Supporting Information

For

Rhodium(III)-catalyzed and MeOH-involved regioselective *mono*-alkenylation of *N*-arylureas with acrylates

Honggui Lv,^{‡a,b,c} Jingjing Shi,^{‡b} Junjun Wang,^a Chao Zhang^a and Wei Yi^{*a,b}

^aKey Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University. Guangzhou, Guangdong 511436, P. R. China

^bVARI/SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China

^cDepartment of chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, P. R. China

‡ H. Lv and J. Shi contributed equally to this work.

E-mail: yiwei@gzhmu.edu.cn or yiwei.simm@simm.ac.cn

Table of contents

General information:	3
General procedure for synthesis of the starting materials	
Optimization of reaction conditions	5
General procedure for the Rh(III)-catalyzed alkenylation reaction	6
Characterizations of products	6-13
Synthesis of quinolin-2(1 <i>H</i>)-one	
Synthesis of (<i>E</i>)-methyl 3-(2-aminophenyl)acrylate	
Crystallographic data	14-19
References	19
¹ H and ¹³ C NMR spectra of products	20-40

General information:

All commercial materials were used as received unless otherwise noted. ¹H and ¹³C NMR spectra were recorded with Varian Mercury-Plus 400 NMR and Varian Mercury- Plus 500 NMR spectrometer as solutions (¹H 400 or 500 MHz; ¹³C 100 or 125MHz) in CDCl₃ or CD₃OD or DMSO-*d*₆. Chemical shifts are expressed in parts per million (ppm, δ) and are referenced to CHCl₃ (δ = 7.26 ppm; δ = 77.16 ppm) or CD₃OD (δ = 3.31 ppm; δ = 49.0 ppm) or DMSO-*d*₆ (δ = 5.50 ppm; δ = 39.52 ppm)as an internal standard. All coupling constants are absolute values and are expressed in Hz. The description of the signals include: s = singlet, d = doublet, t = triplet, m = multiplet and dd = doublet of doublets, at = apparent triplet, br = broad. High-resolution mass spectra were measured on an agilent TOF-G6230B mass spectrometer. Thin-layer chromatographies were done on pre-coated silica gel 60 F254 plates (Merck). Silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China) was used for general chromatography.

General Experimental Procedure for the Synthesis of N-aryl urea:¹⁻⁴

Aniline derivatives (1.00g, 10 mmol) and triethylamine (2.9 mL, 20 mmol) were dissolved in anhydrous CH_2Cl_2 (10 mL) in a 50 mL three neck round bottom flask followed by drop wise addition of chloroformic acid dimethyl amide (1.8 mL, 20 mmol) using a syringe. The reaction mixture was stirred overnight. After completion, the reaction was diluted with CH_2Cl_2 (30 mL), washed by sat. NaHCO₃ (30 mL), 2N HCl (30 mL), brine (20 mL) and dried over MgSO₄. The organic solvent was removed by evaporation. Purification by recrystallization in diethylehter afforded the corresponding *N*-arylurea as an off-white solid. The spectroscopic values are identical that of with literature.¹⁻⁴

List of known N-aryl urea substrates

SPECTRAL DATA:

N-(4-(3,3-dimethylureido)phenyl)methanesulfonamide (1h)

This compound was obtained as a white solid in 68% yield. **mp** : 208-209 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.39 (s, 1H), 8.27 (s, 1H), 7.41 (d, *J* = 8.8 Hz, 2H), 7.08 (d, *J* = 8.8 Hz, 2H), 2.91 (s, 6H), 2.90 (s, 3H); ¹³**C NMR** (100 MHz, ^{*d*6} DMSO) δ 155.8, 137.6, 131.9, 121.6, 120.6, 38.8, 36.2.; **HRMS** (ESI) calcd for 258.0907 ([M+H]⁺), **found** 258.0899 ([M+H]⁺).

1,1-dimethyl-3-(3,4,5-trimethoxyphenyl)urea (1k)

This compound was obtained as a white solid in 75% yield. **mp** : 141-142 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 6.69 (s,2H), 6.29 (s, 1H), 3.83 (s, 6H), 3.79 (s, 3H), 3.03(s, 6H); ¹³C **NMR** (100 MHz,CDCl₃) δ 155.9, 153.3, 135.5, 133.8, 97.6, 61.1, 56.2, 36.6; **HRMS** (ESI) calcd for 255.1339 ([M+H]⁺), **found** 255.1339 ([M+H]⁺).

Synthesis of 1,1,3-trimethyl-3-phenylurea

To a solution of 1,1-dimethyl-3-*p*-tolylurea (0.5g, 2.81 mmol) in dry THF (30 mL) was added NaH (60 % in mineral oil, 0.11g, 4.22 mmol) in several portions, and then iodomethane (0.35 mL, 5.62 mmol) was added at 0 °C. The reaction mixture was warmed to room temperature and stirred for further 5 hours. After complete consumption of the starting material monitored by TLC, water was added to the reaction mixture. The mixture was extracted with diethyl ether (3 x 40 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. Solvent was then removed under reduced pressure and the residue was purified by column chromatography (silica gel, hexane/ethyl acetate = 4/1) to afford 1,1,3-trimethyl-3-*p*-tolylurea **1s** (oil, quantitatively). ¹H NMR (500 MHz, CDCl₃) δ 7.10 (d, *J* = 8.5 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 3.16 (s, 3H), 2.66 (s, 6H), 2.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.2, 144.6, 134.0, 130.1, 123.9, 39.9, 38.1, 20.9.; **HRMS** (ESI) calcd for 179.1184 ([M+H]⁺), **found** 179.1180 ([M+H]⁺).

Optimization of reaction conditions:

H N N + O 1.0 equiv	OMe [Rh O 3.0 equiv T CH ₃ C	Cp [*] Cl ₂] ₂ (2.5 mol%) additive (1.0 equiv.) 'sOH•H ₂ O (1.0 equiv.) DH, 16 h, 85 °C, under a	MeO O NH OMe o ir 3a
entry	additive		Yield (%) ^{a,b}
1	Cu(OAc))2	N.R.
2	AgSbF ₆	5	45
3	Ag ₂ CO	3	N.R.
4	AgOTf		56
5	AgBF ₄		N.R.

Table S1. Screening of additives

^a 0.3 M. ^b isolated yield.

Table S2. Screening of solvents

^a 0.3 M. ^b isolated yield.

General procedure for the Rh(III)-catalyzed alkenylation reaction:

The mixture of $[Cp*RhCl_2]_2$ (2.4 mg, 0.00375mmol, 0.025 equiv), substrate **1a-q** (0.15 mmol, 1.0 equiv), **2a-c** (0.45 mmol, 3.0 equiv), AgOAc (0.030g, 0.18mmol, 1.2equiv), TsOH'H₂O (0.029g, 0.15mmol) and MeOH (0.5 mL) were stirred at 85 °C for 18 h under air. The resulting mixture was cooled to room temperature, silica gel column directly to give the corresponding desired products **3a-q** and **3t-u**.

Characterizations of products:

(E)-methyl 3-(2-(methoxycarbonylamino)phenyl)acrylate (3a)

 R_f = 0.6, 30% EtOAc in Hex; Compound **3a** was obtained as a white solid in 95% yield. **mp** : 122.5-123.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 15.8 Hz, 1H), 7.74 (br, 1H), 7.51 (d, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.8 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.78 (br, 1H), 6.38 (d, *J* = 15.8 Hz, 1H), 3.80 (s, 3H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 154.6, 139.5, 136.2, 131.0, 127.3, 126.8, 125.1, 123.6, 120.4, 52.7, 52.0; HRMS (ESI) calcd for 236.0923 ([M+H]⁺), found 236.0925 ([M+H]⁺).

(E)-methyl 3-(2-(methoxycarbonylamino)-3-methylphenyl)acrylate (3b)

R_f= 0.6, 30% EtOAc in Hex; Compound **3b** was obtained as a white solid in 83% yield. **mp** : 133-134 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, J = 16.0 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.65 – 7.52 (m, 2H), 6.74 (d, J = 16.0 Hz, 1H), 6.59 (br, 1H), 4.13 (s, 6H), 2.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 140.8, 136.8, 134.2, 132.7, 127.7, 127.0, 124.9, 119.8, 53.0, 51.9, 18.4; **HRMS** (ESI) calcd for 250.1079 ([M+H]⁺), **found** 250.1073 ([M+H]⁺).

(E)-methyl 3-(2-(methoxycarbonylamino)-4-methylphenyl)acrylate (3c)

 $R_f = 0.6, 30\%$ EtOAc in Hex; Compound **3c** was obtained as a white solid in 96% yield. **mp** : 149-150 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 15.8 Hz, 1H), 7.58 (br, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.62 (s, 1H), 6.36 (d, J = 15.8 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 154.6, 141.8, 139.3, 136.0, 127.3, 126.2, 123.9, 119.4, 52.8, 51.9, 21.7; HRMS (ESI) calcd for 250.1079 ([M+H]⁺), found 250.1075 ([M+H]⁺).

(E)-methyl 4-(3-methoxy-3-oxoprop-1-enyl)-3-(methoxycarbonyl)benzoate (3d)

 R_f = 0.5, 50% EtOAc in Hex; Compound **3d** was obtained as a white solid in 83% yield. **mp** : 168-169 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.86 - 7.79 (m, 2H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.04 -7.02 (m, 1H), 6.45 (d, *J* = 15.9 Hz, 1H), 3.91 (s, 3H), 3.81 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 166.1, 154.5, 138.5, 136.2, 132.1, 131.0, 127.2, 125.9, 124.8, 122.2, 52.8, 52.4, 52.0; HRMS (ESI) calcd for 294.0978 ([M+H]⁺), found 294.0972 ([M+H]⁺).

(E)-methyl 3-(2-(methoxycarbonylamino)-5-methylphenyl)acrylate (3e)

 R_f = 0.6, 30% EtOAc in Hex; *E*:*Z*=96:4; Compound **3e** was obtained as a white solid in 94% yield. **mp** : 122-123 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, *J* = 15.9 Hz, 1H), 7.58 (br, 1H), 7.35 (s, 1H), 7.21 (d, *J* = 8.3 Hz, 1H), 6.67 (s, 1H), 6.40 (d, *J* = 15.9 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 2.33 (d, *J* = 12.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.3, 154.8, 139.7, 135.1, 133.7, 131.9, 127.6, 124.1, 120.1, 52.7, 51.9, 21.0; **HRMS** (ESI) calcd for 250.1079 ([M+H]⁺), **found** 250.1080 ([M+H]⁺).

(E)-methyl 3-(4-isopropyl-2-(methoxycarbonylamino)phenyl)acrylate (3f)

 $R_f = 0.6, 30\%$ EtOAc in Hex; *E:Z*=97:3; Compound **3f** was obtained as a white solid in 93% yield. **mp** : 116-117 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, *J* = 15.9 Hz, 1H), 7.59 (br, 1H), 7.36 (d, *J* = 1.8 Hz, 1H), 7.31-7.19 (m, 1H), 6.70 (br, 1H), 6.40 (d, *J* = 15.9 Hz, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 2.94-2.84(m, 1H), 1.24 (s, 3H), 1.23 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 167.3, 154.9, 146.0, 139.9, 134.0, 129.3, 127.2, 125.1, 124.1, 112.0, 52.7, 51.9, 33.8, 24.0; **HRMS** (ESI) calcd for 278.1392 ([M+H]⁺), **found** 278.1397 ([M+H]⁺).

(E)-methyl 3-(5-methoxy-2-(methoxycarbonylamino)phenyl)acrylate (3g)

 R_f = 0.4, 30% EtOAc in Hex; Compound **3g** was obtained as a white solid in 98% yield. **mp** : 137-138 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 15.8 Hz, 1H), 7.50 (br, 1H), 7.04 (s, 1H), 6.94 (d, *J* = 8.1 Hz, 1H), 6.45 (br, 1H), 6.38 (d, *J* = 15.9 Hz, 1H), 4.06 - 3.45 (m, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 167.2, 157.3, 155.2, 139.6, 129.3, 126.5, 120.5, 117.1, 111.5, 55.7, 52.8, 52.0; HRMS (ESI) calcd for 266.1028 ([M+H]⁺), found 266.1026 ([M+H]⁺).

(E)-methyl 3-(2-(methoxycarbonylamino)-5-(methylsulfonamido)phenyl)acrylate (3h)

 R_f = 0.3, 50% EtOAc in Hex; Compound **3h** was obtained as a white solid in 86% yield. **mp** : 159-160 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.34 (s, 1H), 7.77 (d, *J* = 16.0 Hz, 1H), 7.48 (s, 1H), 7.34 (d, *J* = 8.8 Hz, 1H), 7.23 (d, *J* = 8.8 Hz, 1H), 6.39 (d, *J* = 16.0 Hz, 1H), 3.74 (s, 3H), 3.64 (s, 3H), 3.00 (s, 3H).¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.4, 155.1, 140.1, 136.4, 132.8, 129.5, 127.6, 122.9, 118.8, 117.7, 51.9, 51.6; HRMS (ESI) calcd for 329.0807 ([M+H]⁺), found 329.0802 ([M+H]⁺).

(E)-methyl 3-(2-(methoxycarbonylamino)-4,5-dimethylphenyl)acrylate (3i)

 $R_f = 0.6, 30\%$ EtOAc in Hex; Compound **3i** was obtained as a white solid in 92% yield. **mp** : 131-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 16.0 Hz, 1H), 7.28 (s, 1H), 7.10 (s, 1H), 6.38 (d, J = 16.0 Hz, 1H), 6.19 (br, 1H), 3.79 (s, 6H), 2.32 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 140.9, 137.5, 136.7, 133.6, 132.4, 131.7, 125.3, 119.5, 52.9, 51.8, 21.1, 18.2; **HRMS** (ESI) calcd for 264.1236 ([M+H]⁺), found 264.1237 ([M+H]⁺).

(E)-methyl 3-(2-(methoxycarbonylamino)-3,5-dimethylphenyl)acrylate (3j)

 R_f = 0.6, 30% EtOAc in Hex; *E*:*Z*=96:4; Compound **3j** was obtained as a white solid in 86% yield. **mp** : 118.5-119.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 15.8 Hz, 1H), 7.44 (s, 1H), 7.29 (s, 1H), 6.65 (br, 1H), 6.34 (d, *J* = 15.8 Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 2.25 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 154.9, 140.5, 139.5, 133.9, 128.0, 118.8, 52.7, 51.8, 20.0, 19.4; HRMS (ESI) calcd for 264.1236 ([M+H]⁺), found 264.1240 ([M+H]⁺).

(E)-methyl 3-(2,3,4-trimethoxy-6-(methoxycarbonylamino)phenyl)acrylate (3k)

 R_f = 0.4, 50% EtOAc in Hex; *E*/Z= 89:11; Compound **3k** was obtained as a white solid in 85% yield. **mp** : 141-142 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.69 (d, *J* = 16.3 Hz, 1H), 7.30 (br, 1H), 6.68 (br, 1H), 6.53 (d, *J* = 16.3 Hz, 1H), 3.95-3.62 (m, 15H). ¹³C NMR (125MHz, CDCl₃) δ 168.0, 155.0, 154.5, 153.6, 153.2, 136.5, 132.8, 121.3, 61.1, 61.0, 56.1, 52.7, 51.9; **HRMS** (ESI) calcd for 326.1240 ([M+H]⁺), **found** 326.1237 ([M+H]⁺).

(E)-methyl 3-(5-fluoro-2-(methoxycarbonylamino)phenyl)acrylate (3l)

 R_f = 0.5, 30% EtOAc in Hex; Compound **31** was obtained as a white solid in 89% yield. **mp** : 157-158 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 15.8 Hz, 1H), 7.66 (br, 1H), 7.22 (dd, *J* = 9.1, 2.9 Hz, 1H), 7.14-7.04 (m, 1H), 6.54 (br, 1H), 6.38 (d, *J* = 15.8 Hz, 1H), 3.81 (s, 3H), 3.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 159.9 (d, *J* = 243.7 Hz), 154.6, 138.2, 132.0 (d, *J* = 1.9 Hz), 126.0, 121.5, 117.8 (d, *J* = 22.7 Hz), 113.3 (d, *J* = 23.4 Hz), 52.7, 52.0; HRMS (ESI) calcd for 254.0829 ([M+H]⁺), found 254.0821 ([M+H]⁺).

(E)-methyl 3-(3-chloro-2-(methoxycarbonylamino)phenyl)acrylate (3m)

 R_f = 0.4, 30% EtOAc in Hex; Compound **3m** was obtained as a white solid in 80% yield. **mp** : 163-164 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 16.0 Hz, 1H), 7.55 (d, *J* = 7.8 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.29-7.16 (m, 1H), 6.53-6.30 (d, *J* = 16.0 Hz, 1H; br, 1H), 3.80 (s, 3H), 3.78 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 155.1, 140.3, 134.2, 133.2, 131.0, 128.0, 125.8, 120.4, 53.3, 52.0; HRMS (ESI) calcd for 270.0533, 272.0504 ([M+H]⁺), found 270.0535, 272.0514 ([M+H]⁺).

(E)-methyl 3-(5-chloro-2-(methoxycarbonylamino)phenyl)acrylate (3n)

 \mathbf{R}_{f} = 0.5, 30% EtOAc in Hex; *E*/*Z*= 93:7; Compound **3n** was obtained as a white solid in 92% yield. **mp** : 147-148 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.81-7.66 (m, 2H), 7.47 (d, *J* = 2.4 Hz, 1H), 7.34 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.68 (br, 1H), 6.39 (d, *J* = 15.8 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H). ¹³**C NMR** (100MHz, CDCl₃) δ 166.9, 154.4, 138.1, 134.7, 130.9, 130.4, 127.1, 121.9, 52.9, 52.2; **HRMS** (ESI) calcd for 270.0533, 272.0504 ([M+H]⁺), **found** 270.0552, 272.0525 ([M+H]⁺).

(E)-methyl 3-(5-bromo-2-(methoxycarbonylamino)phenyl)acrylate (30)

 $\mathbf{R}_{f} = 0.3, 30\%$ EtOAc in Hex; Compound **30** was obtained as a white solid in 90% yield. **mp** : 166-167°C; ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 15.8 Hz, 1H), 7.68 (br, 1H), 7.61 (d, *J* = 2.1 Hz, 1H), 7.47 (dd, *J* = 8.7, 2.1 Hz, 1H), 6.71 (br, 1H), 6.38 (d, *J* = 15.8 Hz, 1H), 3.81 (s, 3H), 3.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 154.3, 138.0, 135.2, 133.7, 130.0, 128.1, 124.7, 121.9, 118.0, 52.9, 52.1; HRMS (ESI) calcd for 314.0028, 316.0007([M+H]⁺), found 314.0050, 316.0029 ([M+H]⁺).

(E)-methyl 3-(5-acetyl-2-(methoxycarbonylamino)phenyl)acrylate (3p)

 R_f = 0.3, 40% EtOAc in Hex; Compound **3p** was obtained as a white solid in 72% yield. **mp** : 150-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.09 (m, 2H), 7.96 (d, *J* = 8.6 Hz, 1H), 7.79 (d, *J* = 15.7 Hz, 1H), 6.91 (br, 1H), 6.48 (d, *J* = 15.7 Hz, 1H), 3.83 (s, 3H), 3.83 (s, 3H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 166.8, 153.7, 140.3, 138.3, 132.9, 131.2, 128.0, 124.8, 122.6, 120.9, 53.0, 52.2, 26.6; HRMS (ESI) calcd for 278.1028 ([M+H]⁺), found 278.1026 ([M+H]⁺).

(E)-methyl 3-(3-methoxy-3-oxoprop-1-enyl)-4-(methoxycarbonylamino)benzoate (3q)

 R_f = 0.5, 50% EtOAc in Hex; *E*/Z= 89:11; Compound **3q** was obtained as a white solid in 68% yield. **mp** : 171-172 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.11-7.98 (m, 2H), 7.79 (d, *J* = 15.7 Hz, 1H), 6.89 (br, 1H), 6.48 (d, *J* = 15.7 Hz, 1H), 3.92 (s, 3H), 3.83 (s, 3H), 3.82 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 166.9, 166.3, 153.8, 140.2, 138.2, 132.2, 129.3, 125.9, 124.8, 122.4, 121.0, 53.0, 52.4, 52.2; **HRMS** (ESI) calcd for 294.0978 ([M+H]⁺), **found** 294.0980 ([M+H]⁺).

(E)-methyl 3-(1-(methoxycarbonylamino)naphthalen-2-yl)acrylate (3r)

 $\mathbf{R}_{f} = 0.6, 30\%$ EtOAc in Hex; Compound **3r** was obtained as a white solid in 90% yield. **mp** :183-184 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 8.09 (d, *J* = 16.0 Hz, 1H), 7.99 (d, *J* = 7.0 Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 8.7 Hz, 1H), 7.70 (d, *J* = 8.7 Hz, 1H), 7.61- 7.46 (m, 2H), 6.66 (br, 1H), 6.53 (d, *J* = 16.0 Hz, 1H), 3.82 (s, 6H). ¹³**C NMR** (125 MHz, CDCl₃) δ 167.4, 155.8 140.3, 135.0, 132.1, 131.1, 129.7, 128.4, 127.6, 123.4, 123.1, 120.1, 53.2, 52.0; **HRMS** (ESI) calcd for 286.1079 ([**M**+H]⁺), **found** 286.1068 ([**M**+H]⁺).

(*E*)-methyl 3-(2-(*d*₃-methoxycarbonylamino)phenyl)acrylate (3t)

 $R_f = 0.6, 30\%$ EtOAc in Hex; Compound **3t** was obtained as a white solid in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 15.8 Hz, 1H), 7.74 (br, 1H), 7.52-7.50 (m, 1H), 7.40-7.36 (m, 1H), 7.15 (t, J = 7.8 Hz, 1H), 6.74 (br, 1H), 6.39 (d, J = 15.8 Hz, 1H), 3.80 (s, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 154.6, 139.5, 136.2, 131.1, 127.4, 126.7, 125.1, 123.6, 120.6, 52.0.

(E)-butyl 3-(2-(methoxycarbonylamino)phenyl)acrylate (3u)

 R_f = 0.6, 30% EtOAc in Hex; *E*/*Z*= 97:3; Compound **3u** was obtained as a white solid in 91% yield. **mp** : 84-85 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, *J* = 15.8 Hz, 1H), 7.76 (br, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 1H), 7.15 (t, *J* = 7.8 Hz, 1H), 6.72 (br, 1H), 6.39 (d, *J* = 15.8 Hz, 1H), 4.21 (t, *J* = 6.7 Hz, 2H), 3.79 (s, 3H), 1.72 − 1.65 (m, 2H), 1.48-1.38 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 166.9, 154.6, 139.2, 136.2, 131.0, 129.2, 127.4, 125.1, 123.4, 121.1, 64.8, 52.8, 30.9, 19.3, 13.8; **HRMS** (ESI) calcd for 278.1392 ([M+H]⁺), **found** 278.1388 ([M+H]⁺).

(E)-tert-butyl 3-(2-(methoxycarbonylamino)phenyl)acrylate (3v)

 $R_f = 0.6$, 30% EtOAc in Hex; E/Z= 97:3; Compound **3v** was obtained as an oily liquid in 88%

yield.¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (br, 1H), 7.73 (d, J = 15.8 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 6.70 (br, 1H), 6.32 (d, J = 15.8 Hz, 1H), 3.78 (s,3H), 1.53 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.1, 154.5, 138.1, 136.1, 130.7, 129.1, 128.9, 127. 4, 125.0, 123.1, 81.0, 52.7, 28.3; **HRMS** (ESI) calcd for 278.1392 ([M+H]⁺), **found** 278.1395 ([M+H]⁺).

Synthesis of quinolin-2(1H)-one (6)

A mixture of compound 3a (0.047g, 0.2 mmol), TBAF (0.26g, 1mmol) and ethylene glycol (0.5 ml) ware added into a 5 mL flask, The resulting mixture was refluxed for 15 h. After cooling, the mixture was poured into H₂O (10 mL) and the solid was filtered and washed with Et₂O and CH₂Cl₂ to give **6** (0.022g, 75%) as a brown solid. ¹H NMR (400 MHz, CDCl₃) δ 11.71 (br, 1H), 7.82 (d, *J* = 9.5 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.50-7.54 (m, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.21-7.24 (m, 1H), 6.71 (d, *J* = 9.5 Hz, 1H).

Synthesis of (E)-methyl 3-(2-aminophenyl)acrylate (7)

A solution of **3a** (0.047g, 0.2 mmol) and TBAF (1mL, 1 M in THF, 1mmol) in dry THF (1 mL) was stirred under argon . The reaction mixture was refluxed for 8 h. After cooling, a solution of NH₄Cl satd. (5 mL) was added and the aqueous phase was extracted with EtOAc (3 x10 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, hexane/ethyl acetate = 3/1) to afford Compound **7** as a brown solid (0.029g, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 15.8 Hz, 1H), 7.38 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.22 – 7.10 (m, 1H), 6.77 (t, *J* = 7.5 Hz, 1H), 6.70 (d, *J* = 8.1 Hz, 1H), 6.36 (d, *J* = 15.8 Hz, 1H), 3.98 (s, 2H), 3.80 (s, 3H).

Crystallographic data:

X-ray structural analysis was performed on a Bruker SMART CCD diffractometer at 296 K. Single crystal of 3a was obtained by recrystallization in ethyl acetate and petroleum (1 : 3) at room temperature.

Figure 1. ORTEP plot of compound 3a. All H atoms have been omitted for clarity.

$C_{12}H_{13}NO_4$	Z = 2
$M_r = 235.23$	F(000) = 248
Triclinic, P ⁻¹	$D_{\rm x} = 1.301 {\rm ~Mg~m^{-3}}$
a = 4.9045 (4) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
b = 10.4027 (10) Å	Cell parameters from 3298 reflections
c = 12.0076 (10) Å	θ = 2.5–26.2 °
$\alpha = 83.328 (4)^{\circ}$	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 80.762 (6)^{\circ}$	<i>T</i> = 296 K
γ = 89.239 (6) °	Block, colourless
$V = 600.58 (9) \text{ Å}^3$	0.3 × 0.15 × 0.12 mm

Table 2. Data collection

Bruker APEX-II CCD diffractometer	1846 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.030$
ϕ and ω scans	$\theta_{max} = 27.6$ °, $\theta_{min} = 1.7$ °
Absorption correction: multi-scan	$h = -6 \rightarrow 6$

SADABS2008/1 (Bruker,2008) was used for	
absorption correction. wR2(int) was 0.0746	
before and 0.0511 after correction. The Ratio of	
minimum to maximum transmission is 0.8920.	
The $\lambda/2$ correction factor is 0.0015.	
$T_{\min} = 0.665, T_{\max} = 0.746$	$k = -12 \rightarrow 13$
9835 measured reflections	$l = -15 \rightarrow 15$
2736 independent reflections	

 Table 3. Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.081$	H-atom parameters constrained
$wR(F^2) = 0.277$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1194P)^{2} + 0.6842P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.07	(Δ/σ) _{max} < 0.001
2736 reflections	Δ _{max} = 0.32 e Å ⁻³
156 parameters	$\Delta \rangle_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table4. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	-0.3954 (5)	0.7593 (3)	0.0093 (3)	0.0729 (9)

02	-0.0091 (5)	0.8689 (3)	-0.0691 (2)	0.0596 (7)
O3	0.5430 (8)	0.8853 (3)	0.3312 (3)	0.0954 (12)
O4	0.6530 (6)	0.7522 (3)	0.4748 (2)	0.0703 (8)
N1	0.0174 (5)	0.7134 (3)	0.0687 (2)	0.0465 (7)
H1	0.1831	0.7424	0.0627	0.056*
C1	-0.0118 (8)	0.4657 (4)	0.3178 (4)	0.0595 (9)
H1A	0.0648	0.4492	0.3840	0.071*
C2	-0.1890 (9)	0.3753 (4)	0.2915 (4)	0.0678 (11)
H2	-0.2327	0.2995	0.3401	0.081*
C3	-0.3008 (8)	0.3988 (4)	0.1920 (4)	0.0616 (10)
Н3	-0.4213	0.3387	0.1744	0.074*
C4	-0.2359 (7)	0.5090 (4)	0.1197 (3)	0.0514 (9)
H4	-0.3101	0.5231	0.0528	0.062*
C5	-0.0572 (6)	0.6015 (3)	0.1460 (3)	0.0424 (7)
C6	0.0545 (6)	0.5810 (3)	0.2471 (3)	0.0451 (8)
C7	0.2291 (7)	0.6797 (3)	0.2771 (3)	0.0495 (8)
H7	0.2391	0.7589	0.2319	0.059*
C8	0.3759 (7)	0.6694 (4)	0.3618 (3)	0.0521 (8)
Н8	0.3811	0.5909	0.4072	0.062*
С9	0.5286 (7)	0.7807 (4)	0.3836 (3)	0.0537 (9)
C10	0.8014 (11)	0.8568 (5)	0.5077 (5)	0.0877 (16)
H10A	0.8886	0.9096	0.4409	0.132*
H10B	0.9394	0.8220	0.5509	0.132*
H10C	0.6748	0.9085	0.5531	0.132*
C11	-0.1516 (6)	0.7781 (3)	0.0036 (3)	0.0469 (8)
C12	-0.1616 (11)	0.9469 (5)	-0.1443 (4)	0.0795 (13)
H12A	-0.0372	1.0046	-0.1963	0.119*
H12B	-0.2971	0.9964	-0.1008	0.119*
H12C	-0.2523	0.8920	-0.1861	0.119*

Table 5. Atomic displacement parameters (\AA^2)

U^{11} U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
-------------------	----------	----------	----------	----------

01	0.0308 (12)	0.098 (2)	0.089 (2)	-0.0045 (12)	-0.0211 (12)	0.0087 (17)
O2	0.0509 (14)	0.0609 (16)	0.0666 (16)	-0.0059 (11)	-0.0161 (12)	0.0043 (12)
O3	0.125 (3)	0.072 (2)	0.103 (3)	-0.026 (2)	-0.065 (2)	0.0022 (19)
O4	0.0698 (18)	0.084 (2)	0.0659 (17)	-0.0090 (15)	-0.0325 (14)	-0.0148 (15)
N1	0.0292 (12)	0.0595 (17)	0.0523 (16)	-0.0063 (11)	-0.0107 (11)	-0.0058 (13)
C1	0.054 (2)	0.062 (2)	0.062 (2)	-0.0057 (17)	-0.0117 (17)	-0.0035 (18)
C2	0.063 (2)	0.059 (2)	0.079 (3)	-0.0148 (18)	-0.005 (2)	-0.001 (2)
C3	0.0483 (19)	0.060 (2)	0.078 (3)	-0.0130 (16)	-0.0053 (18)	-0.0215 (19)
C4	0.0375 (16)	0.063 (2)	0.056 (2)	-0.0072 (14)	-0.0052 (14)	-0.0195 (17)
C5	0.0274 (13)	0.0506 (18)	0.0490 (17)	0.0005 (12)	-0.0013 (12)	-0.0111 (14)
C6	0.0346 (14)	0.0510 (18)	0.0506 (18)	0.0009 (13)	-0.0056 (13)	-0.0121 (14)
C7	0.0473 (17)	0.054 (2)	0.0492 (18)	-0.0054 (14)	-0.0122 (14)	-0.0092 (15)
C8	0.0455 (17)	0.059 (2)	0.054 (2)	-0.0022 (15)	-0.0109 (15)	-0.0090 (16)
C9	0.0447 (17)	0.066 (2)	0.054 (2)	0.0001 (16)	-0.0119 (15)	-0.0144 (17)
C10	0.082 (3)	0.093 (3)	0.106 (4)	0.000 (3)	-0.051 (3)	-0.039 (3)
C11	0.0365 (15)	0.057 (2)	0.0498 (18)	-0.0013 (13)	-0.0111 (13)	-0.0120 (15)
C12	0.085 (3)	0.074 (3)	0.084 (3)	-0.001 (2)	-0.036 (3)	0.006 (2)

 Table 6. Geometric parameters (Å, %)

O1—C11	1.204 (4)	C3—C4	1.364 (6)
O2—C11	1.331 (4)	C4—H4	0.9300
O2—C12	1.437 (5)	C4—C5	1.405 (4)
O3—C9	1.189 (5)	C5—C6	1.404 (5)
O4—C9	1.340 (5)	C6—C7	1.458 (4)
O4—C10	1.443 (5)	С7—Н7	0.9300
N1—H1	0.8600	C7—C8	1.331 (5)
N1—C5	1.415 (4)	С8—Н8	0.9300
N1—C11	1.350 (4)	C8—C9	1.459 (5)
C1—H1A	0.9300	C10—H10A	0.9600
C1—C2	1.385 (6)	C10—H10B	0.9600
C1—C6	1.397 (5)	C10—H10C	0.9600
С2—Н2	0.9300	C12—H12A	0.9600

C2—C3	1.389 (6)	С12—Н12В	0.9600
С3—Н3	0.9300	С12—Н12С	0.9600
C11—O2—C12	116.5 (3)	C8—C7—C6	127.4 (4)
C9—O4—C10	116.1 (4)	С8—С7—Н7	116.3
C5—N1—H1	117.5	С7—С8—Н8	119.9
C11—N1—H1	117.5	С7—С8—С9	120.2 (4)
C11—N1—C5	125.0 (3)	С9—С8—Н8	119.9
C2—C1—H1A	119.3	O3—C9—O4	122.2 (4)
C2—C1—C6	121.5 (4)	O3—C9—C8	126.7 (4)
C6—C1—H1A	119.3	O4—C9—C8	111.1 (3)
С1—С2—Н2	120.3	O4—C10—H10A	109.5
C1—C2—C3	119.4 (4)	O4—C10—H10B	109.5
С3—С2—Н2	120.3	O4—C10—H10C	109.5
С2—С3—Н3	119.6	H10A—C10—H10B	109.5
C4—C3—C2	120.7 (3)	H10A—C10—H10C	109.5
С4—С3—Н3	119.6	H10B—C10—H10C	109.5
С3—С4—Н4	119.9	O1—C11—O2	123.9 (3)
C3—C4—C5	120.2 (3)	O1—C11—N1	126.3 (3)
С5—С4—Н4	119.9	O2—C11—N1	109.8 (3)
C4—C5—N1	119.9 (3)	O2—C12—H12A	109.5
C6—C5—N1	119.9 (3)	O2—C12—H12B	109.5
C6—C5—C4	120.1 (3)	O2—C12—H12C	109.5
C1—C6—C5	118.0 (3)	H12A—C12—H12B	109.5
C1—C6—C7	121.8 (3)	H12A—C12—H12C	109.5
C5—C6—C7	120.2 (3)	H12B—C12—H12C	109.5
С6—С7—Н7	116.3		
N1—C5—C6—C1	-176.3 (3)	C5—N1—C11—O2	-172.5 (3)
N1—C5—C6—C7	5.0 (4)	C5—C6—C7—C8	-171.4 (3)
C1—C2—C3—C4	0.6 (6)	C6-C1-C2-C3	0.8 (6)
C1—C6—C7—C8	10.0 (6)	C6—C7—C8—C9	-176.7 (3)

C2-C1-C6-C5	-2.0 (5)	C7—C8—C9—O3	-1.3 (6)
C2-C1-C6-C7	176.7 (4)	С7—С8—С9—О4	177.4 (3)
C2—C3—C4—C5	-0.9 (6)	C10—O4—C9—O3	1.3 (6)
C3—C4—C5—N1	177.7 (3)	C10—O4—C9—C8	-177.5 (4)
C3—C4—C5—C6	-0.3 (5)	C11—N1—C5—C4	36.2 (5)
C4—C5—C6—C1	1.7 (5)	C11—N1—C5—C6	-145.8 (3)
C4—C5—C6—C7	-177.0 (3)	C12—O2—C11—O1	-0.3 (6)
C5—N1—C11—O1	8.0 (6)	C12—O2—C11—N1	-179.7 (3)

References:

- 1. S. Kathiravan and I. A. Nicholls, Chem. Commun., 2014, 50, 14964.
- 2. M. K. Manna, A. Hossian and R. Jana, Org. Lett., 2015, 17, 672.
- 3. D. V. Singh, K. Adeppa and K. Misra, J. Mol. Model., 2012, 18, 1431.
- 4. E. Hernando, R. R. Castillo, N. Rodr guez and J. C. Carretero, *Chem.-Eur. J.*, 2014, 20, 13854.
- 5. Y. Liu, G. Q. Chen, C. W. Tse, X. Guan, Z. J. Xu, J. S. Huang and C. M. Che, *Chem. -Asian J.*, 2015, **10**, 100.

¹H and ¹³C NMR spectra of products

-2.36

¹H and ¹³C NMR spectra of 3d

^{20 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10} C f1 (ppm)

¹H and ¹³C NMR spectra of 3e

¹H and ¹³C NMR spectra of 3f

¹H and ¹³C NMR spectra of 3h

¹H and ¹³C NMR spectra of 3j

¹H and ¹³C NMR spectra of 3k

¹H and ¹³C NMR spectra of 3p

¹H and ¹³C NMR spectra of 3q

¹H and ¹³C NMR spectra of 3u

¹H and ¹³C NMR spectra of 3v

