under

reduced pressure. The residue was dissolved in THF (10 mL) and transferred to a 25 mL round-bottom flask. A solution of TBAF (1 M in THF, 5 ml, 5 mmol) was added at 0 °C. The resultant mixture was stirred at 25 °C for 3 hours. Then, most of THF was removed under reduced pressure and water (20 mL) was added. The aqueous layer was extracted with dichloromethane (3 × 20 mL). The combined organic phases were washed with brine (5 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluted with hexane/EtOAc (2:1) to yield **1c** (424 mg, 68%) Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.18 (1H), 4.91 (1H), 3.79 (t, *J* = 6 Hz, 2H), 2.44 (t, *J* = 6 Hz, 2H), 1.91 – 1.69 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃) δ 151.28, 110.76, 83.94, 63.03, 38.73, 36.14, 23.30. HRMS (ESI): C₉H₁₆O₂, calculated for [M+Na]: C₉H₁₆O₂Na, 179.1043, found: 179.1039.

4-methyl-3-methylenepentane-1,4-diol (1d)¹

((3-bromobut-3-en-1-yl)oxy)(tert-butyl)dimethylsilane 4 (1.06 g, 4.0 mmol) was added to a 50 mL schlenk flask containing tetrahydrofuran (15 mL) at -78 °C. n-butyl lithium (4.8 mmol, 3 ml, 1.6 M in hexane) was added dropwise over 30 minutes. The resultant mixture was stirred for additional 30 minutes at the same temperature. Then, a solution of anhydrous acetone (290 mg, 5 mmol) in THF (10 mL) was added dropwise over 30 minutes. The reaction was allowed to warm to 25 °C and stirred for 10 hours. Water (10 mL) was added to quench the reaction and most of THF was removed under reduced pressure. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was dissolved in THF (10 mL) and transferred to a 25 mL round-bottom flask. A solution of TBAF (1 M in THF, 5 ml, 5 mmol) was added at 0 °C. The resultant mixture was stirred at 25 °C for 3 hours. Then, most of THF was removed under reduced pressure and water (20 mL) was added. The aqueous layer was extracted with dichloromethane (3 × 20 mL). The combined organic phases were washed with brine (5 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluted with hexane/EtOAc (2:1) to yield 1d (234 mg, 45%). ¹H NMR (500 MHz, CDCl₃) δ 5.14 (1H), 4.86 (1H), 3.78 (t, J = 6.5 Hz, 2H), 2.42 (t, J = 6.5 Hz, 2H), 1.38 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 153.29, 110.06, 72.69, 63.05, 34.71, 29.47. HRMS (ESI): C₇H₁₄O₂, calculated for [M+Na]: C₇H₁₄O₂Na, 153.0886, found: 153.0883.

Representative procedure for the fluorinating Prins cyclization or semi-pinacol rearrangement

To a solution of **1a** (34 mg, 0.2 mmol) and benzaldehyde **6a** (25 mg, 0.24 mmol) in CH_2CI_2 (10 mL) in a 25 ml Schlenk flask at -20 °C was added 3 equivalent of $BF_3 \bullet Et_2O$ (0.6 mmol, 85 mg) slowly under N_2 protection. The resultant mixture was stirred at -20 °C for 6 hours. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel eluted with hexane/EtOAc (2:1) to give **7aa** in 73% yield.

1-(4-fluoro-2-phenyltetrahydro-2H-pyran-4-yl)cyclohexanol (7aa)

Yield: 73%. Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.41 – 7.28 (m, 5H), 4.74 – 4.69 (1H), 4.14 – 4.12 (1H), 3.97 – 3.96 (1H), 2.12 – 1.37 (m, 14H); ¹³C NMR (75 MHz, CDCl₃): δ 142.28, 128.35, 127.51, 125.72, 99.97, 97.66, 77.39, 76.96, 76.54, 75.17, 74.22, 73.94, 63.83, 37.65, 37.36, 30.71, 30.66, 30.63, 30.58, 29.23, 28.93, 25.59, 21.13. HRMS (ESI): C₁₇H₂₃FO₂, calculated for [M-H] 277.1609, found 277.1602.

1-(4-fluoro-2-(4-nitrophenyl)tetrahydro-2H-pyran-4-yl)cyclohexanol (7ab)

Yield: 69%. White solid. Melting point: 114 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.23 (d, *J* = 9 Hz, 2H), 7.56 (d, *J* = 9 Hz, 2H), 4.82 – 4.78 (dd, *J* = 3.5 Hz, 11.4 Hz, 1H), 4.19 – 4.14 (m, 1H), 3.97 – 3.95 (m, 1H), 2.23 – 1.23 (m, 14H); ¹³C NMR (75 MHz, CDCl₃): δ 149.79, 147.14, 126.34, 123.57, 99.54, 97.22, 63.77, 37.59, 37.30, 30.62, 30.58, 29.13, 28.84, 25.51, 21.07. HRMS (ESI): C₁₇H₂₂FNO₄, calculated for [M-H]: 322.1460, found: 322.1462.

1-(4-fluoro-2-(4-fluorophenyl)tetrahydro-2H-pyran-4-yl)cyclohexanol (7ac)

Yield: 75%. White solid. Melting point: 79 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.39 – 7.34 (m, 2H), 7.09 – 7.03 (m, 2H), 4.71 – 4.66 (dd, *J* = 2.1 Hz, 11.4 Hz, 1H), 4.12 – 4.09 (m, 1H), 3.95 – 3.94 (m, 1H), 1.97 – 1.39 (m, 14H), ¹³C NMR (75 MHz, CDCl₃): δ 163,72, 160.47, 138.11, 138.07, 127.48, 127.37, 115.27, 114.99, 99.86, 97.55, 74.54, 74.16, 73.88, 63.83, 37.59, 37.31, 30.65, 30.61, 30.57, 29.18, 28.89, 25.56, 21.11. HRMS (ESI): C₁₇H₂₁F₂O₂, calculated for [M-H]: 295.1515, found: 295.1514.

1-(2-(4-chlorophenyl)-4-fluorotetrahydro-2H-pyran-4-yl)cyclohexanol (7ad)

Yield: 77%. White solid. Melting point: 96 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.35 – 7.29 (m, 4H), 4.68 – 4.65 (dd, *J* = 2 Hz, 11.5 Hz, 1H), 4.12 – 4.10 (m, 1H), 3.96 – 3.93 (m, 1H), 2.15 – 1.38 (m); ¹³C NMR (125 MHz, CDCl₃): δ 140.96, 133.21, 128.51, 127.16, 99.41, 98.03, 74.54, 74.19, 74.02, 63.89, 37.62, 37.44, 30.76, 30.73, 30.69, 29.22, 29.05, 25.65, 21.02. HRMS (ESI): C₁₇H₂₂CIFO₂, calculated for [M-H]: 311.1220, found: 311.1229.

1-(2-(4-bromophenyl)-4-fluorotetrahydro-2H-pyran-4-yl)cyclohexanol (7ae)

Yield: 72%. White solid. Melting point: 102 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.52 – 7.48 (m, 2H), 7.30 – 7.26 (m, 2H), 4.69 – 4.64 (dd, *J* = 2.4 Hz, 11.7 Hz, 1H), 4.13 – 4.10 (m, 1H), 3.95 – 3.94 (m, 1H), 1.99 – 1.39 (m, 14H); ¹³C NMR (75 MHz, CDCl₃): δ 141.39, 131.41, 127.42, 121.22, 99.79, 97.48, 74.48, 74.17, 73.89, 63.80, 37.57, 37.28, 30.68, 30.63, 30.59, 29.18, 28.89, 25.56, 21.11. HRMS (ESI): C₁₇H₂₂BrFO₂, calculated for [M-H]: 355.0714, found: 355.0702.

1-(4-fluoro-2-(p-tolyl)tetrahydro-2H-pyran-4-yl)cyclohexanol (7af)

Yield: 68%. White solid. Melting point: 103 – 105 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.32 – 7.18 (m, 4H), 4.71 – 4.67 (m, 1H), 4.16 – 4.11 (m, 1H), 4.01 – 3.92 (m, 1H), 2.39 – 1.13 (m, 14H); ¹³C NMR (75 MHz, CDCl₃): δ 139.33, 137.14, 129.01, 125.71, 100.03, 97.73, 75.06, 74.21, 73.92, 63.84, 37.64, 37.35, 30.71, 30.66, 30.62, 30.57, 29.22, 28.93, 25.63, 21.15, 21.06. HRMS (ESI): C₁₈H₂₅FO₂, calculated for [M-H]: 291.1766, found: 291.1777.

1-(4-fluoro-2-(4-methoxyphenyl)tetrahydro-2H-pyran-4-yl)cyclohexanol (7ag)

Yield: 69%. White solid. Melting point: 70 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.33 – 7.30 (m, 2H), 6.92 – 6.89 (m, 2H), 4.67 – 4.63 (dd, *J* = 1.8 Hz, 11.4 Hz, 1H), 4.11 – 4.08 (m, 1H), 3.99 – 3.94 (m, 1H), 3.82 (s, 3H), 2.14 – 1.15 (m, 14 H). ¹³C NMR (75 MHz, CDCl₃): δ 158.98, 134.43, 127.09, 113.72, 100.02, 97.72, 74.83, 74.19, 73.92, 63.83, 55.19, 37.44, 37.16, 30.67, 30.59, 30.55, 29.20, 28.91, 25.61, 21.14. HRMS (ESI): C₁₈H₂₅FO₃, calculated for [M-1]: 307.1715, found: 307.1722.

1-(4-fluoro-2-(3-nitrophenyl)tetrahydro-2H-pyran-4-yl)cyclohexanol (7ah)

Yield: 71%. Colorless oil. ¹H NMR (500 MHz, CDCl₃): δ 8.30 – 8.21 (m, 2H), 7.53 – 7.49 (m, 2H), 4.65 – 4.62 (1H), 4.10 – 4.09(m, 1H), 3.86 – 3.83 (m, 1H), 3.86 – 0.86 (m, 14H); ¹³C NMR (125 MHz, CDCl₃): δ 148.37, 144.69, 131.89, 129.31, 122.44, 120.83, 99.19, 97.80, 74.17, 74.10, 73.99, 63.89, 37.53, 37.36, 30.71, 30.69, 30.66, 29.16, 28.99, 25.60, 21.16. HRMS (ESI): C₁₇H₂₂FNO₄, calculated for [M-H]: 322.1460, found: 322.1469.

1-(2-(3,5-dimethoxyphenyl)-4-fluorotetrahydro-2H-pyran-4-yl)cyclohexanol (7ai)

Yield: 56%. Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 6.56-6.55 (d, *J* = 2.4 Hz, 2H), 6.41 – 6.40 (d, *J* = 2.4 Hz, 1H), 4.66 – 4.61 (dd, *J* = 2.1 Hz, 11.4 Hz, 1H), 4.15 – 4.09 (m, 1H), 3.97 – 3.88 (m, 1H), 3.82 (s, 6H), 2.17 – 1.15 (m, 14H); ¹³C NMR (75 MHz, CDCl₃): δ 160.77, 144.78, 103.55, 99.97, 99.63, 97.66, 75.19, 74.19, 73.91, 63.78, 55.27, 37.69, 37.41, 30.69, 30.64, 30.59, 30.55, 29.17, 28.88, 25.59, 21.12. HRMS (ESI): C₁₉H₂₇FO₄, calculated for [M-1]: 337.1821, found: 337.1829.

1-(4-fluoro-2-(2-fluorophenyl)tetrahydro-2H-pyran-4-yl)cyclohexanol (7aj)

Yield: 71%. Colorless oil. ¹H NMR (500 MHz, CDCl₃): δ 7.51 – 7.02 (m, 4H), 5.03 – 5.00 (dd, *J* = 1.5 Hz, 11 Hz, 1H), 4.13 – 4.11 (m, 1H), 3.98 – 3.96 (m, 1H), 2.30 – 1.39 (m, 14H), ¹³C NMR (125 MHz, CDCl₃): δ 160.40, 158.44, 129.58, 129.48, 128.93, 128.86, 127.29, 127.26, 124.31, 124.28, 115.31, 115.14, 99.31, 97.92, 74.22, 74.04, 69.38, 64.03, 36.42, 36.25, 30.77, 30.74, 30.71, 30.68, 29.30, 29.12, 25.68, 21.22, 21.20. HRMS (ESI): C₁₇H₂₂F₂O₂, calculated for [M-H]:295.1515, found: 295.1524.

1-(4-fluoro-2-(2-methoxyphenyl)tetrahydro-2H-pyran-4-yl)cyclohexanol (7ak)

Yield: 59%. Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.51 – 7.49 (m, 1H), 7.30 – 7.24 (m, 1H), 7.04 – 6.88 (m, 2H), 5.12 – 5.08 (dd, *J* = 1.5 Hz, 11.1 Hz, 1H), 4.13 – 3.97 (m, 2H), 3.87 (s, 3H), 2.26 – 1.16 (m, 14 H); ¹³C NMR (75 MHz, CDCl₃): δ 155.60, 130.79, 128.17, 126.17, 120.68, 110.15, 100.09, 97.78, 74.29, 74.01, 69.56, 63.91, 55.28, 36.16, 35.88, 30.75, 30.70, 30.64, 30.59, 29.43, 29.14, 25.65, 21.18, 21.15. HRMS (ESI): $C_{18}H_{25}FO_3$, calculated for [M-H]: 307.1715, found: 307.1722.

1-(4-fluoro-2-(thiophen-2-yl)tetrahydro-2H-pyran-4-yl)cyclohexanol (7al)

Yield: 67%. White solid. Melting point: 98 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.28 – 7.26 (m, 1H), 7.01 – 6.97 (m, 2H),

4.97 – 4.93 (m, 1H), 4.09 – 3.94 (m, 2H), 2.40 – 1.15 (m, 14H); ¹³C NMR (125 MHz, CDCl₃): δ 145.50, 126.49, 124.65, 123.61, 99.41, 98.02, 74.21, 74.04, 71.40, 64.03, 37.49, 37.32, 30.72, 29.20, 29.03, 25.67, 21.22. HRMS (ESI): C₁₅H₂₁FO₂S, calculated for [M-H]: 283.1174, found: 283.1179.

1-(2-(anthracen-9-yl)-4-fluorotetrahydro-2H-pyran-4-yl)cyclohexanol (7am)

Yield: 68%. Light yellow color. Melting point: 140 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.80 – 8.60 (2H), 8.46 (1H), 8.06 – 8.02 (2H), 7.58 – 7.49 (m, 4H), 6.30 – 6.25 (dd, *J* = 2.4 Hz, 12 Hz, 1H), 4.50 – 4.40 (m, 2H), 2.24 – 1.43 (m, 14H); ¹³C NMR (125 MHz, CDCl₃): δ 132.16, 131.64, 129.28, 129.12, 128.23, 125.66, 124.67, 100.30, 97.99, 74.30, 74.02, 72.99, 64.66, 35.40, 35.11, 30.72, 30.67, 30.59, 30.55, 29.46, 29.17, 25.55, 21.16, 21.09. HRMS (ESI): C₂₅H₂₇FO₂, calculated for [M-H]: 377.1922, found: 377.1918.

1-(2-(tert-butyl)-4-fluorotetrahydro-2H-pyran-4-yl)cyclohexanol (7an)

Yield: 61%. White solid. Melting point: 63 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.97-3.94 (dd, *J* = 5.5 Hz, 12 Hz, 1H), 3.73 – 3.68 (m, 1H), 3.26 – 3.23 (m, 1H), 1.94 – 1.14 (m, 14H), 0.91 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 100.09, 98.71, 80.52, 74.47, 74.29, 63.72, 63.68, 33.83, 30.81, 30.78, 29.72, 29.54, 29.42, 29.24, 26.02, 25.92, 25.72, 21.27. HRMS (ESI): C₁₅H₂₇FO₂, calculated for [M-H]: 257.1922, found: 257.1926.

1-(2-cyclohexyl-4-fluorotetrahydro-2H-pyran-4-yl)cyclohexanol (7ao)

Yield: 63%. White solid. Melting point: 64 °C. ¹H NMR (500 MHz, CDCl₃): δ 4.00 – 3.90 (1H), 3.70 – 3.69 (1H), 3.50 -3.40 (1H), 1.92 – 1.01 (m, 25H); ¹³C NMR (125 MHz, CDCl₃): δ 99.72, 98.34, 74.37, 74.19, 63.55, 43.00, 32.18, 32.00, 30.76, 30.74, 29.77, 29.59, 28.82, 28.64, 26.56, 26.21, 26.15. HRMS (ESI): C₁₇H₂₉FO₂, calculated for [M-H]: 283.2632, found: 283.2636.

1-(4-fluoro-2-phenyltetrahydro-2H-pyran-4-yl)cycloheptanol (7ba)

Yield: 47%. Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.42 – 7.32 (m, 5H), 4.73 – 4.68 (dd, *J* = 2.4 Hz, 11.4 Hz, 1H), 4.14 – 3.95 (m, 2H), 2.18 – 1.54 (m, 16H); ¹³C NMR (75 MHz, CDCl₃): δ 142.27, 128.37, 127.52, 125.71, 100.90, 98.59, 75.18, 63.85, 37.95, 37.67, 35.21, 35.16, 35.10, 35.05, 29.70, 29.68, 29.63, 29.34, 22.60. HRMS (ESI): C₁₈H₂₅FO₂, calculated for [M-H]: 291.1766, found: 291.1777.

2-phenyl-3-oxaspiro[5.5]undecan-7-one (8ca)

Yield: 43%. Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.39 – 7.28 (m, 5H), 4.59 – 4.54 (dd, *J* = 1.8 Hz, 11.7 Hz, 1H), 4.07 – 4.02 (m, 1H), 3.79 – 3.75 (m, 1H), 2.55 – 1.38 (m, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 215.65, 142.83, 128.28, 127.37, 125.60, 76.28, 65.32, 48.27, 43.35, 42.60, 38.90, 34.47, 28.63, 20.20. HRMS (ESI): C₁₆H₂₀O₂, calculated for [M+Na]: C₁₆H₂₀O₂Na, 267.1356, found 267.1352.

2-(4-fluorophenyl)-3-oxaspiro[5.5]undecan-7-one (8cc)

Yield: 49%. Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.39 – 7.02 (m, 4H), 4.61 – 4.57 (1H), 4.10 – 4.00 (1H), 3.80 - 3.65 (1H), 2.55 – 1.30 (m, 12H), ¹³C NMR (75 MHz, CDCl₃): δ 215.53, 163.74, 160.33, 138.65, 127.42, 127.32, 115.18, 114.89, 75.63, 65.28, 48.23, 43.32, 42.58, 38.89, 34.45, 28.60, 20.21. HRMS (ESI): C₁₆H₁₉FO₂, calculated for [M+Na]: C₁₆H₂₀FO₂Na, 285.1261, found 285.1260.

2-(4-bromophenyl)-3-oxaspiro[5.5]undecan-7-one (8ce)

Yield: 47%. White solid. Melting point: 117 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.46 – 7.22 (m, 4H), 4.56 – 4.53 (dd, *J* = 1.2 Hz, 6.9 Hz, 1H), 4.00 – 3.65 (m, 2H), 2.52 – 1.25 (m, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 215.48, 141.98, 131.31, 127.40, 121.03, 75.58, 65.19, 48.17, 43.27, 42.53, 38.88, 34.42, 28.57, 20.19. HRMS (ESI) C₁₆H₂₀BrO₂, calculated for [M+Na]: C₁₆H₂₀BrO₂Na, 345.0461, found 345.0458.

2-(4-(benzyloxy)phenyl)-3-oxaspiro[5.5]undecan-7-one (8cr)

Yield: 39%. Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.48 – 6.97 (m, 9H), 5.10 (s, 2H), 4.50 – 4.49 (1H), 4.10 – 4.00 (m, 1H), 3.80 – 3.70 (m, 1H), 2.55 – 0.90 (m, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 215.66, 158.10, 136.99, 135.32, 128.47, 127.82, 127.36, 127.05, 114.66, 75.88, 69.94, 65.36, 48.31, 43.38, 42.44, 38.91, 34.48, 28.64, 20.21. HRMS (ESI) C₂₃H₂₆O₃, calculated for [M+Na]: C₂₃H₂₆O₃Na, 373.1774, found 373.1779.

1-(4-methyl-2-phenyltetrahydro-2H-pyran-4-yl)ethanone (8da)

Yield: 42%. Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.39 – 7.30 (m, 5H), 4.61 – 4.56 (dd, *J* = 3.6 Hz, 10.2 Hz, 1H), 4.17 – 4.12 (m, 1H), 3.91 – 3.82 (m, 1H), 2.19 (s, 3H), 2.08 – 1.59 (m, 4H), 1.58 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 212.33, 142.35, 128.34, 127.55, 125.77, 74.94, 63.74, 45.79, 40.63, 32.10, 24.20, 19.23.

2-(4-bromophenyl)-4-(cyclohex-1-en-1-yl)tetrahydro-2H-pyran (9)

Yield: 95%. White solid. ¹H NMR (300 MHz, CDCl₃): δ 7.40 – 7.37 (m, 2H), 7.18 – 7.14 (m, 2H), 5.71 – 5.68 (m, 1H), 4.61 (dd, *J* = 11.5 Hz, 2.3 Hz, 1H), 4.02 – 3.85 (m, 2H), 2.01 – 1.46 (m, 12H), ¹³C NMR (75 MHz, CDCl₃): 141.41, 139.04, 138.78, 131.38, 127.40, 122.21, 122.08, 121.15, 95.59, 93.33, 74.46, 63.87, 42.20, 41.90, 33.81, 33.51, 24.84, 23.40, 23.34, 22.53, 21.99.

3. ¹H and ¹³C NMR spectra

Compound **3**

3284	402	2 3 5
D Q D Q	400	004
2200	4 6 0	0 0 N
2244	0 0 0	000
ບົບົບົບ	က်က်	0 0 N
YK	\checkmark	\checkmark

<u>`он</u>

Br

S16

HQ

Compound 7ac

Compound 7ai

Compound 7an

Compound 8cc

S60

S61

Compound **9**

4. X-ray crystallographic data

X-ray crystal structure of Product 7ab

Table 1. Crystal data and structure refinement for f415.			
Identification code	f415		
Empirical formula	C17 H23 F N O4.50		
Formula weight	332.36		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 7.6999(3) Å	a= 99.119(2)°.	
	b = 11.1232(5) Å	b= 96.526(2)°.	
	c = 18.8431(9) Å	g = 94.243(2)°.	
Volume	1576.16(12) Å ³		
Z	4		
Density (calculated)	1.401 Mg/m ³		
Absorption coefficient	0.108 mm ⁻¹		
F(000)	708		
Crystal size	0.386 x 0.352 x 0.074 mm ³		
Theta range for data collection	2.207 to 28.281°.		
Index ranges	-10<=h<=9, -14<=k<=14, -25<=l<=	25	
Reflections collected	36644		
Independent reflections	7841 [R(int) = 0.0510]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7459 and 0.7037		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	7841 / 4 / 454		

Goodness-of-fit on F ²	1.029
Final R indices [I>2sigma(I)]	R1 = 0.0765, wR2 = 0.2009
R indices (all data)	R1 = 0.1141, wR2 = 0.2250
Extinction coefficient	n/a
Largest diff. peak and hole	0.871 and -0.848 e.Å ⁻³

Table 2.	Atomic coordinates	(x 10 ⁴) and	d equivalent	isotropic displacement parameters (Å 2 x 10 3)
for f415.	U(eq) is defined as c	one third of	the trace of	the orthogonalized U ^{ij} tensor.

	x	У	Z	U(eq)
	5650(2)	6403(1)	8188(1)	22(1)
F(2)	4864(2)	1543(1)	8303(1)	22(1)
O(1)	2411(3)	6543(2)	8598(1)	25(1)
O(2)	5908(2)	7313(2)	6546(1)	18(1)
O(3)	902(3)	4523(2)	3419(1)	26(1)
O(4)	147(2)	2973(2)	3910(1)	22(1)
O(5)	2104(3)	3981(2)	8038(1)	22(1)
O(6)	5826(2)	2250(2)	6621(1)	18(1)
O(7)	1078(2)	-473(2)	3417(1)	22(1)
O(8)	366(2)	-2067(2)	3883(1)	22(1)
N(1)	912(3)	3992(2)	3939(1)	17(1)
N(2)	1073(3)	-1025(2)	3928(1)	15(1)
C(1)	3410(3)	7644(2)	8520(1)	16(1)
C(2)	2113(3)	8547(2)	8313(1)	17(1)
C(3)	950(3)	8871(2)	8915(1)	20(1)
C(4)	2061(4)	9358(3)	9638(1)	22(1)
C(5)	3356(4)	8471(3)	9842(1)	23(1)
C(6)	4514(4)	8159(3)	9247(1)	22(1)
C(7)	6976(3)	7866(3)	7205(1)	20(1)
C(8)	5863(4)	8326(2)	7796(1)	19(1)
C(9)	4588(3)	7298(2)	7922(1)	14(1)
C(10)	3569(3)	6651(2)	7202(1)	14(1)
C(11)	4820(3)	6283(2)	6651(1)	14(1)
C(12)	3799(3)	5696(2)	5933(1)	12(1)
C(13)	3732(3)	6279(2)	5331(1)	13(1)
C(14)	2780(3)	5736(2)	4674(1)	14(1)
C(15)	1902(3)	4590(2)	4632(1)	13(1)

C(16)	1920(3)	3987(2)	5222(1)	15(1)
C(17)	2879(3)	4544(2)	5871(1)	15(1)
C(18)	2772(3)	3045(2)	8404(1)	14(1)
C(19)	3685(4)	3621(3)	9164(1)	21(1)
C(20)	2399(4)	4111(3)	9678(1)	23(1)
C(21)	975(4)	3115(3)	9734(2)	23(1)
C(22)	-2(3)	2606(3)	8986(1)	21(1)
C(23)	1252(3)	2110(2)	8462(1)	16(1)
C(24)	6812(3)	2767(3)	7308(1)	22(1)
C(25)	5630(3)	3343(2)	7836(1)	18(1)
C(26)	4119(3)	2441(2)	7930(1)	15(1)
C(27)	3248(3)	1760(2)	7196(1)	14(1)
C(28)	4590(3)	1287(2)	6709(1)	14(1)
C(29)	3682(3)	689(2)	5973(1)	13(1)
C(30)	3706(3)	1277(2)	5374(1)	14(1)
C(31)	2850(3)	733(2)	4699(1)	14(1)
C(32)	1970(3)	-419(2)	4638(1)	12(1)
C(33)	1894(3)	-1023(2)	5225(1)	14(1)
C(34)	2759(3)	-462(2)	5892(1)	15(1)
O(1W)	9131(4)	5379(3)	8348(2)	68(1)
				Table 3.

Bond lengths [Å] and angles [°] for f415.

F(1)-C(9)	1.448(3)
F(2)-C(26)	1.427(3)
O(1)-C(1)	1.434(3)
O(1)-H(1O)	0.850(10)
O(2)-C(11)	1.422(3)
O(2)-C(7)	1.431(3)
O(3)-N(1)	1.221(3)
O(4)-N(1)	1.228(3)
O(5)-C(18)	1.432(3)
O(5)-H(5O)	0.839(10)
O(6)-C(28)	1.422(3)
O(6)-C(24)	1.434(3)
O(7)-N(2)	1.220(3)
O(8)-N(2)	1.230(3)
N(1)-C(15)	1.468(3)

N(2)-C(32)	1.469(3)
C(1)-C(6)	1.530(4)
C(1)-C(2)	1.531(3)
C(1)-C(9)	1.545(3)
C(2)-C(3)	1.539(3)
С(2)-Н(2А)	0.9900
С(2)-Н(2В)	0.9900
C(3)-C(4)	1.520(4)
С(3)-Н(ЗА)	0.9900
С(3)-Н(3В)	0.9900
C(4)-C(5)	1.515(4)
C(4)-H(4A)	0.9900
С(4)-Н(4В)	0.9900
C(5)-C(6)	1.524(4)
С(5)-Н(5А)	0.9900
С(5)-Н(5В)	0.9900
С(6)-Н(6А)	0.9900
С(6)-Н(6В)	0.9900
C(7)-C(8)	1.529(4)
С(7)-Н(7А)	0.9900
С(7)-Н(7В)	0.9900
C(8)-C(9)	1.517(3)
C(8)-H(8A)	1.00(3)
С(8)-Н(8В)	0.87(3)
C(9)-C(10)	1.529(3)
C(10)-C(11)	1.524(3)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-C(12)	1.509(3)
C(11)-H(11)	1.0000
C(12)-C(13)	1.391(3)
C(12)-C(17)	1.398(3)
C(13)-C(14)	1.388(3)
С(13)-Н(13)	0.9500
C(14)-C(15)	1.384(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.385(3)
C(16)-C(17)	1.383(3)

C(16)-H(16)	0.9500
С(17)-Н(17)	0.9500
C(18)-C(23)	1.532(3)
C(18)-C(19)	1.540(3)
C(18)-C(26)	1.565(3)
C(19)-C(20)	1.531(4)
С(19)-Н(19А)	0.9900
С(19)-Н(19В)	0.9900
C(20)-C(21)	1.524(4)
С(20)-Н(20А)	0.9900
С(20)-Н(20В)	0.9900
C(21)-C(22)	1.522(4)
C(21)-H(21A)	0.9900
С(21)-Н(21В)	0.9900
C(22)-C(23)	1.527(3)
С(22)-Н(22А)	0.9900
С(22)-Н(22В)	0.9900
С(23)-Н(23А)	0.98(3)
С(23)-Н(23В)	0.95(3)
C(24)-C(25)	1.524(4)
С(24)-Н(24А)	0.9900
С(24)-Н(24В)	0.9900
C(25)-C(26)	1.524(3)
С(25)-Н(25А)	0.99(3)
С(25)-Н(25В)	0.87(3)
C(26)-C(27)	1.522(3)
C(27)-C(28)	1.526(3)
С(27)-Н(27А)	0.9900
С(27)-Н(27В)	0.9900
C(28)-C(29)	1.509(3)
С(28)-Н(28)	1.0000
C(29)-C(30)	1.393(3)
C(29)-C(34)	1.395(3)
C(30)-C(31)	1.387(3)
С(30)-Н(30)	0.9500
C(31)-C(32)	1.386(3)
С(31)-Н(31)	0.9500
C(32)-C(33)	1.387(3)

С(33)-Н(33)	0.9500
C(34)-H(34)	0.9500
O(1W)-H(1W)	0.868(10)
O(1W)-H(2W)	0.872(10)
C(1)-O(1)-H(1O)	109(2)
C(11)-O(2)-C(7)	111.19(18)
C(18)-O(5)-H(5O)	104(2)
C(28)-O(6)-C(24)	109.89(18)
O(3)-N(1)-O(4)	123.2(2)
O(3)-N(1)-C(15)	118.6(2)
O(4)-N(1)-C(15)	118.1(2)
O(7)-N(2)-O(8)	123.8(2)
O(7)-N(2)-C(32)	118.5(2)
O(8)-N(2)-C(32)	117.7(2)
O(1)-C(1)-C(6)	108.2(2)
O(1)-C(1)-C(2)	107.7(2)
C(6)-C(1)-C(2)	110.4(2)
O(1)-C(1)-C(9)	107.23(19)
C(6)-C(1)-C(9)	111.2(2)
C(2)-C(1)-C(9)	111.8(2)
C(1)-C(2)-C(3)	110.8(2)
C(1)-C(2)-H(2A)	109.5
C(3)-C(2)-H(2A)	109.5
C(1)-C(2)-H(2B)	109.5
C(3)-C(2)-H(2B)	109.5
H(2A)-C(2)-H(2B)	108.1
C(4)-C(3)-C(2)	111.0(2)
С(4)-С(3)-Н(ЗА)	109.4
С(2)-С(3)-Н(ЗА)	109.4
С(4)-С(3)-Н(ЗВ)	109.4
С(2)-С(3)-Н(ЗВ)	109.4
H(3A)-C(3)-H(3B)	108.0
C(5)-C(4)-C(3)	111.8(2)
C(5)-C(4)-H(4A)	109.3
C(3)-C(4)-H(4A)	109.3
C(5)-C(4)-H(4B)	109.3

1.383(3)

C(33)-C(34)

C(3)-C(4)-H(4B)	109.3
H(4A)-C(4)-H(4B)	107.9
C(4)-C(5)-C(6)	110.9(2)
C(4)-C(5)-H(5A)	109.5
C(6)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
C(6)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	108.0
C(5)-C(6)-C(1)	111.3(2)
C(5)-C(6)-H(6A)	109.4
C(1)-C(6)-H(6A)	109.4
С(5)-С(6)-Н(6В)	109.4
C(1)-C(6)-H(6B)	109.4
H(6A)-C(6)-H(6B)	108.0
O(2)-C(7)-C(8)	111.7(2)
O(2)-C(7)-H(7A)	109.3
C(8)-C(7)-H(7A)	109.3
O(2)-C(7)-H(7B)	109.3
C(8)-C(7)-H(7B)	109.3
Н(7А)-С(7)-Н(7В)	107.9
C(9)-C(8)-C(7)	110.6(2)
C(9)-C(8)-H(8A)	108.4(17)
C(7)-C(8)-H(8A)	107.5(18)
C(9)-C(8)-H(8B)	104(2)
C(7)-C(8)-H(8B)	115(2)
H(8A)-C(8)-H(8B)	111(3)
F(1)-C(9)-C(8)	106.2(2)
F(1)-C(9)-C(10)	105.84(19)
C(8)-C(9)-C(10)	110.3(2)
F(1)-C(9)-C(1)	104.38(18)
C(8)-C(9)-C(1)	115.5(2)
C(10)-C(9)-C(1)	113.7(2)
C(11)-C(10)-C(9)	110.7(2)
C(11)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10A)	109.5
С(11)-С(10)-Н(10В)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	108.1
O(2)-C(11)-C(12)	108.93(18)
---------------------	------------
O(2)-C(11)-C(10)	111.19(19)
C(12)-C(11)-C(10)	110.33(19)
O(2)-C(11)-H(11)	108.8
С(12)-С(11)-Н(11)	108.8
C(10)-C(11)-H(11)	108.8
C(13)-C(12)-C(17)	119.0(2)
C(13)-C(12)-C(11)	121.6(2)
C(17)-C(12)-C(11)	119.4(2)
C(14)-C(13)-C(12)	121.2(2)
С(14)-С(13)-Н(13)	119.4
C(12)-C(13)-H(13)	119.4
C(15)-C(14)-C(13)	118.0(2)
C(15)-C(14)-H(14)	121.0
С(13)-С(14)-Н(14)	121.0
C(14)-C(15)-C(16)	122.4(2)
C(14)-C(15)-N(1)	118.9(2)
C(16)-C(15)-N(1)	118.7(2)
C(17)-C(16)-C(15)	118.5(2)
C(17)-C(16)-H(16)	120.7
C(15)-C(16)-H(16)	120.7
C(16)-C(17)-C(12)	120.7(2)
C(16)-C(17)-H(17)	119.6
C(12)-C(17)-H(17)	119.6
O(5)-C(18)-C(23)	109.3(2)
O(5)-C(18)-C(19)	109.6(2)
C(23)-C(18)-C(19)	110.2(2)
O(5)-C(18)-C(26)	106.04(18)
C(23)-C(18)-C(26)	111.0(2)
C(19)-C(18)-C(26)	110.7(2)
C(20)-C(19)-C(18)	113.0(2)
C(20)-C(19)-H(19A)	109.0
C(18)-C(19)-H(19A)	109.0
C(20)-C(19)-H(19B)	109.0
C(18)-C(19)-H(19B)	109.0
H(19A)-C(19)-H(19B)	107.8
C(21)-C(20)-C(19)	111.1(2)
С(21)-С(20)-Н(20А)	109.4

C(19)-C(20)-H(20A)	109.4
С(21)-С(20)-Н(20В)	109.4
С(19)-С(20)-Н(20В)	109.4
H(20A)-C(20)-H(20B)	108.0
C(22)-C(21)-C(20)	110.0(2)
C(22)-C(21)-H(21A)	109.7
C(20)-C(21)-H(21A)	109.7
C(22)-C(21)-H(21B)	109.7
C(20)-C(21)-H(21B)	109.7
H(21A)-C(21)-H(21B)	108.2
C(21)-C(22)-C(23)	111.3(2)
C(21)-C(22)-H(22A)	109.4
C(23)-C(22)-H(22A)	109.4
C(21)-C(22)-H(22B)	109.4
С(23)-С(22)-Н(22В)	109.4
H(22A)-C(22)-H(22B)	108.0
C(22)-C(23)-C(18)	113.6(2)
C(22)-C(23)-H(23A)	113.1(17)
C(18)-C(23)-H(23A)	97.7(17)
С(22)-С(23)-Н(23В)	108.9(18)
C(18)-C(23)-H(23B)	108.0(18)
H(23A)-C(23)-H(23B)	115(2)
O(6)-C(24)-C(25)	111.3(2)
O(6)-C(24)-H(24A)	109.4
C(25)-C(24)-H(24A)	109.4
O(6)-C(24)-H(24B)	109.4
C(25)-C(24)-H(24B)	109.4
H(24A)-C(24)-H(24B)	108.0
C(24)-C(25)-C(26)	112.0(2)
C(24)-C(25)-H(25A)	107.4(18)
C(26)-C(25)-H(25A)	110.6(18)
C(24)-C(25)-H(25B)	116(2)
C(26)-C(25)-H(25B)	102(2)
H(25A)-C(25)-H(25B)	108(3)
F(2)-C(26)-C(27)	106.29(19)
F(2)-C(26)-C(25)	107.0(2)
C(27)-C(26)-C(25)	110.5(2)
F(2)-C(26)-C(18)	106.98(18)

C(27)-C(26)-C(18)	112.6(2)
C(25)-C(26)-C(18)	113.0(2)
C(26)-C(27)-C(28)	112.08(19)
C(26)-C(27)-H(27A)	109.2
C(28)-C(27)-H(27A)	109.2
С(26)-С(27)-Н(27В)	109.2
С(28)-С(27)-Н(27В)	109.2
H(27A)-C(27)-H(27B)	107.9
O(6)-C(28)-C(29)	108.80(19)
O(6)-C(28)-C(27)	111.3(2)
C(29)-C(28)-C(27)	110.38(19)
O(6)-C(28)-H(28)	108.8
С(29)-С(28)-Н(28)	108.8
С(27)-С(28)-Н(28)	108.8
C(30)-C(29)-C(34)	119.2(2)
C(30)-C(29)-C(28)	121.3(2)
C(34)-C(29)-C(28)	119.5(2)
C(31)-C(30)-C(29)	121.2(2)
C(31)-C(30)-H(30)	119.4
C(29)-C(30)-H(30)	119.4
C(32)-C(31)-C(30)	117.9(2)
C(32)-C(31)-H(31)	121.1
C(30)-C(31)-H(31)	121.1
C(31)-C(32)-C(33)	122.5(2)
C(31)-C(32)-N(2)	119.1(2)
C(33)-C(32)-N(2)	118.4(2)
C(34)-C(33)-C(32)	118.6(2)
C(34)-C(33)-H(33)	120.7
C(32)-C(33)-H(33)	120.7
C(33)-C(34)-C(29)	120.7(2)
С(33)-С(34)-Н(34)	119.7
С(29)-С(34)-Н(34)	119.7
H(1W)-O(1W)-H(2W)	121(5)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for f415. The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2hk \ a^* \ b^* \ U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
 F(1)	26(1)	21(1)	21(1)	7(1)	2(1)	7(1)
F(2)	27(1)	21(1)	18(1)	6(1)	-2(1)	7(1)
O(1)	30(1)	18(1)	31(1)	6(1)	14(1)	-2(1)
O(2)	16(1)	20(1)	18(1)	3(1)	4(1)	-5(1)
O(3)	27(1)	33(1)	17(1)	8(1)	-1(1)	1(1)
O(4)	16(1)	24(1)	24(1)	-1(1)	0(1)	-5(1)
O(5)	28(1)	14(1)	24(1)	4(1)	3(1)	4(1)
O(6)	14(1)	21(1)	16(1)	1(1)	3(1)	-6(1)
O(7)	24(1)	26(1)	14(1)	5(1)	0(1)	-2(1)
O(8)	21(1)	17(1)	24(1)	-2(1)	-3(1)	-5(1)
N(1)	9(1)	25(1)	16(1)	2(1)	2(1)	3(1)
N(2)	10(1)	19(1)	17(1)	0(1)	2(1)	3(1)
C(1)	17(1)	14(1)	18(1)	3(1)	6(1)	-1(1)
C(2)	13(1)	17(1)	20(1)	0(1)	-1(1)	2(1)
C(3)	18(1)	20(1)	24(1)	4(1)	5(1)	6(1)
C(4)	24(1)	24(1)	20(1)	3(1)	6(1)	4(1)
C(5)	24(1)	29(2)	17(1)	4(1)	4(1)	6(1)
C(6)	22(1)	28(1)	17(1)	5(1)	3(1)	5(1)
C(7)	14(1)	23(1)	20(1)	1(1)	1(1)	-5(1)
C(8)	22(1)	18(1)	16(1)	1(1)	4(1)	-7(1)
C(9)	15(1)	13(1)	16(1)	4(1)	3(1)	2(1)
C(10)	14(1)	16(1)	12(1)	2(1)	4(1)	-2(1)
C(11)	13(1)	15(1)	14(1)	4(1)	3(1)	0(1)
C(12)	9(1)	14(1)	14(1)	2(1)	4(1)	3(1)
C(13)	15(1)	10(1)	17(1)	3(1)	8(1)	1(1)
C(14)	16(1)	16(1)	14(1)	5(1)	6(1)	4(1)
C(15)	9(1)	17(1)	13(1)	0(1)	2(1)	3(1)
C(16)	11(1)	15(1)	21(1)	4(1)	4(1)	-1(1)
C(17)	14(1)	14(1)	16(1)	6(1)	4(1)	1(1)
C(18)	14(1)	14(1)	15(1)	2(1)	2(1)	-1(1)
C(19)	19(1)	22(1)	21(1)	-2(1)	1(1)	-2(1)
C(20)	25(1)	25(1)	17(1)	-5(1)	2(1)	-3(1)
C(21)	22(1)	26(1)	22(1)	2(1)	9(1)	3(1)
C(22)	17(1)	25(1)	23(1)	3(1)	6(1)	1(1)
C(23)	14(1)	16(1)	17(1)	1(1)	3(1)	-1(1)

C(24)	13(1)	29(2)	21(1)	-1(1)	0(1)	-3(1)
C(25)	17(1)	17(1)	19(1)	0(1)	2(1)	-5(1)
C(26)	16(1)	15(1)	15(1)	4(1)	2(1)	-1(1)
C(27)	12(1)	16(1)	13(1)	2(1)	2(1)	-4(1)
C(28)	13(1)	16(1)	15(1)	4(1)	1(1)	-1(1)
C(29)	10(1)	14(1)	14(1)	2(1)	4(1)	2(1)
C(30)	16(1)	10(1)	16(1)	2(1)	6(1)	-2(1)
C(31)	15(1)	14(1)	14(1)	4(1)	4(1)	1(1)
C(32)	8(1)	15(1)	13(1)	-1(1)	2(1)	2(1)
C(33)	12(1)	12(1)	20(1)	4(1)	3(1)	-1(1)
C(34)	16(1)	13(1)	16(1)	5(1)	3(1)	0(1)
O(1W)	42(2)	87(3)	79(2)	19(2)	7(2)	18(2)
						Table 5.

Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters (Å²x 10³)

for f415.

У	Z	U(eq)
50(30) 8	530(18)	30
25(18) 8	266(15)	26
82 7	857	21
02 8	230	21
96 8	785	24
34 8	960	24
47 9	609	27
09 10	020	27
13 9	924	27
39 10	299	27
50 9	383	26
04 9	198	26
61 7	111	24
62 7	376	24
10(30) 8	253(17)	23
90(30) 7	697(17)	23
13 7	282	17
02 7		
	011	17
	96 8 34 8 47 9 09 10 13 9 39 10 50 9 04 9 61 7 62 7 10(30) 8 90(30) 7 13 7	96 8785 34 8960 47 9609 09 10020 13 9924 39 10299 50 9383 04 9198 61 7111 62 7376 10(30) 8253(17) 90(30) 7697(17) 13 7282

				Table 6.
H(2W)	9580(70)	5050(40)	7969(18)	82
H(1W)	8200(40)	5770(40)	8300(30)	82
H(34)	2724	-865	6299	18
H(33)	1262	-1806	5169	17
H(31)	2867	1136	4291	17
H(30)	4321	2065	5428	17
H(28)	5233	667	6936	17
H(27B)	2453	1062	7269	17
H(27A)	2530	2315	6953	17
H(25B)	5080(40)	3950(30)	7712(17)	22
H(25A)	6370(40)	3640(30)	8305(17)	22
H(24B)	7410	2120	7514	26
H(24A)	7723	3397	7236	26
H(23B)	610(40)	1860(30)	7992(17)	19
H(23A)	1960(40)	1490(30)	8641(16)	19
H(22B)	-897	1941	9025	25
H(22A)	-617	3259	8793	25
H(21B)	140	3458	10057	28
H(21A)	1513	2449	9946	28
H(20B)	1848	4800	9499	28
H(20A)	3047	4422	10165	28
H(19B)	4551	4300	9120	26
H(19A)	4334	2999	9376	26
H(17)	2914	4140	6280	18
H(16)	1288	3207	5181	18
H(14)	2732	6139	4265	17
H(13)	4349	7063	5371	16

Torsion angles [°] for f415.

O(1)-C(1)-C(2)-C(3)	62.1(3)
C(6)-C(1)-C(2)-C(3)	-55.9(3)
C(9)-C(1)-C(2)-C(3)	179.7(2)
C(1)-C(2)-C(3)-C(4)	55.4(3)
C(2)-C(3)-C(4)-C(5)	-55.4(3)
C(3)-C(4)-C(5)-C(6)	55.8(3)
C(4)-C(5)-C(6)-C(1)	-56.4(3)
O(1)-C(1)-C(6)-C(5)	-61.1(3)

C(2)-C(1)-C(6)-C(5)	56.7(3)
C(9)-C(1)-C(6)-C(5)	-178.6(2)
C(11)-O(2)-C(7)-C(8)	-61.0(3)
O(2)-C(7)-C(8)-C(9)	55.6(3)
C(7)-C(8)-C(9)-F(1)	63.7(3)
C(7)-C(8)-C(9)-C(10)	-50.5(3)
C(7)-C(8)-C(9)-C(1)	178.8(2)
O(1)-C(1)-C(9)-F(1)	-59.2(2)
C(6)-C(1)-C(9)-F(1)	58.9(2)
C(2)-C(1)-C(9)-F(1)	-177.10(19)
O(1)-C(1)-C(9)-C(8)	-175.4(2)
C(6)-C(1)-C(9)-C(8)	-57.2(3)
C(2)-C(1)-C(9)-C(8)	66.7(3)
O(1)-C(1)-C(9)-C(10)	55.6(3)
C(6)-C(1)-C(9)-C(10)	173.8(2)
C(2)-C(1)-C(9)-C(10)	-62.3(3)
F(1)-C(9)-C(10)-C(11)	-63.3(2)
C(8)-C(9)-C(10)-C(11)	51.2(3)
C(1)-C(9)-C(10)-C(11)	-177.23(19)
C(7)-O(2)-C(11)-C(12)	-176.92(19)
C(7)-O(2)-C(11)-C(10)	61.3(3)
C(9)-C(10)-C(11)-O(2)	-56.5(3)
C(9)-C(10)-C(11)-C(12)	-177.47(19)
O(2)-C(11)-C(12)-C(13)	-12.3(3)
C(10)-C(11)-C(12)-C(13)	110.0(2)
O(2)-C(11)-C(12)-C(17)	168.5(2)
C(10)-C(11)-C(12)-C(17)	-69.2(3)
C(17)-C(12)-C(13)-C(14)	-0.3(3)
C(11)-C(12)-C(13)-C(14)	-179.5(2)
C(12)-C(13)-C(14)-C(15)	-0.3(3)
C(13)-C(14)-C(15)-C(16)	1.1(4)
C(13)-C(14)-C(15)-N(1)	-179.0(2)
O(3)-N(1)-C(15)-C(14)	0.3(3)
O(4)-N(1)-C(15)-C(14)	179.7(2)
O(3)-N(1)-C(15)-C(16)	-179.7(2)
O(4)-N(1)-C(15)-C(16)	-0.4(3)
C(14)-C(15)-C(16)-C(17)	-1.2(4)
N(1)-C(15)-C(16)-C(17)	178.9(2)

C(15)-C(16)-C(17)-C(12)	0.5(4)
C(13)-C(12)-C(17)-C(16)	0.2(4)
C(11)-C(12)-C(17)-C(16)	179.5(2)
O(5)-C(18)-C(19)-C(20)	69.3(3)
C(23)-C(18)-C(19)-C(20)	-50.9(3)
C(26)-C(18)-C(19)-C(20)	-174.1(2)
C(18)-C(19)-C(20)-C(21)	55.6(3)
C(19)-C(20)-C(21)-C(22)	-57.7(3)
C(20)-C(21)-C(22)-C(23)	57.2(3)
C(21)-C(22)-C(23)-C(18)	-54.9(3)
O(5)-C(18)-C(23)-C(22)	-69.8(3)
C(19)-C(18)-C(23)-C(22)	50.7(3)
C(26)-C(18)-C(23)-C(22)	173.6(2)
C(28)-O(6)-C(24)-C(25)	-62.9(3)
O(6)-C(24)-C(25)-C(26)	55.1(3)
C(24)-C(25)-C(26)-F(2)	68.7(3)
C(24)-C(25)-C(26)-C(27)	-46.6(3)
C(24)-C(25)-C(26)-C(18)	-173.8(2)
O(5)-C(18)-C(26)-F(2)	177.25(18)
C(23)-C(18)-C(26)-F(2)	-64.2(2)
C(19)-C(18)-C(26)-F(2)	58.5(2)
O(5)-C(18)-C(26)-C(27)	-66.3(2)
C(23)-C(18)-C(26)-C(27)	52.2(3)
C(19)-C(18)-C(26)-C(27)	174.9(2)
O(5)-C(18)-C(26)-C(25)	59.8(3)
C(23)-C(18)-C(26)-C(25)	178.3(2)
C(19)-C(18)-C(26)-C(25)	-59.0(3)
F(2)-C(26)-C(27)-C(28)	-69.1(2)
C(25)-C(26)-C(27)-C(28)	46.7(3)
C(18)-C(26)-C(27)-C(28)	174.12(19)
C(24)-O(6)-C(28)-C(29)	-175.17(19)
C(24)-O(6)-C(28)-C(27)	63.0(2)
C(26)-C(27)-C(28)-O(6)	-55.6(3)
C(26)-C(27)-C(28)-C(29)	-176.48(19)
O(6)-C(28)-C(29)-C(30)	-18.3(3)
C(27)-C(28)-C(29)-C(30)	104.0(3)
O(6)-C(28)-C(29)-C(34)	163.4(2)
C(27)-C(28)-C(29)-C(34)	-74.2(3)

C(34)-C(29)-C(30)-C(31)	-0.8(4)
C(28)-C(29)-C(30)-C(31)	-179.1(2)
C(29)-C(30)-C(31)-C(32)	-0.1(4)
C(30)-C(31)-C(32)-C(33)	1.1(4)
C(30)-C(31)-C(32)-N(2)	-179.1(2)
O(7)-N(2)-C(32)-C(31)	-2.7(3)
O(8)-N(2)-C(32)-C(31)	176.9(2)
O(7)-N(2)-C(32)-C(33)	177.1(2)
O(8)-N(2)-C(32)-C(33)	-3.3(3)
C(31)-C(32)-C(33)-C(34)	-1.2(4)
N(2)-C(32)-C(33)-C(34)	179.1(2)
C(32)-C(33)-C(34)-C(29)	0.2(4)
C(30)-C(29)-C(34)-C(33)	0.8(4)
C(28)-C(29)-C(34)-C(33)	179.1(2)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for f415 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1O)O(1W)#1	0.850(10)	2.08(3)	2.708(4)	130(3)
O(5)-H(5O)O(1)	0.839(10)	2.16(2)	2.861(3)	141(3)
O(1W)-H(1W)F(1)	0.868(10)	2.134(14)	2.991(3)	169(5)
O(1W)-H(2W)O(5)#2	0.872(10)	2.35(5)	2.923(4)	123(4)

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 x+1,y,z

5. Reference

(1) Y. Liu and Y.-Y. Yeung, Org. Lett., 2017, **19**, 1422-1425.