Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Organocatalytic Approach to $\delta\textsc{-Lactones}$ Bearing a Fused Cyclohexenone Scaffold

by

Dorota Kowalczyk, and Łukasz Albrecht*

Institute of Organic Chemistry, Chemistry Department, Lodz University of Technology Żeromskiego 116, 90-924 Łódź, Poland E-mail: <u>lukasz.albrecht@p.lodz.pl</u>

Supporting Information

1.	General methods	S2
2.	Screening results	S3
3.	Asymmetric synthesis of bicyclic δ -lactones 1 – general procedure	S5
4.	Crystal and X-ray data for (3 <i>R</i> ,4 <i>R</i>)-4-(4-chlorophenyl)-7,7-dimethyl-3-(2-oxo-2- phenylethyl)-4,6,7,8-tetrahydro-2 <i>H</i> -chromene-2,5(3 <i>H</i>)-dione (1s)	S12
5.	NMR data	S13
6.	HPLC traces	S35

1. General methods

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument, running at 700 MHz for ¹H and 176 MHz for ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl₃: 7.26 ppm for ¹H NMR, 77.16 ppm for ¹³C NMR). Mass spectra were recorded on a Bruker Maxis Impact spectrometer using electrospray (ES+) ionization. Optical rotations were measured on a Perkin-Elmer 241 polarimeter and [α]_D values are given in deg•cm•g⁻¹•dm⁻¹; concentration *c* is listed in g•(100 mL)⁻¹. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation. The enantiomeric ratio (er) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak IA and ID columns). Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka). (*E*)-3-Alkylidene-5-arylfuran-2(3*H*)-one **4** were prepared according to literature procedures.¹

¹ C. G. Wermuth, G. Schlewer, J. J. Bourguignon, G. Maghioros, M. J. Bouchet, C. Moire, J. P. Kan, P. Worms and K. Biziere, *J. Med. Chem.*, 1989, **32**, 528.

² W. Yang and D.-M. Du, Org. Lett., 2010, **12**, 5450.

³ B. Vakulya , S. Varga, A. Csámpai and T. Soós, Org. Lett., 2005, **7**, 1967.

2. Screening results

2.1. Catalyst screening

3

2.2. Reaction conditions screening^a

Entry	Solvent	T [°C]	Yield [%] ^b	dr ^c	er ^d
1	CH ₂ Cl ₂	rt	52	>20:1	91:9
2	CHCl₃	rt	60	>20:1	92:8
3	CICH ₂ CH ₂ CI	rt	43	>20:1	90:10
4	Toluene	rt	31	>20:1	93:7
5	THF	rt	29	>20:1	82:18
6	1,4-Dioxane	rt	32	>20:1	92:8
7	(CH ₃ CH ₂) ₂ O	rt	30	>20:1	76:24
8	CH₃CN	rt	35	>20:1	84:16
9 ^e	CHCl₃	rt	42	>20:1	92:8
10 ^f	CHCl₃	rt	44	>20:1	91:9
11	CHCl₃	40	45	>20:1	90:10
12	CHCl₃	10	58	>20:1	91:9
13	CHCl₃	0	65	>20:1	97:3
14	CHCl₃	-15	19	>20:1	89:11
15	CHCl₃	-40	<5	>20:1	n.d.
16 ^g	CHCl₃	rt	44	>20:1	91:9
17 ^h	CHCl₃	rt	50	>20:1	92:8
18 ⁱ	CHCl₃	rt	46	>20:1	92:8
19 ^j	CHCl₃	rt	47	>20:1	91:9

^a Reactions performed on 0.05 mmol scale using **3a** (1 equiv) and **4a** (1 equiv) in 0.2 mL of the solvent. ^b Isolated yields are given. ^c Determined by ¹H NMR of a crude reaction mixture. ^d Determined by a chiral stationary phase HPLC. ^e Reaction was performed in 0.4 mL of CHCl₃. ^f Reaction was performed in 0.1 mL of CHCl₃. ^g Reaction was performed using **5f** (20 mol%). ^h Reaction was performed using **5f** (5 mol%). ⁱ Reaction was performed using **3a** (1.5 equiv). ^j Reaction was performed using **4a** (1.5 equiv).

3. Asymmetric synthesis of bicyclic δ -lactones 1 – general procedure

An ordinary screw-cap vial was charged with a magnetic stirring bar, the corresponding 1,3cyclohexanedione **3** (0.1 mmol, 1 equiv), (*E*)-3-arylidene-5-arylfuran-2(3*H*)-one **4a** (0.1 mmol, 1 equiv), the catalyst **5f** (0.01 mmol, 0.1 equiv) and CHCl₃ (0.4 mL). The reaction was stirred at 0°C and monitored by ¹H NMR spectroscopy. After 72 h the crude reaction mixture was directly purified by FC on silica gel to afford a target product **1**.

1a (3*R*,4*R*)-3-(2-Oxo-2-phenylethyl)-4-phenyl-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 1)

Following the general procedure, **1a** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 65% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.58 – 7.52 (m, 1H), 7.46 – 7.39 (m, 2H), 7.26 – 7.21 (m, 3H), 7.06 – 7.02 (m, 2H), 4.31 (d, *J* = 7.3 Hz, 1H), 3.83 (ddd, *J* = 7.4, 6.6, 6.0 Hz, 1H), 3.36 (dd, *J* = 18.3, 6.0 Hz, 1H), 2.80 (dd, *J* = 18.3, 6.6 Hz, 1H), 2.75 – 2.67 (m, 2H), 2.42 (ddd, *J* = 23.4, 8.3, 4.9 Hz, 2H), 2.16 – 2.06 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.9, 195.9, 168.9, 166.6, 137.8, 136.5, 133.6, 129.2 (2C), 128.8 (2C), 128.3 (2C), 128.1, 128.0 (2C), 119.1, 40.0, 38.8, 36.8, 36.0, 27.3, 20.8. HRMS calculated for [C₂₃H₂₀O₄+H]⁺: 361.1434; found: 361.1440. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 13.9 min, τ_{minor} = 15.0 min (97:3 er). [α]²⁰_D = -64.1 (*c* = 1.2, CHCl₃).

1b (3*R*,4*R*)-4-(3-Fluorophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*chromene-2,5(3*H*)-dione (Table 2, entry 2)

Following the general procedure, **1b** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 62% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.89 – 7.80 (m, 2H), 7.61 – 7.52 (m, 1H), 7.47 – 7.37 (m, 2H), 7.22

(td, *J* = 8.0, 5.9 Hz, 1H), 6.94 (tdd, *J* = 8.4, 2.5, 0.9 Hz, 1H), 6.83 (dt, *J* = 7.6, 1.2 Hz, 1H), 6.76 (dt, *J* = 9.6, 2.1 Hz, 1H), 4.32 (d, *J* = 7.3 Hz, 1H), 3.83 (dt, *J* = 7.3, 6.3 Hz, 1H), 3.39 (dd, *J* = 18.2, 5.9 Hz, 1H), 2.80 (dd, *J* = 18.2, 6.6 Hz, 1H), 2.77 – 2.65 (m, 2H), 2.51 – 2.35 (m, 2H), 2.18 – 2.05 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.7, 195.8, 168.5, 166.9, 163.2 (d, *J* = 247.6 Hz), 140.4 (d, *J* = 6.9 Hz), 136.4, 133.7, 130.8 (d, *J* = 8.3 Hz), 128.8 (2C), 128.2 (2C), 123.7 (d, *J* = 2.9 Hz), 118.7, 115.1 (d, *J* = 10.5 Hz), 115.0 (d, *J* = 11.2 Hz), 39.9, 38.6, 36.7, 35.9, 27.3, 20.8. HRMS calculated for [C₂₃H₁₉FO₄+H]⁺: 379.1341; found: 379.1342. The er was determined by HPLC using a Chiralpak ID column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 31.7$ min, $\tau_{minor} = 28.8$ min (94:6 er). [α]²⁰_D = -66.3 (*c* = 0.8, CHCl₃).

1c (3*R*,4*R*)-4-(2-Fluorophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 3)

Following the general procedure, **1c** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 64% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ ¹H NMR (700 MHz, Chloroform-*d*) δ 7.85 – 7.81 (m, 2H), 7.56 – 7.51

(m, 1H), 7.44 – 7.38 (m, 2H), 7.24 – 7.19 (m, 1H), 7.06 – 6.98 (m, 3H), 4.63 (d, J = 7.8 Hz, 1H), 3.86 (dt, J = 7.9, 6.3 Hz, 1H), 3.40 (dd, J = 18.3, 6.2 Hz, 1H), 2.87 (ddd, J = 18.3, 6.4, 0.8 Hz, 1H), 2.77 – 2.66 (m, 2H), 2.49 – 2.36 (m, 2H), 2.20 – 2.03 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.7, 195.9, 168.3, 167.4, 161.0 (d, J = 245.7 Hz), 136.5, 133.5, 130.2, 129.8 (d, J = 8.4 Hz), 128.7 (2C), 128.2 (2C), 125.0 (d, J = 3.3 Hz), 124.4 (d, J = 14.8 Hz), 117.0, 116.0 (d, J = 22.5 Hz), 39.3, 36.8, 35.7, 33.5, 27.4, 20.8. HRMS calculated for [C₂₃H₁₉FO₄+H]⁺: 379.1341; found: 379.1349. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 21.7 min, τ_{minor} = 15.8 min (98:2 er). [α]²⁰_D = -121.4 (c = 0.6, CHCl₃).

1d (3*R*,4*R*)-4-(4-Chlorophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*chromene-2,5(3*H*)-dione (Table 2, entry 4)

Following the general procedure, **1d** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 63% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.59 – 7.54 (m, 1H), 7.46 – 7.40 (m, 2H), 7.25 – 7.19 (m, 2H), 7.00 – 6.95 (m, 2H), 4.30 (d, *J* = 7.4 Hz, 1H), 3.84 – 3.81

(m, 1H), 3.39 (dd, *J* = 18.3, 5.8 Hz, 1H), 2.77 (dd, *J* = 18.3, 6.7 Hz, 1H), 2.75 – 2.65 (m, 2H), 2.49 – 2.36 (m, 2H), 2.20 – 2.04 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.7, 195.9, 168.6, 166.8, 136.4, 136.3, 133.9, 133.7, 129.5 (2C), 129.4 (2C), 128.8 (2C), 128.2 (2C), 118.8, 39.8, 38.3, 36.7, 35.9, 27.3, 20.8. HRMS calculated for [C₂₃H₁₉ClO₄+H]⁺: 395.1045; found: 395.1049. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 14.1 min, τ_{minor} = 19.7 min (92:8 er). [α]²⁰_D = -48.2 (*c* = 0.7, CHCl₃).

1e (3*R*,4*R*)-4-(3-Chlorophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*chromene-2,5(3*H*)-dione (Table 2, entry 5)

Following the general procedure, **1e** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 61% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.85 (dd, *J* = 7.8, 1.5 Hz, 2H), 7.59 – 7.55 (m, 1H), 7.44 (t, *J* = 7.8 Hz,

2H), 7.22 (dt, J = 8.0, 1.5 Hz, 1H), 7.18 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 1.9 Hz, 1H), 6.92 (dt, J = 7.6, 1.5 Hz, 1H), 4.29 (d, J = 7.4 Hz, 1H), 3.84 (q, J = 6.6 Hz, 1H), 3.38 (dd, J = 18.2, 5.9 Hz, 1H), 2.79 (dd, J = 18.2, 6.6 Hz, 1H), 2.77 – 2.70 (m, 2H), 2.43 (qdd, J = 16.8, 8.2, 5.0 Hz, 2H), 2.18 – 2.07 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.6, 195.7, 168.4, 166.8, 139.8, 136.3, 135.0, 133.6, 130.4, 128.7 (2C), 128.2, 128.1 (2C), 128.0, 126.1, 118.4, 39.7, 38.4, 36.6, 35.8, 27.2, 20.6. HRMS calculated for [C₂₃H₁₉ClO₄+H]⁺: 395.1045; found: 395.1052. The er was determined by HPLC using a Chiralpak ID column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 30.7$ min, $\tau_{minor} = 28.4$ min (93:7 er). [α]²⁰_D = -55.7 (c = 0.7, CHCl₃).

1f (3*R*,4*R*)-4-(4-Bromophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*chromene-2,5(3*H*)-dione (Table 2, entry 6)

Following the general procedure, **1f** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 60% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.1, 1.5 Hz, 2H), 7.57 (tt, *J* = 7.4, 1.3 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.40 – 7.36 (m, 2H), 6.95 – 6.91 (m, 2H), 4.29 (d, *J* = 7.3 Hz, 1H), 3.83

(q, J = 6.6 Hz, 1H), 3.39 (dd, J = 18.3, 5.9 Hz, 1H), 2.77 (dd, J = 18.3, 6.6 Hz, 1H), 2.74 – 2.67 (m, 2H), 2.49 – 2.36 (m, 2H), 2.19 – 2.05 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.7, 195.8, 168.6, 166.8, 137.0, 136.3, 133.7, 132.4 (2C), 129.7 (2C), 128.8 (2C), 128.2 (2C), 122.0, 118.7, 39.7, 38.4, 36.7, 35.9, 27.3, 20.8. HRMS calculated for [C₂₃H₁₉BrO₄+H]⁺: 439.0540; found: 439.0549. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 14.6 min, τ_{minor} = 20.7 min (96:4 er). [α]²⁰_D = -41.7 (*c* = 0.8, CHCl₃).

CF₃ O O O O O O O

1g (3*R*,4*R*)-4-(4-Trifluoromethylphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 7)

Following the general procedure, **1g** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 54% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.84 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.57 (td, *J* = 7.4, 1.3 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 4.40 (d, *J* = 7.4 Hz,

1H), 3.87 (q, *J* = 6.7 Hz, 1H), 3.40 (dd, *J* = 18.3, 5.9 Hz, 1H), 2.75 (dd, *J* = 18.4, 6.8 Hz, 1H), 2.74-2.71 (m, 2H), 2.47 – 2.36 (m, 2H), 2.19 – 2.05 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.5, 195.8, 168.5, 167.1, 142.1, 136.3, 133.8, 130.3 (q, *J* = 32.5 Hz), 128.9 (2C), 128.5 (2C), 128.2 (2C), 126.3 (q, *J* = 3.3 Hz, 2C), 124.0 (q, *J* = 272.5 Hz), 118.5, 39.7, 38.7, 36.7, 35.9, 27.3, 20.7. HRMS calculated for [C₂₄H₁₉F₃O₄+H]⁺: 429.1309; found: 429.1312. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 12.4 min, τ_{minor} = 17.0 min (94:6 er). [α]²⁰_D = -42.3 (*c* = 0.5, CHCl₃).

1h (3*R*,4*R*)-4-(4-Cyanophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*chromene-2,5(3*H*)-dione (Table 2, entry 8)

Following the general procedure, **1h** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 61% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.87 – 7.78 (m, 2H), 7.60 – 7.56 (m, 1H), 7.56 – 7.54 (m, 2H), 7.49 – 7.34 (m, 2H), 7.20 – 7.12 (m, 2H), 4.41 (dt, *J* = 7.4, 1.2 Hz, 1H), 3.87 (td, *J* = 7.1, 5.7

Hz, 1H), 3.40 (dd, J = 18.2, 5.8 Hz, 1H), 2.78 – 2.68 (m, 3H), 2.43 (dddd, J = 52.5, 16.8, 8.5, 4.9 Hz, 2H), 2.20 – 2.04 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.3, 195.7, 168.2, 167.3, 143.5, 136.2, 133.9, 133.0 (2C), 128.9 (4C), 128.2 (2C), 118.4, 118.1, 112.1, 39.5, 38.9, 36.6, 35.8, 27.3, 20.7. HRMS calculated for [C₂₄H₁₉NO₄+H]⁺: 386.1387; found: 386.1390. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 13.7$ min, $\tau_{minor} = 21.0$ min (95.5:4.5 er). [α]²⁰_D = -61.2 (c = 0.5, CHCl₃).

1i (3*R*,4*R*)-4-(4-Methylphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 9)

Following the general procedure, **1i** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 62% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.87 – 7.83 (m, 2H), 7.58 – 7.51 (m, 1H), 7.45 – 7.39 (m, 2H), 7.05 (d, *J* = 7.8 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 4.26 (dd, *J* = 7.4, 1.4 Hz, 1H), 3.81 (dt, *J*

= 7.3, 6.2 Hz, 1H), 3.36 (dd, *J* = 18.3, 6.0 Hz, 1H), 2.81 (dd, *J* = 18.3, 6.4 Hz, 1H), 2.75 – 2.64 (m, 2H), 2.47 – 2.35 (m, 2H), 2.29 (s, 3H), 2.18 – 2.02 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.9, 195.8, 169.3, 168.8, 166.6, 150.3, 136.4, 135.4, 133.7, 129.0 (2C), 128.8 (2C), 128.3 (2C), 122.3 (2C), 119.0, 39.9, 38.2, 36.7, 36.0, 27.3, 21.3, 20.7. HRMS calculated for [C₂₄H₂₂O₄+H]⁺: 375.1591; found: 375.1582. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 11.9 min, τ_{minor} = 14.0 min (>99.5:0.5 er). [α]²⁰_D = -38.3 (*c* = 0.8, CHCl₃).

1j (3*R*,4*R*)-4-(4-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 10)

Following the general procedure, **1j** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 58% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.58 – 7.51 (m, 1H), 7.43 (dd, *J* = 8.3, 7.3 Hz, 2H), 6.98 – 6.94 (m, 2H), 6.81 – 6.75 (m, 2H), 4.26 (d, *J* = 7.3 Hz, 1H), 3.82 – 3.78

(m, 1H), 3.76 (s, 3H), 3.37 (dd, J = 18.3, 5.9 Hz, 1H), 2.81 (dd, J = 18.3, 6.6 Hz, 1H), 2.73 – 2.67 (m, 2H), 2.48 – 2.34 (m, 2H), 2.16 – 2.05 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 197.0, 196.0, 169.0, 166.4, 159.3, 136.5, 133.6, 129.7, 129.0 (2C), 128.8 (2C), 128.3 (2C), 119.3, 114.6 (2C), 55.4, 40.2, 38.1, 36.8, 36.0, 27.3, 20.8. HRMS calculated for [C₂₄H₂₂O₅+H]⁺: 391.1540; found: 391.1549. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 15.9$ min, $\tau_{minor} = 21.8$ min (98:2 er). [α]²⁰_D = -64.3 (c = 0.6, CHCl₃).

1k (3*R*,4*R*)-4-(2-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 11)

Following the general procedure, **1k** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 68% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.77 (d, *J* = 7.7 Hz, 2H), 7.55 – 7.47 (m, 1H), 7.43 – 7.35 (m, 2H), 7.18

(ddd, *J* = 8.1, 7.4, 1.7 Hz, 1H), 7.11 – 7.01 (m, 1H), 6.86 – 6.65 (m, 2H), 4.54 (s, 1H), 3.78 (td, *J* = 7.9, 5.0 Hz, 1H), 3.58 (s, 3H), 3.39 – 3.28 (m, 1H), 2.80 (d, *J* = 17.8 Hz, 1H), 2.65 (t, *J* = 5.3 Hz, 2H), 2.37 (qdd, *J* = 16.6, 8.3, 5.0 Hz, 2H), 2.14 – 1.97 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 197.1, 196.4, 168.7, 157.4, 136.7, 133.3 (2C), 129.1, 128.6 (3C), 128.1 (3C), 125.4, 121.2, 110.5, 54.4, 37.0, 35.7 (2C), 27.5, 20.8 (2C). HRMS calculated for [$C_{24}H_{22}O_5$ +H]⁺: 391.1540; found: 391.1544. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 17.6 min, τ_{minor} = 15.5 min (96:4 er). [α]²⁰_D = -71.3 (*c* = 0.7, CHCl₃).

1I (3*R*,4*R*)-4-(3,5-Dimethoxyphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 12)

Following the general procedure, **1I** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 70% yield as a pale-yellow oil (10:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.85 (dd, J = 8.4, 1.3 Hz, 2H), 7.57 – 7.53 (m, 1H), 7.45 – 7.39 (m, 2H),

6.74 (d, J = 8.2 Hz, 1H), 6.56 (dd, J = 8.2, 2.1 Hz, 1H), 6.49 (d, J = 2.2 Hz, 1H), 4.25 (dd, J = 7.5, 1.3 Hz, 1H), 3.81 (s, 3H), 3.79 (td, J = 7.4, 5.3 Hz, 1H), 3.61 (s, 3H), 3.36 (dd, J = 18.3, 5.2 Hz, 1H), 2.86 (dd, J = 18.3, 7.4 Hz, 1H), 2.74 – 2.64 (m, 2H), 2.42 (ddd, J = 19.8, 8.3, 4.9 Hz, 2H), 2.17 – 2.05 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 197.1, 196.0, 169.1, 166.4, 149.2, 148.6, 136.5, 133.7, 130.2, 128.8 (2C), 128.2 (2C), 119.3, 119.1, 111.8, 111.6, 56.0, 55.8, 40.2, 38.1, 36.8, 35.9, 27.3, 20.8. HRMS calculated for [C₂₅H₂₄O₆+H]⁺: 421.1646; found: 421.1655. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 18.4 min, τ_{minor} = 21.9 min (91:9 er). [α]²⁰_D = -58.1 (*c* = 0.8, CHCl₃).

o t o t o Ph f N

1m (3*R*,4*R*)-4-(Benzo[*d*][1,3]dioxol-5-yl)-3-(2-oxo-2-phenylethyl)-4,6,7,8tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 13)

Following the general procedure, **1m** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 57% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.85 (dd, *J* = 7.8, 1.5 Hz, 2H), 7.59 – 7.55 (m, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.22 (dt, *J* = 8.0, 1.5 Hz, 1H), 7.18 (t, *J* = 7.7 Hz, 1H), 7.03 (t, *J* = 1.9 Hz, 1H),

6.92 (dt, *J* = 7.6, 1.5 Hz, 1H), 4.29 (d, *J* = 7.4 Hz, 1H), 3.84 (q, *J* = 6.6 Hz, 1H), 3.38 (dd, *J* = 18.2, 5.9 Hz, 1H), 2.79 (dd, *J* = 18.2, 6.6 Hz, 1H), 2.77 – 2.70 (m, 2H), 2.43 (qdd, *J* = 16.8, 8.2, 5.0 Hz, 2H), 2.18 – 2.07 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.6, 195.7, 168.4, 166.8, 139.8, 136.3, 135.0, 133.6, 130.4, 128.7 (2C), 128.2, 128.1 (2C), 128.0, 126.1, 118.4, 39.7, 38.4, 36.6, 35.8, 27.2, 20.6. HRMS calculated for [C₂₄H₂₀O₆+H]⁺: 405.1333; found: 405.1336. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 13.5 min, τ_{minor} = 14.8 min (98:2 er). [α]²⁰_D = -61.8 (*c* = 0.8, CHCl₃).

1n (3*R*,4*R*)-4-(Naphthalen-2-yl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*chromene-2,5(3*H*)-dione (Table 2, entry 14)

Following the general procedure, **1n** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 75% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) 7.83 – 7.77 (m, 3H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.54 – 7.49 (m, 2H), 7.46 – 7.42 (m, 2H), 7.37 (dd, *J* = 8.3, 7.3 Hz, 2H), 7.15 (dd, *J* = 8.5,

1.9 Hz, 1H), 4.48 (d, *J* = 7.5 Hz, 1H), 3.92 (dt, *J* = 7.4, 6.3 Hz, 1H), 3.38 (dd, *J* = 18.2, 6.0 Hz, 1H), 2.84 (dd, *J* = 18.3, 6.5 Hz, 1H), 2.81 – 2.68 (m, 2H), 2.50 – 2.34 (m, 2H), 2.19 – 2.06 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 197.0, 196.0, 169.0, 166.7, 136.4, 135.3, 133.6, 133.0, 129.2, 128.7 (2C), 128.2 (2C), 128.1, 127.7, 127.2, 126.5, 126.3, 125.6, 119.0, 100.1, 40.0, 39.0, 36.8, 36.1, 27.4, 20.8. HRMS calculated for [C₂₇H₂₂O₄+H]⁺: 411.1591; found: 411.1592. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 16.3 min, τ_{minor} = 21.5 min (96:4 er). [α]²⁰_D = -74.2 (*c* = 1.0, CHCl₃).

10 (3*R*,4*S*)-4-(Furan-2-yl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*chromene-2,5(3*H*)-dione (Table 2, entry 15)

Following the general procedure, **1o** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 69% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, Chloroform-*d*) δ 7.92 – 7.87 (m, 2H), 7.59 – 7.54 (m, 1H), 7.47 – 7.42 (m,

2H), 7.28 (dd, J = 1.9, 0.8 Hz, 1H), 6.23 (dd, J = 3.2, 1.9 Hz, 1H), 6.11 (dd, J = 3.3, 0.8 Hz, 1H), 4.44 (dd, J = 6.9, 1.2 Hz, 1H), 3.74 (td, J = 6.7, 5.7 Hz, 1H), 3.52 (dd, J = 18.3, 5.8 Hz, 1H), 2.87 (dd, J = 18.3, 6.6 Hz, 1H), 2.73 – 2.60 (m, 2H), 2.44 (ddd, J = 7.4, 5.6, 3.2 Hz, 2H), 2.18 – 2.02 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 196.8, 195.7, 168.4, 167.4, 150.9, 142.7, 136.5, 133.6, 128.8 (2C), 128.3 (2C), 116.2, 110.6, 108.6, 38.9, 36.6, 36.0, 32.4, 27.3, 20.7. HRMS calculated for [C₂₁H₁₈O₅+H]⁺: 351.1227; found: 351.1234. The er was determined by HPLC using a Chiralpak ID column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 30.6$ min, $\tau_{minor} = 33.1$ min (98:2 er). [α]²⁰_D = -63.5 (c = 0.8, CHCl₃).

1p(3R,4R)-3-(2-(4-Fluorophenyl)-2-oxoethyl)-4-phenyl-4,6,7,8-tetrahydro-2H-chromene-2,5(3H)-dione (Scheme 3)

Following the general procedure, **1p** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 64% yield as a pale-yellow oil (>20:1

dr). ¹H NMR (700 MHz, CDCl₃) δ 7.90 – 7.79 (m, 2H), 7.26 – 7.22 (m, 3H), 7.09 (t, *J* = 8.5 Hz, 2H), 7.03 (dd, *J* = 7.5, 1.9 Hz, 2H), 4.29 (d, *J* = 7.3 Hz, 1H), 3.82 (q, *J* = 6.6 Hz, 1H), 3.31 (dd, *J* = 18.1, 6.0 Hz, 1H), 2.75 (dd, *J* = 18.2, 6.5 Hz, 1H), 2.73 – 2.63 (m, 2H), 2.48 – 2.35 (m, 2H), 2.18 – 2.03 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 195.9, 195.3, 168.9, 166.6, 166.0 (d, *J* = 245.7 Hz), 137.8, 132.9 (d, *J* = 3.2 Hz), 131.0, 130.9, 129.3 (2C), 128.0, 127.9 (2C), 119.1, 116.0, 115.8, 40.1, 38.9, 36.8, 36.0, 27.3, 20.8. HRMS calculated for [C₂₃H₁₉FO₄+H]⁺: 379.1341; found: 379.1344. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 14.5 min, τ_{minor} = 16.8 min (96:4 er). [α]²⁰_D = -72.3 (*c* = 0.7, CHCl₃).

1q (3*R*,4*R*)-3-(2-(4-Methoxyphenyl)-2-oxoethyl)-4-phenyl-4,6,7,8tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Scheme 3)

Following the general procedure, **1q** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 61% yield as a pale-yellow oil

(>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.88 – 7.69 (m, 2H), 7.26 – 7.21 (m, 3H), 7.05 – 7.02 (m, 2H), 6.90 – 6.86 (m, 2H), 4.29 (dd, *J* = 7.2, 1.3 Hz, 1H), 3.85 (s, 3H), 3.82 (td, *J* = 6.9, 5.7 Hz, 1H), 3.29 (dd, *J* = 18.1, 5.8 Hz, 1H), 2.75 (dd, *J* = 18.1, 6.8 Hz, 1H), 2.73 – 2.67 (m, 2H), 2.47 – 2.34 (m, 2H), 2.21 – 1.99 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 195.9, 195.3, 169.1, 166.6, 163.9, 137.9, 130.6 (2C), 129.6, 129.2 (2C), 128.0 (2C), 127.9, 119.2, 113.9 (2C), 55.6, 40.1, 38.8, 36.8, 35.5, 27.3, 20.8. HRMS calculated for $[C_{24}H_{22}O_5+H]^+$: 391.1540; found: 391.1551. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 22.0 min, τ_{minor} = 26.7 min (93:7 er). [α]²⁰_D = -63.1 (*c* = 0.5, CHCl₃).

1r (3*R*,4*R*)-4-(4-Chlorophenyl)-7,7-dimethyl-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Scheme 3)

Following the general procedure, **1r** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 85% yield as a pale-yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.89 – 7.80 (m, 2H), 7.59 – 7.54 (m, 1H), 7.47 – 7.40 (m, 2H), 7.24 – 7.21 (m, 2H), 7.02 – 6.92 (m, 2H), 4.29 (dd, *J* = 7.5, 1.5 Hz, 1H), 3.82 (dt, *J* =

7.2, 6.2 Hz, 1H), 3.38 (dd, J = 18.2, 5.9 Hz, 1H), 2.77 (dd, J = 18.2, 6.6 Hz, 1H), 2.63 – 2.50 (m, 2H), 2.39 – 2.20 (m, 2H), 1.18 (s, 3H), 1.07 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 196.7, 195.7, 168.7, 165.2, 136.4, 136.3, 133.9, 133.7, 129.5 (2C), 129.3 (2C), 128.8 (2C), 128.2 (2C), 117.5, 50.6, 41.0, 39.9, 38.2, 35.9, 32.8, 28.8, 28.2. HRMS calculated for [C₂₅H₂₃ClO₄+H]⁺: 423.1358; found: 423.1350. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 13.0 \text{ min}$, $\tau_{minor} = 23.0 \text{ min}$ (92:8 er). [α]²⁰_D = -101.6 (c = 0.8, CHCl₃).

1s (3*R*,4*R*)-3-(2-Oxo-2-phenylethyl)-4,7-diphenyl-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Scheme 3)

Following the general procedure, **1s** was isolated by FC on silica (hexane/AcOEt from 100:1 to 100:4) in 69% yield as a pale-yellow oil (1.2:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.85 (ddd, *J* = 8.4, 2.7, 1.3 Hz, 2H, diaA+diaB),

7.58 – 7.53 (m, 1H, diaA+diaB), 7.43 (dd, J = 8.3, 7.1 Hz, 2H, diaA+diaB), 7.40 – 7.33 (m, 2H, diaA+diaB), 7.31 – 7.27 (m, 2H, diaA+diaB), 7.26 – 7.21 (m, 4H, diaA+diaB), 7.13 – 7.09 (m, 2H, diaA), 7.06 – 7.00 (m, 2H, diaB), 4.38 – 4.34 (m, 1H, diaA+diaB), 3.88 (dtd, J = 7.4, 6.1, 3.2 Hz, 1H, diaA+diaB), 3.57 (ddt, J = 12.3, 10.0, 4.6 Hz, 1H, diaB), 3.46 - 3.41 (m, 1H, diaA), 3.39 (dd, J = 18.2, 5.9 Hz, 1H, diaA), 3.37 (dd, J = 18.2, 5.9 Hz, 1H, diaB), 3.01 – 2.95 (m, 1H, diaA+diaB), 2.95 – 2.89 (m, 1H, diaA+diaB), 2.83 (dd, J = 18.3, 6.6 Hz, 1H, diaA), 2.77 – 2.61 (m, 2H, diaA), 2.70 (d, J = 12.3 Hz, 1H, diaB), 2.66 (dd, J = 22.9, 12.3 Hz, 1H, diaB), 2.62 (d, J = 12.4 Hz, 1H, diaB). ¹³C NMR (176 MHz, CDCl₃) δ 196.9 (diaA), 196.8 (diaB), 195.1 (diaA), 195.0 (diaB), 168.9 (diaA), 168.8 (diaB), 165.9 (diaA), 165.5 (diaB), 142.0 (diaA), 141.95 (diaB), 137.8 (diaA), 137.5 (diaB), 136.4 (diaA+diaB), 133.6 (diaA+diaB), 129.3 (2C, diaA), 129.2 (2C, diaB), 129.1 (2C, diaA), 129.0 (2C, diaB), 128.8 (2C, diaA+diaB), 128.2 (2C, diaA+diaB), 128.1 (diaA), 128.1 (diaB), 128.0 (2C, diaA+diaB), 127.5 (diaA), 127.5 (diaB), 126.8 (2C, diaA), 126.8 (2C, diaB), 118.9 (diaA), 118.7 (diaB), 43.8 (diaA), 43.7 (diaB), 40.0 (diaA), 39.9 (diaB), 39.2 (diaA), 39.0 (diaB), 38.8 (diaA), 38.7 (diaB), 36.1 (diaA), 36.0 (diaB), 35.0 (diaA), 34.8 (diaB). HRMS calculated for [C₂₉H₂₄O₄+H]⁺: 437.1748; found: 437.1750. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; diaA: τ_{major} = 90.5 min, τ_{minor} = 47.2 min (89:11 er); diaB: $\tau_{\text{major}} = 72.8 \text{ min}, \tau_{\text{minor}} = 56.4 \text{ min} (90:10 \text{ er}). [\alpha]^{20}{}_{\text{D}} = -35.9 (c = 0.9, \text{CHCl}_3).$

4. Crystal and X-ray data for (3*R*,4*R*)-4-(4-chlorophenyl)-7,7-dimethyl-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (1s)

Formula C₂₅H₂₃O₄Cl, orthorhombic, space group *P* 2₁2₁2₁, *Z* = 4, cell constants a = 5.8155(2) Å, b = 11.5974(3) Å, c = 31.3321(10) Å, V = 2113.18(11) Å³. The data was collected on a XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer at 100 K using PhotonJet micro-focus X-ray Source Cu-K α (λ =1.54184 Å) as a source of radiation. The integration of the data yielded a total of 15558 reflections to a θ angle of 72.10°, of which 4088 were independent (R_{int} = 6.36%,) and 3620 were greater than 2 σ (F²). The final anisotropic full-matrix least-squares refinement on F² with 273 variables converged at R₁ = 6.15%, for the observed data and wR₂ = 15.93% for all data. The hydrogen atoms were placed in calculated positions and refined isotropically by using a riding model. The goodness-of-fit was 1.097.

The absolute configuration of X was determined from anomalous scattering, by calculating the by calculating the Flack parameter: 0.022(13) from 1311 selected quotients (Parsons' method).

CCDC 1555933 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures.

5. NMR data

1a (3*R*,4*R*)-3-(2-Oxo-2-phenylethyl)-4-phenyl-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 1)

1b 4-(3-Fluorophenyl)-3-(2-oxo-2-phenylethyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (Table 2, entry 2)

1c (3*R*,4*R*)-4-(2-Fluorophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 3)

1d (3*R*,4*R*)-4-(4-Chlorophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 4)

1e (3*R*,4*R*)-4-(3-Chlorophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 5)

17

1f (3*R*,4*R*)-4-(4-Bromophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 6)

18

1g (3*R*,4*R*)-4-(4-Trifluoromethylphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 7)

1h (3*R*,4*R*)-4-(4-Cyanophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 8)

1i (3*R*,4*R*)-4-(4-Methylphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 9)

1j (3*R*,4*R*)-4-(4-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 10)

160 150 140 130 120 110 100 90 f1 (ppm)

210 200 190

180 170

22

0 -10

10

40 30 20

50

70 60

80

1k (3*R*,4*R*)-4-(2-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 11)

1l (3*R*,4*R*)-4-(3,5-Dimethoxyphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 12)

¹³C NMR

1m (3*R*,4*R*)-4-(Benzo[*d*][1,3]dioxol-5-yl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 13)

1n (3*R*,4*R*)-4-(Naphthalen-2-yl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 14)

1o (3*R*,4*S*)-4-(Furan-2-yl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 15)

1p (3*R*,4*R*)-3-(2-(4-Fluorophenyl)-2-oxoethyl)-4-phenyl-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Scheme 3)

1q (3*R*,4*R*)-3-(2-(4-Methoxyphenyl)-2-oxoethyl)-4-phenyl-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Scheme 3)

¹H NMR

1r (3*R*,4*R*)-4-(4-Chlorophenyl)-7,7-dimethyl-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*chromene-2,5(3*H*)-dione (Scheme 3)

1s (3*R*,4*R*)-3-(2-Oxo-2-phenylethyl)-4,7-diphenyl-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Scheme 3)

6. HPLC traces

1a (3*R*,4*R*)-3-(2-Oxo-2-phenylethyl)-4-phenyl-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 1)

Racemic mixture

Peak#	Ret. Time	Area%
1	13,904	96,921
2	15,011	3,079
Total		100,000

1b 4-(3-Fluorophenyl)-3-(2-oxo-2-phenylethyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (Table 2, entry 2)

Racemic mixture

Peak#	Ret. Time	Area%
1	29,028	6,209
2	31,742	93,791
Total		100,000

1c (3*R*,4*R*)-4-(2-Fluorophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 3)

Enantiomerically enriched mixture

Peak#	Ret. Time	Area%
1	16,088	2,130
2	19,387	97,870
Total		100,000

1d (3*R*,4*R*)-4-(4-Chlorophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 4)

Racemic mixture

Peak#	Ret. Time	Area%
1	14,193	91,903
2	19,778	8,097
Total		100,000

1e (3*R*,4*R*)-4-(3-Chlorophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 5)

Racemic mixture

Peak#	Ret. Time	Area%
1	28,394	7,053
2	30,694	92,947
Total		100,000

1f (3*R*,4*R*)-4-(4-Bromophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 6)

Racemic mixture

Peak#	Ret. Time	Area%
1	14,555	95,710
2	20,688	4,290
Total		100,000

1g (3*R*,4*R*)-4-(4-Trifluoromethylphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 7)

Racemic mixture

1h (3*R*,4*R*)-4-(4-Cyanophenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 8)

Racemic mixture

Peak#	Ret. Time	Area%
1	13,684	95,411
2	21,021	4,589
Total		100,000

1i (3*R*,4*R*)-4-(4-Methylphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 10)

Racemic mixture

Peak#	Ret. Time	Area%
1	11,865	99,729
2	13,957	0,271
Total		100,000

1j (3*R*,4*R*)-4-(4-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 11)

Racemic mixture

Peak#	Ret. Time	Area%
1	15,921	97,834
2	21,875	2,166
Total		100,000

1k (3*R*,4*R*)-4-(2-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 11)

Racemic mixture

Peak#	Ret. Time	Area%
1	15,669	4,205
2	17,832	95,795
Total		100,000

1l (3*R*,4*R*)-4-(3,5-Dimethoxyphenyl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 12)

Racemic mixture

Peak#	Ret. Time	Area%
1	18,418	90,997
2	21,939	9,003
Total		100,000

1m (3*R*,4*R*)-4-(Benzo[*d*][1,3]dioxol-5-yl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 13)

Racemic mixture

Peak#	Ret. Time	Area%
1	13,509	97,912
2	14,828	2,088
Total		100,000

1n (3*R*,4*R*)-4-(Naphthalen-2-yl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Table 2, entry 14)

Racemic mixture

Peak#	Ret. Lime	Area%
1	1 <mark>6</mark> ,318	95,808
2	21,531	4,192
Total		100,000

1o (3*R*,4*S*)-4-(Furan-2-yl)-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Table 2, entry 15)

Racemic mixture

Peak#	Ret. Time	Area%
1	30,629	98,125
2	33,075	1,875
Total		100,000

1p (3*R*,4*R*)-3-(2-(4-Fluorophenyl)-2-oxoethyl)-4-phenyl-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Scheme 3)

Peak#	Ret. Time	Area%
1	14,627	96,060
2	16,969	3,940
Total		100,000

1q (3*R*,4*R*)-3-(2-(4-Methoxyphenyl)-2-oxoethyl)-4-phenyl-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)dione (Scheme 3)

Racemic mixture

2	26,653	6,905
Total		100,000

1r (3*R*,4*R*)-4-(4-Chlorophenyl)-7,7-dimethyl-3-(2-oxo-2-phenylethyl)-4,6,7,8-tetrahydro-2*H*chromene-2,5(3*H*)-dione (Scheme 3)

Racemic mixture

Peak#	Ret. Time	Area%
1	13,030	91,869
2	22,988	8,131
Total		100,000

1s (3*R*,4*R*)-3-(2-Oxo-2-phenylethyl)-4,7-diphenyl-4,6,7,8-tetrahydro-2*H*-chromene-2,5(3*H*)-dione (Scheme 3)

Racemic mixture

Peak#	Ret. Time	Area%
1	47,219	7,547
2	56,385	3,507
3	72,837	30,185
4	90,477	58,761
Total		100,000