

Developing Antineoplastic Agents Targeting Peroxisomal Enzymes: Cytisinelinked Isoflavonoids as Inhibitors of Hydroxysteroid 17-beta-dehydrogenase-4 (HSD17B4)

Mykhaylo S. Frasinyuk^{1,2,3,#}, Wen Zhang^{1,4,#}, Przemyslaw Wyrebek^{1,2,#}, Tianxin Yu^{1,4,#}, Xuehe Xu^{1,4}, Vitaliy M. Sviripa^{2,5}, Svitlana P. Bondarenko⁶, Yanqi Xie^{1,2,4}, Huy X. Ngo⁵, Andrew J. Morris⁷, James L. Mohler⁸, Michael V. Fiandalo⁸, David S. Watt^{1,2,4*} and Chunming Liu^{1,4,*}

¹Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509. ²Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596. ³Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv 02094, Ukraine. ⁴Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093. ⁵Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40535-0596. ⁶National University of Food Technologies, Kyiv, 01601, Ukraine. ⁷Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536-0596. ⁸Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263.

*Contributed equally to this work

*Correspondence to: dwatt@uky.edu; chunming.liu@uky.edu

Supplemental Methods

Chemicals were purchased from Sigma Aldrich (Milwaukee, WI) or Fisher Scientific (Pittsburgh, PA) or were synthesized according to literature procedures. Hydrazide-PEG₄-biotin was purchased from Thermo Fisher Scientific (Florence, KY). Solvents were used from commercial vendors without further purification unless otherwise noted. Nuclear magnetic resonance spectra were determined on a Varian instrument (¹H, 400MHz; ¹³C, 100Mz). High resolution mass spectra (HRMS) were recorded on a Thermo Scientific Q Exactive Orbitrap mass spectrometer. Resolution was set at 140,000. Samples were introduced through direct infusion using a syringe pump with a flow rate of 5 µL/min. Purity of compounds, which were not acid-sensitive and hence amenable to HPLC analysis using gradients of formic acid-acetonitrile for elution, was greater than 98% as established using high performance liquid chromatography (HPLC) trace and lowresolution electrospray mass spectra (LRMS). These spectra were recorded on a liquid chromatography-mass spectrometry tandem system using an Agilent 1200 series Quaternary LC system equipped with a diode array detector, Eclipse XDB-C18 column (250 mm x 4.6 mm, 5 mm), and an Agilent 6120 Quadrupole MSD mass spectrometer. Method: 0-16 min 5-95% acetonitrile with 0.1% formic acid, 16-20 min 100% acetonitrile with 0.1% formic acid, 20-30 min, 100-5% acetonitrile with 0.1% formic acid. Solvent: H_2O with 0.1% formic acid and

acetonitrile with 0.1% formic acid. Purity of all new compounds was greater than 95% as established using combustion analyses determined by Atlantic Microlabs, Inc. (Norcross, GA). Compounds were chromatographed on preparative layer Merck silica gel F254 unless otherwise indicated.

General procedure for the synthesis of isoflavones 3. To a solution of deoxybenzoin (10 mmol) in DMF (7 mL) at 30-40°C under an argon atmosphere was added dropwise 3.7 mL of a 98% solution of boron trifluoride etherate. The mixture was stirred for 30 min, and phosphorous oxytrichloride (2 mL, 21.5 mmol) was added. The mixture was heated at 60°C for 3-5 h, cooled, poured into water and extracted with ethyl acetate. The organic solution was dried over anhydrous MgSO₄. The product was isolated by crystallization (from either methanol or ethanol) to afford isoflavones **3**.

7-Hydroxy-3-phenyl-4H-chromen-4-one (3a). Yield: 69%; mp 209-210°C (lit¹ mp 210-213°C). ¹H NMR (400 MHz, DMSO-d₆) δ 10.86 (s, 1H), 8.41 (s, 1H), 8 (d, 1H, J = 8.8 Hz), 7.62-7.55 (m, 2H), 7.5-7.36 (m, 3H), 6.97 (dd, 1H, J = 8.8, 2 Hz), 6.9 (d, 1H, J = 2 Hz); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.4, 162.7, 157.5, 153.9, 132.1, 129, 128.1, 127.7, 127.3, 123.6, 116.6, 115.3, 102.2. HRMS (ESI) Calcd for C₁₅H₁₁O₃: 239.0703 (M+H)⁺. Found: 239.0704. NMR data was consistent with reported data.¹⁻⁴

7-Hydroxy-3-(4-methoxyphenyl)-4*H***-chromen-4-one (3b)**. Yield: 53%; mp 259-260°C (lit⁵ mp 259-261°C). ¹H NMR

(400 MHz, DMSO-d₆) δ 10.8 (s, 1H), 8.34 (1H), 7.97 (d, 1H, J = 8.7), 7.51 (d, 2H, J = 8.8 Hz), 6.99 (d, 2H, J = 8.8 Hz), 6.94 (dd, 1H, J = 8.7, 2.3 Hz), 6.87 (d, 1H, J = 2.3 Hz), 3.78 (s, 3H); 13 C NMR (100 MHz, DMSO-d₆) δ 174.6, 162.6, 158.9, 157.4, 153.2, 130.1, 127.3, 124.2, 123.2, 116.6, 115.2, 113.6, 102.1, 55.2. NMR data was consistent with reported data.⁵ HRMS (ESI) Calcd for C₁₆H₁₃O₄: 269.0808 (M+H)⁺. Found: 269.0810.

3-(4-Chlorophenyl)-7-hydroxy-4H-chromen-4-one (3c). Yield: 59%; mp 260-261°C (lit⁶ mp 260°C); ¹H NMR (400 MHz, DMSO-d₆) δ 10.86 (s, 1H), 8.45 (s, 1H), 7.98 (d, 1H, J = 8.8 Hz), 7.61 (d, 2H, J = 8.4 Hz), 7.5 (d, 2H, J = 8.4 Hz), 6.96 (dd, 1H, J = 8.8, 2.4 Hz), 6.89 (d, 1H, J = 2.4 Hz); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.2, 162.8, 157.5, 154.1, 132.5, 131, 130.7, 128.1, 127.3, 122.3, 116.5, 115.4, 102.2. NMR data was consistent with reported data.⁷⁻⁸ HRMS (ESI) Calcd for C₁₅H₁₀O₃³⁵Cl: 273.0313 (M+H)⁺. Found: 273.0316; Calcd for C₁₅H₁₀O₃³⁷Cl: 275.0283 (M+H)⁺. Found: 275.0285.

3-(4-Chlorophenyl)-7-hydroxy-2-methyl-4H-chromen-4-

one (3d). Acetic anhydride (3 mL, 31.7 mmol) was added to a suspension of potassium carbonate (94.2 g, 30.4 mmol) and α -4-chlorophenyl-2,4-dihydroxyacetophenone (2 g, 7.6 mmol) in DMF (20 mL) and the resulting suspension was heated at 120°C for 8 h under an argon atmosphere. The mixture was cooled and poured into water (100 mL). The precipitate was filtered, washed with water (two 100 mL portions) and diethyl ether (100 mL) to afford 1.91 g (88%) of the product as a white solid: mp 277-278°C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.88 (s, 1H), 7.87 (d, 1H, J = 8.6 Hz), 7.48 (d, 2H, J = 8.4 Hz), 7.3 (d, 2H, J = 8.4 Hz), 6.9 (dd, 1H, J = 8.6, 2 Hz), 6.83 (d, 1H, J = 2 Hz), 2.24 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.6, 162.8, 162.6, 157.1, 132.5, 132.3, 132.2, 128.1, 127.1, 121, 115.4, 114.9, 101.9, 19.2. HRMS (ESI) Calcd for C₁₆H₁₂O₃³⁵Cl: 287.0480 (M+H)+. Found: 287.0471; Calcd for $C_{16}H_{12}O_3^{37}Cl:$ 289.0451 (M+H)⁺. Found: 289.0441. Anal. Calcd for C₁₆H₁₁O₃Cl: C, 67.03; H, 3.87. Found: C, 66.87; H, 4.04.

General procedure of for the synthesis deoxybenzoins 5. To a mixture of resorcinol (60 mmol) and phenylacetic acid (60 mmol) under an argon atmosphere was added 74 mL of 98% solution of boron trifluoride etherate. The mixture was heated to 85° C for 3-5 h. The mixture was poured into cold water and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous MgSO₄. The product was purified by column chromatography (using 1:20 to 1:3 ethyl acetate-hexanes or using 1:99 to 2:98 methanol-dichloromethane) to afford deoxybenzoins **5**.

1-(2,4-dihydroxyphenyl)-2-phenylethanone (5a). Yield: 60%; mp 111-112°C (lit¹ mp 110-113°C); ¹H NMR (400 MHz, CDCl₃) δ 12.69 (s, 1H), 7.75 (d, 1H, J = 8.6 Hz), 7.37-7.32 (m, 2H), 7.3-7.24 (m, 3H), 6.4-6.34 (m, 2H), 5.76 (s, 1H), 4.21 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 165.7, 162.9, 134.4, 133, 129.5, 128.9, 127.3, 113.7, 108.2, 103.8, 45. NMR data was consistent with reported data in DMSO-d₆.^{1-2,9} HRMS (ESI) Calcd for C₁₄H₁₃O₃: 229.0859 (M+H)⁺. Found: 229.0860.

1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone

(5b). Yield: 63%; mp 154-155°C (lit¹⁰ mp 156-157°C); ¹H NMR (400 MHz, DMSO-d₆) δ 12.56 (s, 1H), 10.66 (s, 1H), 7.94 (d, 1H, J = 9 Hz), 7.2 (d, 2H, J = 8.8 Hz), 6.87 (d, 2H, J = 8.8 Hz), 6.39 (dd, 1H, J = 9, 2.3 Hz), 6.25 (d, 1H, J = 2.3 Hz), 4.2 (s, 2H), 3.72 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 202.5, 164.9, 164.7, 158, 133.6, 130.5, 127, 113.8, 112.1, 108.2, 102.5, 55, 43.2. NMR data was consistent with reported data in DMSO-d₆.⁹ HRMS (ESI) Calcd for C₁₅H₁₅O₄: 259.0965 (M+H)⁺. Found: 259.0967.

α-4-Chlorophenyl-2,4-dihydroxyacetophenone (5c). Yield: 49%; mp 157-158°C (lit¹⁰ mp 150-150.5°C); ¹H NMR (400 MHz, DMSO-d₆) δ 12.41 (s, 1H), 10.71 (s, 1H), 7.93 (d, 1H, J = 9 Hz), 7.37 (d, 2H, J = 8.2 Hz), 7.29 (d, 2H, J = 8.2 Hz), 6.41 (dd, 1H, J = 9, 1.6 Hz), 6.26 (d, 1H, J = 1.6 Hz), 4.33 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 201.6, 165, 164.5, 134.2, 133.5, 131.6, 131.4, 128.3, 112.3, 108.3, 102.5, 43.4. NMR data was consistent with reported data in acetone-d₆¹¹ and methanol-d₄.¹² HRMS (ESI) Calcd for C₁₄H₁₂O₃³⁵Cl: 263.0469 (M+H)⁺. Found: 263.0473; Calcd for C₁₄H₁₂O₃³⁷Cl: 265.0440 (M+H)⁺. Found: 265.0444.

General procedure for 7-(2-bromoethoxy)isoflavones 6. To a solution of 2 mmol of 7-hydroxyisoflavone 3 in DMF (10 mL) was added K₂CO₃ (690 mg, 5 mmol) and 1,2dibromoethane (0.9 mL, 10.4 mmol). The mixture was stirred for 3 h at 80°C under a nitrogen atmosphere. The product was cooled and poured into cold water. The precipitate was filtered, washed successively with water diethyl and cold ether to afford 7-(2bromoethoxy)isoflavones 6 that were purified by crystallization and/or chromatography on silica gel.

7-(2-Bromoethoxy)-3-phenyl-4*H***-chromen-4-one** (6a). Yield: 77%; mp 200-201°C (lit¹³ mp 202-204°C); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, 1H, J = 8.8 Hz), 7.95 (s, 1H), 7.56 (d, 2H, J = 7.2 Hz), 7.48-7.34 (m, 3H), 7.02 (dd, 1H, J = 8.8, 2 Hz), 6.88 (d, 1H, J = 2 Hz), 4.4 (t, 2H, J = 6.1 Hz), 3.7 (t, 1H, J = 6.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 162.5, 157.9, 152.8, 132, 129.1, 128.6, 128.3 (128.31), 128.3 (128.27), 125.5, 119.1, 114.8, 101.3, 68.3, 28.4. NMR data was consistent with reported data in DMSO-d₆.¹³ HRMS (ESI) Calcd for C₁₇H₁₄O₃⁷⁹Br: 345.0121 (M+H)⁺.

Found: 345.0125; Calcd for $C_{17}H_{14}O_3^{81}Br$: 347.0100 (M+H)⁺. Found: 347.0101.

7-(2-Bromoethoxy)-3-(4-methoxyphenyl)-4H-chromen-4one (6b). Yield: 80%. mp 174-175°C (lit¹³ mp 178-180°C); ¹H NMR (400 MHz, DMSO-d₆) δ 8.44 (s, 1H), 8.05 (d, 1H, J = 8.8 Hz), 7.53 (d, 2H, J = 8.6 Hz), 7.22 (d, 1H, J = 2.4 Hz), 7.12 (dd, 1H, J = 8.8, 2.4 Hz), 7 (d, 2H, J = 8.6 Hz), 4.5 (t, 2H, J = 5.2 Hz), 3.87 (t, 2H, J = 5.2 Hz), 3.79 (s, 3H); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, 1H, J = 9 Hz), 7.93 (s, 1H), 7.5 (d, 2H, J = 8.8 Hz), 7.01 (dd, 1H, J = 9, 2.4 Hz), 6.97 (d, 2H, J = 8.8 Hz), 6.86 (d, 1H, J = 2.4 Hz), 4.4 (t, 2H, J = 6.4 Hz), 3.84 (s, 3H), 3.7 (t, 2H, J = 6.4 Hz); 13 C NMR (100 MHz, CDCl₃) δ 175.9, 162.4, 159.7, 157.9, 152.2, 130.2, 128.2, 125.1, 124.2, 119, 114.7, 114.1, 101.2, 68.3, 55.5, 28.5. NMR data was consistent with reported data in DMSO-d₆¹³ and CDCl₃.¹⁴ HRMS (ESI) Calcd for C₁₈H₁₆O₄⁷⁹Br: 375.0226 375.0230; Calcd for C₁₇H₁₄O₃⁸¹Br: (M+H)+. Found: 377.0206 (M+H)⁺. Found: 377.0206.

7-(2-Bromoethyloxy)-3-(4-chlorophenyl)-4H-chromen-4-

one (6c). Yield: 85%; mp 188-189°C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.54 (s, 1H), 8.06 (d, 1H, J = 9 Hz), 7.64 (d, 2H, J = 8.4 Hz), 7.51 (d, 2H, J = 8.4 Hz), 7.25 (d, 1H, J = 2.4 Hz), 7.14 (dd, 1H, J = 9; 2.4 Hz), 4.51 (t, 2H, J = 5.3 Hz), 3.87 (t, 2H, J = 5.3 Hz); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, 1H, J = 9.2 Hz), 7.95 (s, 1H), 7.51 (d, 2H, J = 8.4 Hz), 7.41 (d, 2H, J = 8.4 Hz), 7.03 (dd, 1H, J = 9.2, 2.4 Hz), 6.88 (d, 1H, J = 2.4 Hz), 4.4 (t, 2H, J = 6.3 Hz), 3.7 (t, 2H, J = 6.3 Hz); ¹³C NMR (100 MHz, $CDCl_3$) δ 175.4, 162.6, 157.9, 152.8, 134.3, 130.4, 130.3, 128.8, 128.2, 124.5, 118.9, 114.9, 101.3, HRMS (ESI) Calcd for $C_{17}H_{13}O_3^{79}Br^{35}CI$: 68.4, 28.4. 378.9742 (M+H)+. Found: 378.9734; Calcd for $C_{17}H_{13}O_{3}{}^{79}Br^{37}Cl; \quad 380.9713 \ (M+H)^{+} \ Found; \quad 380.9711;$ Calcd for C₁₇H₁₃O₃⁸¹Br³⁷Cl: 382.9692 (M+H)⁺. Found: 382.9682. Anal. Calcd for C₁₇H₁₂O₃BrCl: C, 53.79; H, 3.19. Found: C, 54.09; H, 3.27.

7-(2-Bromoethoxy)-3-(4-chlorophenyl)-2-methyl-4H-

chromen-4-one (6d). To a solution of 7-hydroxyisoflavone **3d** (573 mg, 2 mmol) in anhydrous DMF (10 mL) was added K₂CO₃ (690 mg, 5 mmol) and 1,2-dibromoethane (0.9 mL, 10.4 mmol). The mixture was stirred at 80°C for 3 h under a nitrogen atmosphere. The mixture was filtered, and DMF was evaporated. The product was isolated by column chromatography using ethyl acetate-hexanes (from 1:9 to 3:7) to give 485 mg (62%) of **6d**: mp 160-161°C (lit¹⁴ mp 165-167°C); ¹H NMR (400 MHz, DMSO-d₆) δ 7.95 (d, 1H, J = 8.6 Hz), 7.5 (d, 2H, J = 8.4 Hz), 7.33 (d, 2H, J = 8.4 Hz), 7.21 (d, 1H, J = 2.4 Hz), 7.09 (dd, 1H, J = 8.6; 2.4 Hz), 4.5 (t, 2H, J = 5.5 Hz), 3.87 (t, 2H, J = 5.5 Hz), 2.27 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.6, 163.2, 162.3, 157, 132.5, 132.3, 132, 128.1, 126.9, 121.3, 116.7, 114.8, 101.2, 68.5, 31, 19.2. NMR data was consistent with reported data in

General procedure for the synthesis of piperazinylsubstituted isoflavones 7 and 8. A mixture of 1 mmole of isoflavone **6**, either piperazine or 1-(2hydroxyethyl)piperazine (1.2 mmol), Nal (1 mmol) and diisopropylethylamine (0.6 mL, 3.5 mmol) in DMF (9 mL) was stirred for 3 h at 60 °C under a nitrogen atmosphere. The mixture was cooled; the solvent was evaporated; and the product was purified by column chromatography using methanol-dichloromethane (1:9 to 1:3) to afford piperazinyl-substituted isoflavones **7** or **8** as white solids.

3-(4-Chlorophenyl)-7-(2-(piperazin-1-yl)ethoxy)-4H-

chromen-4-one (7c). To a solution of 378 mg (1 mmole) of 6c in DMF (10 mL) was added piperazine (172 mg, 2 mmol), Nal (150 mg, 1 mmol). and K₂CO₃ (276 mg, 2 mmol). The mixture was stirred for 2 h at 60°C under a nitrogen atmosphere. The mixture was cooled and poured into cold water (100 mL). The precipitated was collected and washed with cold water. The product was recrystallized from methanol to afford 306 mg (79%) of 7c as a white solid: mp 147-148°C; ¹H NMR (400 MHz, CDCl₃) 8.19 (d, 1H, J = 9 Hz), 7.94 (s, 1H), 7.5 (d, 2H, J = 8.6 Hz), 7.4 (d, 2H, J = 8.6 Hz), 7 (dd, 1H, J = 9, 2.4 Hz), 6.86 (d, 1H, J = 2.4 Hz), 4.2 (t, 2H, J = 5.7 Hz), 2.96-2.9 (m, 4H), 2.87 (t, 2H, J = 5.7 Hz), 2.64-2.53 (m, 4H); 13 C NMR (100 MHz, CDCl₃) δ 175.5, 163.4, 158, 152.7, 134.3, 130.5, 130.4, 128.8, 127.9, 124.4, 118.5, 115.2, 101, 66.7, 57.6, 54.9, 46.1. HRMS (ESI) Calcd for C₂₁H₂₂O₃N₂³⁵Cl: 385.1324 (M+H)⁺. Found 385.1327; Calcd for C₂₁H₂₂O₃N₂³⁷Cl: 387.1295 (M+H)*. Found 387.1297. Rapid air oxidation precluded obtaining a satisfactory combustion analysis.

7-(2-(4-(2-Hydroxyethyl)piperazin-1-yl)ethoxy)-3-phenyl-

4H-chromen-4-one (8a). Yield: 60%; mp 159-160°C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, 1H, J = 8.8 Hz), 7.95 (s, 1H), 7.6-7.52 (m, 2H), 7.48-7.34 (m, 3H), 7 (dd, 1H, J = 8.8, 2 Hz), 6.87 (d, 1H, J = 2 Hz), 4.21 (t, 2H, J = 5.6 Hz), 3.65 (t, 2H, J = 5.6 Hz), 2.89 (t, 2H, J = 5.6 Hz), 2.78-2.52 (m, 8H), 2.6 (t, 2H, J = 5.6 Hz); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.4, 163, 157.5, 154.2, 132, 128.9, 128.1, 127.8, 126.9, 123.8, 117.6, 115.2, 101.2, 66.5, 60.2, 58.4, 56.4, 53.2, 53; ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 163.2, 158, 152.8, 132.1, 129.1, 128.6, 128.3, 128, 125.5, 118.7, 115, 101, 66.8, 59.4, 57.8, 56.9, 53.7, 52.9. HRMS (ESI) Calcd for C₂₃H₂₇O₄N₂: 395.1965 (M+H)⁺. Found: 395.1957. Anal. Calcd. for C₂₃H₂₆O₄N₂: C, 70.03; H, 6.64; N, 7.10. Found: C, 69.79; H, 6.65; N, 7.07.

7-[2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethoxy]-3-(4-

methoxyphenyl)-4*H*-chromen-4-one (8b). Yield: 73%; mp 145-146°C; ¹H NMR (400 MHz, CDCl₃) δ 8.2 (d, 1H, J = 8.8 Hz), 7.92 (s, 1H), 7.5 (d, 2H, J = 9.2 Hz), 7 (dd, 1H, J = 8.8, 2.4 Hz), 6.97 (d, 2H, J = 9.2 Hz), 6.86 (d, 1H, J = 2.4 Hz), 4.2 (t, 2H, J = 5.8 Hz), 3.84 (s, 3H), 3.63 (t, 2H, J = 5.2 Hz), 2.88 (t, 2H, J = 5.8 Hz), 2.74-2.54 (m, 8H), 2.57 (t, 2H, J = 5.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 176, 163.1, 159.7, 158, 152.2, 130.2, 127.9, 125, 124.3, 118.6, 114.9, 114.1, 100.9, 66.7, 59.5, 57.7, 56.9, 55.5, 53.5, 52.9. HRMS (ESI) Calcd for C₂₄H₂₉O₅N₂: 425.2071 (M+H)⁺. Found: 425.2071. Anal. Calcd. for C₂₄H₂₈O₅N₂: C, 67.91; H, 6.65; N, 6.60. Found: C, 68.15; H, 6.71; N, 6.56.

3-(4-Chlorophenyl)-7-(2-(4-(2-hydroxyethyl)piperazin-1-

yl)ethoxy)-4*H*-chromen-one (8c). Yield: 74%; mp 152-153°C; ¹H NMR (400 MHz, CDCl₃) δ 8.2 (d, 1H, J = 8.8 Hz), 7.94 (s, 1H), 7.51 (d, 2H, J = 8.2 Hz), 7.41 (d, 2H, J = 8.2 Hz), 7.02 (dd, 1H, J = 8.8, 2.4 Hz), 6.87 (d, 1H, J = 2.4 Hz), 4.21 (t, 2H, J = 5.6 Hz), 3.62 (t, 2H, J = 5.2 Hz), 2.88 (t, 2H, J = 5.6 Hz), 2.72-2.5 (m, 8H), 2.57 (t, 2H, J = 5.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 163.4, 158, 152.7, 134.3, 130.5, 130.4, 128.8, 127.9, 124.4, 118.5, 115.2, 101, 66.8, 59.3, 57.8, 56.9, 53.8, 52.9. HRMS (ESI) Calcd for C₂₃H₂₆O₄N₂³⁵Cl: 429.1576 (M+H)⁺. Found: 429.1576; Calcd for C₂₃H₂₆O₄N₂³⁷Cl: 431.1546 (M+H)⁺. Found: 431.1551. Anal. Calcd. for C₂₃H₂₅O₄N₂Cl: C, 64.41; H, 5.88; N, 6.53. Found: C, 64.52; H, 6.01; N, 6.50.

General procedure for the synthesis of cytisine-linked isoflavones 10. A mixture of 0.5 mmol of 7-(2-bromoethoxy)isoflavone 6, (-)-cytisine (143 mg, 0.75 mmol), Nal (75 mg, 0.5 mmol), and diisopropylethylamine (0.3 mL, 3.5 mmol) in DMF (5 mL) was stirred for 2-4 h at 80°C under a nitrogen atmosphere. The mixture was cooled and poured into cold water. A precipitate was collected and purified by column chromatography using methanol-dichloromethane (2:98 to 5:95) to afford cytisine-linked isoflavones 10 as white solids.

(1*R*,5*S*)-3-(2-((4-Oxo-3-phenyl-4H-chromen-7yl)oxy)ethyl)-3,4,5,6-tetrahydro-1*H*-1,5-

methanopyrido[1,2-*α*][1,5]diazocin-8(2*H*)-one (10a). Yield: 72%; mp 197-198°C (lit¹³ mp 195-196°C); ¹H NMR (400 MHz, DMSO-d₆) δ 8.46 (s, 1H), 7.99 (d, 1H, J = 9 Hz), 7.62-7.55 (m, 2H), 7.48-7.34 (m, 3H), 7.29 (dd, 1H, J = 8.9, 6.7 Hz), 7.11 (d, 1H, J = 2.4 Hz), 6.98 (dd, 1H, J = 9, 2.4 Hz), 6.18 (dd, 1H, J = 8.9, 1.2 Hz), 6.07 (dd, 1H, J = 6.7, 1.2 Hz), 4.2-4.04 (m, 2H), 3.82-3.64 (m, 2H), 3.06-2.98 (m, 2H), 2.94-2.86 (m, 1H), 2.76-2.62 (m, 2H), 2.52-2.34 (m, 3H), 1.79 (d, 1H, J = 12.5 Hz), 1.7 (d, 1H, J = 12.5 Hz); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.4, 162.9, 162.2, 157.4, 154.2, 152.1, 138.7, 132, 128.9, 128.2, 127.8, 126.9, 123.7, 117.6, 115.3, 115.1, 103.7, 101.3, 66.3, 60.3, 59.4, 55.7. 49.5, 34.6, 27.3, 25. NMR data was consistent with reported data in DMSO-d₆.¹³ Purity by HPLC-LRMS >98% (Fig. 2S, panel A). HRMS (ESI) Calcd for $C_{28}H_{27}O_4N_2$: 455.1965 (M+H)⁺. Found: 455.1964.

(1*R*,5*S*)-3-(2-((3-(4-Methoxyphenyl)-4-oxo-4*H*-chromen-7yl)oxy)ethyl)-3,4,5,6-tetrahydro-1*H*-1,5-

methanopyrido[1,2-a][1,5]diazocin-8(2H)-one (10b). Yield: 76%; mp 117-118°C (lit¹³ mp 85-86°C); ¹H NMR (400 MHz, DMSO-d₆) δ 8.41 (s, 1H), 7.98 (d, 1H, J = 8.8 Hz), 7.52 (d, 2H, J = 8.8 Hz), 7.29 (dd, 1H, J = 8.9, 6.9 Hz), 7.09 (d, 1H, J = 2 Hz), 7.04-6.92 (m, 3H), 6.18 (dd, 1H, J = 8.9, 0.8 Hz), 6.06 (d, 1H, J = 6.9 Hz), 4.18-4.04 (m, 2H), 3.82-3.66 (m, 2H), 3.79 (s, 3H), 3.06-2.98 (m, 2H), 2.94-2.86 (m, 1H), 2.76-2.62 (m, 2H), 2.52-2.32 (m, 3H), 1.84-1.66 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 163.7, 162.9, 159.6, 157.9, 152.2, 151.4, 138.7, 130.2, 127.8, 124.8, 124.3, 118.5, 116.7, 114.8, 114, 104.6, 100.8, 66.7, 60.9, 60.4, 56.2, 55.4, 50, 35.6, 28.1, 25.7. NMR data was consistent with reported data in DMSO-d₆.¹³ Purity by HPLC-LRMS >98% (Fig. 2S, panel B). HRMS (ESI) Calcd for C₂₉H₂₉O₅N₂: 485.2071 (M+H)*. Found: 485.2071. Anal. Calcd. for C₂₉H₂₈O₅N₂: C, 71.88; H, 5.82; N, 5.78. Found: C, 71.60; H, 5.75; N, 5.73.

(15,55)-3-(2-((3-(4-Chlorophenyl)-4-oxo-4H-chromen-7yl)oxy)ethyl)-3,4,5,6-tetrahydro-1H-1,5-

methanopyrido[1,2-a][1,5]diazocin-8(2H)-one (10c). Yield: 76%; mp 146-147°C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, 1H, J = 8.8 Hz), 7.94 (s, 1H), 7.51 (d, 2H, J = 8.6 Hz), 7.4 (d, 2H, J = 8.6 Hz), 7.3-7.18 (m, 1H), 6.9 (dd, 1H, J = 8.8, 2 Hz), 6.76 (d, 1H, J = 2 Hz), 6.43 (d, 1H, J = 8.8 Hz), 5.96 (d, 1H, J = 6.8 Hz), 4.14-3.86 (m, 4H), 3.08-2.92 (m, 3H), 2.75 (t, 2H, J = 5.6 Hz), 2.6-2.42 (m, 3H), 1.94-1.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 163.7, 163.1, 158, 152.7, 151.4, 138.8, 134.2, 130.5, 130.3, 128.8, 127.9, 124.3, 118.4, 116.8, 115.1, 104.7, 100.9, 66.8, 61, 60.5, 56.2, 50.1, 35.6, 28.1, 25.8. Purity by HPLC-LRMS >98% (Fig. 3S, panel A). HRMS (ESI) Calcd for C₂₈H₂₆O₄N₂³⁵Cl: 489.1576 (M+H)⁺. Found: 489.1578; Calcd for C₂₈H₂₆O₄N₂³⁷Cl: 491.1546 (M+H)*. Found: 491.1555 Anal. Calcd. for C₂₈H₂₅O₄N₂Cl: C, 68.78; H, 5.15; N, 5.73. Found: C, 69.02; H, 5.41; N, 5.63.

(1*R*,5*S*)-3-(2-((3-(4-Chlorophenyl)-2-methyl-4-oxo-4*H*chromen-7-yl)oxy)ethyl)-3,4,5,6-tetrahydro-1*H*-1,5-

methanopyrido[1,2-*a*][1,5]diazocin-8(2*H*)-one (10d). Yield: 62%; mp 186-187°C; ¹H NMR (400 MHz, methanold₄) δ 7.96 (d, 1H, J = 8.4 Hz), 7.45 (d, 2H, J = 8.6 Hz), 7.39 (dd, 1H, J = 8.9, 6.9 Hz), 7.28 (d, 2H, J = 8.6 Hz), 6.94-6.9 (m, 1H), 6.89 (d, 1H, J = 2 Hz), 6.35 (dd, 1H, J = 8.9, 1.2 Hz), 6.25 (dd, 1H, J = 6.9, 1.2 Hz), 4.12-4.04 (m, 2H), 4 (d, 1H, J = 15.4 Hz), 3.88 (dd, 1H, J = 15.4, 6.4 Hz), 3.13-2.98 (m, 3H),

2.78-2.72 (m, 2H), 2.6-2.44 (m, 3H), 2.3 (s, 3H), 1.96-1.82 (m, 2H); 13 C NMR (100 MHz, methanol-d₄) δ 178, 165.8, 165.5, 165.1, 159.2, 153.8, 141.2, 134.9, 133.6, 133.2, 129.6, 128, 123.2, 117.8, 116.4, 116.2, 107.7, 101.9, 67.8, 61.9, 61.4, 57.3, 51.6, 36.9, 29.5, 26.3, 19.6. Purity by HPLC-LRMS >98% (Fig. 3S, panel B). HRMS (ESI) Calcd for C₂₉H₂₈N₂O₄³⁵Cl: 503.1732 (M+H)⁺. Found: 503.1735; Calcd for C₂₉H₂₈N₂O₄³⁷Cl: 505.1703 (M+H)⁺. Found: 505.1707. Anal. Calcd. for C₂₉H₂₇O₄N₂Cl: C, 69.25; H, 5.41; N, 5.57. Found: C, 68.98; H, 5.36; N, 5.50.

3-(4-Chlorophenyl)-7-(hex-5-en-1-yloxy)-2-methyl-4H-

To a solution of 7chromen-4-one (11d). hydroxyisoflavone 3d (573 mg, 2 mmol) in DMF (10 mL) was added K₂CO₃ (690 mg, 5 mmol) and 6-bromo-1hexene (0.6 mL, 4.5 mmol). The mixture was stirred at 80°C for 1 h under a nitrogen atmosphere. The mixture was cooled, diluted with water, and extracted with ethyl acetate. The combined organic layers were washed successively with water and brine and dried over anhydrous MgSO₄. The product was isolated by column chromatography using ethyl acetate-hexanes as eluent (from 5:95 to 1:5) to afford 600 mg (81%) of 11d as a white solid: mp 104°C; ¹H NMR (400 MHz, DMSO-d₆) δ 7.93 (d, 1H, J = 8.6 Hz), 7.49 (d, 2H, J = 8.4 Hz), 7.32 (d, 2H, J = 8.4 Hz), 7.14 (d, 1H, J = 2.3 Hz), 7.04 (dd, 1H, J = 8.6; 2.3 Hz), 5.9-5.76 (m,1H), 5.08-4.95 (m, 2H), 4.13 (t, 2H, J = 6.4 Hz), 2.27 (s, 3H), 2.14-2.07 (m, 2H), 1.82-1.72 (m, 2H), 1.58-1.48 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.6, 163.1 (163.13), 163.1 (163.11), 157.1, 138.5, 132.5, 132.3, 132.1, 128.1, 126.8, 121.3, 116.3, 115, 114.9, 100.8, 68.3, 32.8, 27.9, 24.6, 19.2. HRMS (ESI) Calcd for C₂₂H₂₂O₃³⁵Cl: 369.1263 (M+H)+. Calcd for Found: 369.1253; C₂₂H₂₂O₃³⁷Cl: 371.1233 (M+H)⁺. Found: 371.1227. Anal. Calcd. for C₂₂H₂₂O₃Cl: C, 71.64; H, 5.74. Found: C, 71.55; H, 5.59.

3-(4-Chlorophenyl)-2-methyl-7-(4-(oxiran-2-yl)butoxy)-

4H-chromen-4-one (12d). A solution of 77% metachloroperoxybenzoic acid (896 mg, 4 mmol) in dichloromethane (5 mL) was added to a solution of 11d (338 mg, 0.92 mmol) in dichloromethane (5 mL). The mixture was stirred for 4 h at 25°C under a nitrogen atmosphere. The product was poured into saturated NaHCO₃ solution and extracted with dichloromethane. The organic layers were washed with brine and dried over anhydrous MgSO₄. The product was purified by column chromatography using methanol-dichloromethane (ratio ranging from 2:98 to 2:48) to afford 234 mg (76%) of 12d: mp 118-119°C; ¹H NMR (400 MHz, $CDCl_3$) δ 8.11 (d, 1H, J = 8.8 Hz), 7.4 (d, 2H, J = 8.4 Hz), 7.23 (d, 2H, J = 8.4 Hz), 6.95 (dd, 1H, J = 8.8, 2.4 Hz), 6.82 (d, 1H, J = 2.4 Hz), 4.08 (t, 2H, J = 6.2 Hz), 3-2.92 (m, 1H), 2.79 (t, 1H, J = 4.4 Hz), 2.54-2.48 (m, 1H), 2.29 (s, 3H), 1.96-1.86 (m, 2H), 1.76-1.54 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 163.5, 162.8, 157.7, 133.8, 132, 131.8, 128.7, 127.7, 122.4, 117.2, 114.7, 100.5, 68.4, 52.2, 47.1, 32.3, 28.9, 22.8, 19.5. HRMS (ESI) Calcd for $C_{22}H_{22}O_4^{35}Cl$: 385.1201 (M+H)⁺. Found: 385.1212; Calcd for $C_{22}H_{22}O_4^{37}Cl$: 387.1172 (M+H)⁺. Found: 387.1182. Anal. Calcd. for $C_{22}H_{21}O_4Cl$ C, 68.66; H, 5.50. Found: C, 68.39; H, 5.50.

(1*R*,2'ζ,5*S*)-3-(6-((3-(4-Chlorophenyl)-2-methyl-4-oxo-4*H*chromen-7-yl)oxy)-2-hydroxyhexyl)-3,4,5,6-tetrahydro-1*H*-1,5-methanopyrido[1,2-*a*][1,5]diazocin-8(2*H*)-one

(13d). A mixture of 12d (327 mg, 0.8 mmol) and (1R,5S)cytisine (194 mg, 1 mmol) in absolute ethanol (9 mL) was stirred in a pressure tube for 20 h at 90°C. The solvent was evaporated, and the product was purified by column chromatography using methanol-dichloromethane (2:48) to afford 470 mg (96%) of 13d as a mixture of diastereoisomers epimeric at the C-2' position in the linker. The ¹H NMR spectrum displayed C-2' H (RCH(OH)R') as an unresolved multiplet at δ 3.64-3.5 (Fig. 1S, Panel A), but displayed the C-5 ArH of isoflavonoid as two doublets (Fig. 1S, Panel B) with one doublet at δ 8.08 (J = 9.2Hz) for one diastereomer and another doublet at δ 8.07 (J = 8.8 Hz) for the other diastereomer in ca. 1:1 ratio. Data in support of **13d**: ¹H NMR (400 MHz, CDCl₃) δ 8.08 and 8.07 (two d, 1H, J = 9.2 Hz), 7.39 (d, 2H, J = 8.4 Hz), 7.32-7.16 (m, 3H), 6.96-6.86 (m, 1H), 6.82-6.76 (m, 1H), 6.46-6.38 (m, 1H), 6.04-5.94 (m, 1H), 4.18-3.84 (m, 3H), 3.64-3.5 (m, 1H), 3.12-2.82 (m, 3H), 2.7-2.62 (m, 1H), 2.56-2.24 (m, 4H), 2.27 (two s, 3H), 2.2-2.1 (m, 1H), 1.98-1.74 (m, 4H), 1.66-1.3 (m, 4H); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.6, 163.2 (163.18), 163.2 (163.17), 163.1, 162.2, 157.1, 152.2 (152.23), 152.2 (152.21), 138.7, 138.6, 132.5, 132.3, 132.1, 128.1, 126.7, 121.3, 116.3, 115.1, 114.9, 103.7, 103.6, 100.8, 68.5, 67.1, 66.9, 63.05, 62.98, 61.4, 60.8, 60.4, 60, 49.7, 34.8, 34.7, 34.4, 28.64, 28.58, 27.6, 27.4, 25.2, 21.23, 21.15, 19.2. HRMS (ESI) Calcd for $C_{33}H_{36}O_5N_2^{35}CI$: 575.2318 (M+H)+. Found: 575.2312; Calcd for C₃₃H₃₆O₅N₂³⁷Cl: 577.2289 (M+H)⁺. Found: 577.2295. Anal. Calcd. for C₃₃H₃₅O₅N₂Cl[.]½H₂O: C, 67.86; H, 6.21; N, 4.80. Found: C, 68.26; H, 6.41; N, 4.72.

(1R,5S)-3-(6-((3-(4-Chlorophenyl)-2-methyl-4-oxo-4Hchromen-7-yl)oxy)-2-oxohexyl)-3,4,5,6-tetrahydro-1H-

1,5-methanopyrido[**1,2**-*a*][**1,5**]diazocin-8(2*H*)-one (**14d**). To a suspension of Dess-Martin periodinane (520 mg, 1.2 mmol) in dichloromethane (8 mL) was added a solution of **13d** (470 mg, 0.8 mmol) in dichloromethane (5 mL). The mixture was stirred at 25°C for 2 h, diluted with dichloromethane, and washed with a 3:2 saturated solution of Na₂S₂O₃ and NaHCO₃ (20 mL. The combined organic layers were washed with brine and dried over anhydrous MgSO₄. The product was purified by column chromatography using methanol-dichloromethane (1:98)

to afford 380 mg (81%) of 14d as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 8.1 (d, 1H, J = 8.8 Hz), 7.4 (d, 2H, J = 7.9 Hz), 7.32-7.2 (m, 1H), 7.23 (d, 2H, J = 7.9 Hz), 6.92 (d, 1H, J = 8.8 Hz), 6.84-6.78 (m, 1H), 6.47 (d, 1H, J = 8.8 Hz), 6 (d, 1H, J = 6.8 Hz), 4.19 (d, 1H, J = 15.6 Hz), 3.97 (t, 2H, J = 5.2 Hz), 3.9 (dd, 1H, J = 15.6, 6.8 Hz), 3.2-2.86 (m, 4H), 2.74 (d, 1H, J = 10.4 Hz), 2.62 (d, 1H, J = 10.8 Hz), 2.55 (d, 1H, J = 10.8 Hz), 2.52-2.42 (m, 1H), 2.29 (s, 3H), 2.3-2.22 (m, 1H), 2.18-2.06 (m, 1H), 1.95 (d, 1H, J = 12.7 Hz), 1.82 (d, 1H, J = 12.7 Hz), 1.7-1.52 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 210.5, 176.1, 163.6, 163.5, 162.9, 157.7, 151.2, 138.8, 133.8, 132, 131.8, 128.7, 127.6, 122.4, 117.1, 116.9, 114.7, 104.8, 100.5, 68.2, 67.6, 60.8 (60.83), 60.8 (60.76), 50.1, 39.1, 35.4, 28.5, 28.2, 25.4, 19.9, 19.5. HRMS (ESI) Calcd for C₃₃H₃₄O₅N₂³⁵Cl: 573.2151 (M+H)⁺; Found: 573.2156; Calcd for $C_{33}H_{34}O_5N_2{}^{37}Cl$: 575.2121 (M+H)⁺. Found: 575.2125. Anal. Calcd. for C₃₃H₃₃O₅N₂Cl[·]½H₂O: C, 68.09; H, 5.89; N, 4.81. Found: C, 68.02; H, 5.95; N, 4.71.

N-((E and Z)-22-((3-(4-chlorophenyl)-2-methyl-4-oxo-4Hchromen-7-yl)oxy)-15-oxo-18-(((1R,5S)-8-oxo-1,5,6,8tetrahydro-2H-1,5-methanopyrido[1,2-a][1,5]diazocin-3(4H)-yl)methyl)-3,6,9,12-tetraoxa-16,17-diazadocos-17en-1-yl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4d]imidazol-4-yl)pentanamide (15d). A mixture of hydrazide-PEG₄-biotin (Thermo Fisher, 50 mg, 0.1 mmol), 14d (57 mg, 0.1 mmol), and cerium trichloride (3 mg, 0.01 mmol) in methanol (3 mL) was stirred at 60°C for 4 h. The solvent was evaporated, and the product was isolated by preparative chromatography using methanoldichloromethane (8:92) to afford 25 mg (24%) of 15d as a mixture of E/Z-isomers: ¹H NMR (400 MHz, CDCl₃) δ 10.51 and 10.3 (two s, 1H), 7.98 (d, 1H, J = 8.7 Hz), 7.45 (d, 2H, J = 8.3 Hz), 7.36-7.22 (m, 1H), 7.28 (d, 2H, J = 8.3 Hz), 7.02-6.93 (m, 2H), 6.8-6.64 (m, 1H), 6.28 and 6.24 (two d, 1H, J = 9 Hz), 6.07 and 6.02 (two d, 1H, J = 6.8 Hz), 5.48-5.36 (m, 1H), 5.18-5.08 (m, 1H), 4.3-4.36 (m, 1H), 4.24-4.18 (m, 1H), 4.16-4.08 (m, 2H), 3.9-3.8 (m, 2H), 3.78-3.4 (m, 16H), 3.38-3.2 (m, 2H), 3.18-3.08 (m, 3H), 3.06-2.6 (m, 6H), 2.54-2.02 (7H), 2-1.46 (m, 10H), 1.44-1.22 (m, 4H). MS (ESI): 1060 (M+H)⁺, 1077 (M+NH₄)⁺, 1082 (M+Na)⁺, 1098 (M+K)⁺. HRMS (ESI) Calcd for C₅₄H₇₁O₁₁N₇³⁵ClS: 1060.4615 (M+H)⁺. Found: 1060.4612; Calcd for $C_{54}H_{71}O_{11}N_7^{37}CIS$: 1062.4618 (M+H)⁺. Found: 1062.4607.

(1*R*,2'ζ,5*S*)-3-(2-Hydroxy-6-phenoxyhexyl)-3,4,5,6tetrahydro-1*H*-1,5-methanopyrido[1,2-*a*][1,5]diazocin-

8(2H)-one (16). A mixture of phenol (2 g, 21.3 mmol), K_2CO_3 (8.8 g, 63.4 mmol), and 6-bromo-1-hexene (3.4 mL, 25.5 mmol) in DMF (15 mL) was stirred at 60°C for 5 h under a nitrogen atmosphere. The mixture was cooled, poured into water, and extracted with dichloromethane. The combined organic layers were washed successively with water and brine and dried over anhydrous MgSO₄.

The product was purified by column chromatography using ethyl acetate-hexanes (5:95) to afford 1.8 g (96%) of (hex-5-en-1-yloxy)benzene as colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.24 (m, 2H), 6.96-6.86 (m, 3H), 5.9-5.76 (m, 1H), 5.08-4.94 (m, 2H), 3.96 (t, 2H, J = 6.5 Hz), 2.18-2.08 (m, 2H), 1.84-1.76 (m, 2H), 1.62-1.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 138.7, 129.6, 120.6, 114.9, 114.6, 67.7, 33.6, 28.9, 25.5. NMR data was consistent with reported data in CDCl₃.¹⁵⁻¹⁷ A mixture of 77% metachloroperbenzoic acid (3.4 g, 15.3 mmol) in dichloromethane (3 mL) was added dropwise to a solution of (hex-5-en-1-yloxy)benzene (1.8 g, 10.2 mmol) in dichloromethane (3 mL). The mixture was stirred at 25°C for 2 h. The mixture was poured into saturated solution of NaHCO₃ and extracted with dichloromethane. The combined organic layers were washed with brine, and dried over anhydrous MgSO₄. The product was purified by column chromatography using ethyl acetate-hexanes (5:95) to afford 1.6 g (81%) of 2-(4-phenoxybutyl)oxirane as colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.24 (m, 2H), 6.96-6.86 (m, 3H), 3.98 (t, 2H, J = 6.3 Hz), 2.98-2.9 (m, 1H), 2.78-2.72 (m, 1H), 2.52-2.46 (m, 1H), 1.9-1.8 (m, 2H), 1.72-1.58 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 129.6, 120.7, 114.6, 67.6, 52.3, 47.2, 32.3, 29.2, 22.8. NMR data was consistent with reported data in CDCl₃.¹⁵ A mixture of 2-(4-phenoxybutyl)oxirane (385 mg, 2 mmol) and cytisine (457 mg, 2.4 mmol) in methanol (8 mL) was stirred in a pressure tube for 8 h at 90°C. The solvent was evaporated, and the product was purified by column chromatography using methanol-dichloromethane (ratio ranging from 2:98 to 7:93) to afford 750 mg (98%) of 16 as a mixture of diastereoisomers. The ¹H NMR spectrum did not display any signals that would enable calculation of the ratio of diastereomers. The ¹H NMR spectrum displayed C-2' H (RCH(OH)R') as an unresolved multiplet at δ 3.62-3.46 (Fig. 1S, Panel C). Data in support of 16: ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.22 (m, 3H), 6.92 (t, 1H, J = 7.3 Hz), 6.89-6.84 (m, 2H), 6.44-6.4 (m, 1H), 6.01-5.94 (m, 1H), 4.11 and 4.05 (two d, 1H, J = 15.5 Hz), 3.96-3.84 (m, 3H), 3.62-3.46 (m, 1H), 3.09-2.95 (m, 2H), 2.88 and 2.83 (two d, 1H, J = 11.1 and 10.7 Hz), 2.66-2.4 (m, 3H), 2.36-2.06 (m, 3H), 1.97-1.67 (m, 4H), 1.64-1.22 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4 (163.44), 163.4 (163.42), 159.1, 150.9, 150.6, 138.9, 138.8, 129.5, 120.55, 120.53, 117.03, 116.96, 114.52, 114.5, 104.8, 104.7, 67.64, 67.63, 66.5, 65.9, 63.9, 63.5, 62.7, 62, 59.1, 58.9, 50.1, 50, 35.8, 35.2, 34.5, 34.2, 29.4, 29.3, 28.3, 27.9, 26, 25.9, 22.2, 22.1. HRMS (ESI) Calcd for $C_{23}H_{31}O_3N_2$: 383.2329 (M+H)⁺. Found: 383.2340. Anal. Calcd. for C₃₃H₃₀O₃N₂: C, 72.22; H, 7.91; N, 7.32. Found: C, 71.94; H, 7.93; N, 7.28.

(1*R*,5*S*)-3-(2-oxo-6-phenoxyhexyl)-3,4,5,6-tetrahydro-1*H*-1,5-methanopyrido[1,2-*a*][1,5]diazocin-8(2*H*)-one (17). To a suspension of Dess-Martin periodinane (424 mg, 1

mmol) in dichloromethane (3 mL) was added a solution of 16 (258 mg, 0.7 mmol) in dichloromethane (3 mL). The mixture was stirred at 25°C for 2 h, and the reaction was quenched with a 2:1 mixture of saturated Na₂S₂O₃ and NaHCO₃ (10 mL). The product was extracted with dichloromethane. The combined organic layers were washed successively with saturated NaHCO₃ solution and brine and dried over anhydrous MgSO₄. The solvent was evaporated, and the product was purified by column chromatography using methanol-dichloromethane (1:24) to afford 147 mg (57%) of 17 as a colorless, viscous oil: ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.2 (m, 3H), 6.93 (t, 1H, J = 7.3 Hz), 6.9-6.84 (m, 2H), 6.45 (d, 1H, J = 9 Hz), 5.98 (d, 1H, J = 6.8 Hz), 4.17 (d, 1H, J = 15.5 Hz), 3.94-3.82 (m, 3H), 3.08-2.84 (m, 4H), 2.72 (d, 1H, J = 10.6 Hz), 2.62 (d, 1H, J = 10.9 Hz), 2.58-2.51 (m, 1H), 2.5-2.42 (m, 1H), 2.3-2.04 (m, 2H), 1.93 (d, 1H, J = 12.8 Hz), 1.8 (d, 1H, J = 12.8 Hz), 1.66-1.5 (m, 4H); 13 C NMR (100 MHz, CDCl₃) δ 210.6, 163.6, 159.1, 151.1, 138.8, 129.5, 120.7, 116.9, 114.6, 104.8, 67.6, 67.4, 60.7 (60.73), 60.7 (60.7), 50.1, 39.3, 35.5, 28.8, 28.2, 25.5, 20. HRMS (ESI) Calcd for C₂₃H₂₉O₃N₂: 381.2173 (M+H)⁺. Found: 381.2177. Removing traces of solvent from the viscous oil precluded obtaining a satisfactory combustion analysis of 17. An oxime derivative of 17 was prepared using 110 mg of 17, hydroxylamine hydrochloride (30 mg, 0.4 mmole), and sodium acetate (39 mg, 0.5 mmol) in ethanol to afford 83 mg (72%) of a hygroscopic solid as mixture of syn/anti-isomers: mp 62-70°C (recrystallized from diethyl ether-hexanes). HRMS (ESI) Calcd for C₂₃H₃₀O₃N₃: 396.2282 (M+H)⁺. Found: 396.2277. Anal. Calcd. for $C_{23}H_{29}O_3N_3$ ·H₂O: C, 66.81; H, 7.56; N, 10.16. Found: C, 66.93; H, 7.28; N, 10.07.

References:

- 1 S. Balasubramanian, M.G. Nair, *Synth. Commun.*, 2000, **30**, 469.
- 2 H. Goto, Y. Terao, S. Akai, *Chem. Pharm. Bull.*, 2009, **57**, 346.
- 3 G.M. Basha, S.K. Yadav, R. Srinuvasarao, S. Prasanthi, T. Ramu, N. Mangarao, V. Siddayah, *Can. J. Chem.*, 2013, 91, 763.
- 4 H. Jung, S.Y. Shin, Y. Jung, T.A. Tran, H. O. Lee, K.Y. Jung, D. Koh, S.K. Cho, Y. Lim, *Chem. Biol. Drug Des.*, 2015, **86**, 496.
- 5 M.S. Frasinyuk, S.P. Bondarenko, V.P. Khilya, C. Liu, D.S. Watt, V.M. Sviripa, Org. Biomol. Chem., 2015, 13, 1053.
- 6 L. Farkas, A. Major, L. Pallos, J. Várady, *Chem. Ber.*, 1958, **91**, 2858.
- 7 J. Miao, H. Cui, J. Jin, F. Lai, H. Wen, X. Zhang, G.F. Ruda, X. Chen, D. Yin, *Chem. Commun.*, 2015, **51**, 881.
- 8 A. Matin, N. Gavande, M.S. Kim, N.X. Yang, N.K. Salam, J.R. Hanrahan, R.H. Roubin, D.E. Hibbs, *J. Med. Chem.*, 2009, **52**, 6835.

- 9 L. Tang, Y. Pang, Q. Yan, L. Shi, J. Huang, Y. Du, K. Zhao, J. Org. Chem., 2011, 76, 2744.
- 10 G.Y. Yeap, W.S. Yam, P. Dominiak, M.M. Ito, J. Mol. Struct., 2010, 967, 25.
- A. Vontzalidou, G. Zoidis, E. Chaita, M. Makropoulou, N. Aligiannis, G. Lambrinidis, E. Mikros, A.L. Skaltsounis, *Bioorg. Med. Chem. Lett.*, 2012, **22**, 5523.
- 12 H.Q. Li, Y. Luo, P.C. Lv, L. Shi, C.H. Liu, H.L. Zhu, Bioorg. Med. Chem. Lett., 2010, 20, 2025.
- S.P. Bondarenko, M.S. Frasinyuk, V.I. Vinogradova, V.P. Khilya, *Chem. Nat. Compd.*, 2013, 48, 970.
- 14 C. Zhanguo, W. Chuanning, Z. Pengfei, W. Yun, Z. Liyan, Acta Chim. Sinica, 2010, 68, 2347.
- 15 D. Mansuy, J. Leclaire, M. Fontecave, P. Dansette, *Tetrahedron*, 1984, **40**, 2847.
- 16 D.H.R. Barton, L. Bohé, X. Lusinchi, *Tetrahedron*, 1990, 46, 5273.
- 17 G.Z. Wang, J. Jiang, X.S. Bu, J.J. Dai, J. Xu, Y. Fu, H.J. Xu, Org. Lett., 2015, 17, 3682.

Supplemental Figures

Fig. S1. A. ¹H NMR (CDCl₃) of C-2' H (*i.e.*, RC<u>H</u>(OH)R') in **13d.** B. ¹H NMR (CDCl₃) of C-5 ArH of isoflavonoid in **13d**. ¹H NMR (CDCl₃) of C-2' H (*i.e.*, RC<u>H</u>(OH)R') in **16**.

Fig. S2. A. HPLC trace for compound **10a**. R_t = 11.09 min. B. HPLC trace for compound **10b**. R_t = 11.19 min.

Fig. S3. A. HPLC trace for compound **10c**. R_t = 11.81 min. B. HPLC trace for compound **10d**. R_t = 11.99 min.

		Normal Cells		Cancer Cells	
		BEAS-2B	HEL 299	LS174T	PC-3
		inhibition (%)	inhibition (%)	inhibition (%)	inhibition (%)
Cytinsine	10µM	0 ± 5.1	0 ± 5.6	13.9 ± 0.6	13.4 ± 7.6
10c	1µM	14 ± 4.0	15.9 ± 4.4	54.5 ± 2.7	33.9 ± 2.2
	10µM	23.3 ± 0.8	32.5 ± 1.3	88.4 ± 0.7	63.7 ± 3.7
Doxorubicin	1µM	98.2 ± 0.1	95.8 ± 1.3	98.2 ± 0.0	97.3 ± 1.2
	10µM	98.5 ± 0.1	94.3 ± 0.5	99.9 ± 0.1	99.5 ± 0.0
Erlotinib	1µM	8.5 ± 7.4	11.6 ± 1.9	33.2 ± 5.0	10.5 ± 2.7
	10µM	25.5 ± 9.2	73.5 ± 2.4	74.4 ± 2.6	51 ± 3.2
5-FU	1µM	0 ± 5.4	16.7 ± 1.8	22.4 ± 10.3	36.3 ± 11.5
	10µM	64 ± 2.1	75.3 ± 6.7	95.5 ± 1.1	70.3 ± 1.0
Sorafenib	1µM	0 ± 5.4	10.5 ± 1.9	26 ± 14.5	31.9 ± 5.1
	10µM	90 ± 1.7	97.8 ± 0.1	99.2 ± 0.0	96.6 ± 1.5

Table. S1. Effects of cytisine, **10c** and selected FDA-approved anticancer drugs on the proliferation of normalcells and cancer cells.