Supporting Information

Indole Synthesis by Palladium-Catalyzed Tandem Allylic Isomerization – Furan Diels-Alder Reaction

Jie Xu[‡] and Peter Wipf^{*,‡}

[‡]University of Pittsburgh, Department of Chemistry, Pittsburgh, PA 15260, USA

Contents

General Experimental Protocols	
Synthetic Procedures and Spectral Characterization.	S3
Preparations of Allylic Acetates	S3
Conversions to Indoles	S14
References	S21
Copies of ¹ H NMR and ¹³ C NMR Spectra	S22

General Experimental Protocols

All reactions were performed under an N₂ or argon atmosphere and all glassware was dried in an oven at 140 °C for 2 h prior to use. Reactions carried out at -78 °C employed a CO₂/acetone bath. THF was distilled over sodium/benzophenone ketyl, and CH₂Cl₂ was purified using an alumina column filtration system. DMF was dried over 4 Å molecule sieves. Pyridine and Et₃N were dried from KOH. Reactions were monitored by TLC analysis (pre-coated silica gel 60 F₂₅₄ plates) and spots were visualized by UV or with a PMA solution (5 g of phosphomolybdic acid in 100 mL of 95% EtOH), *p*-anisaldehyde solution (2.5 mL of *p*-anisaldehyde, 2 mL of AcOH, and 3.5 mL of conc. H₂SO₄ in 100 mL of 95% EtOH), Vaughn's reagent (4.8 g of $(NH_4)_6Mo_7O_{24} \bullet 4 H_2O$ and 0.2 g of Ce $(SO_4)_2$ in 100 mL of a 3.5 N H₂SO₄ solution) or a KMnO₄ solution (1.5 g of KMnO₄ and 1.5 g of K₂CO₃ in 100 mL of a 0.1% NaOH solution). Purifications by chromatography were performed using SiO₂ or an ISCO-Companion flash chromatography system. ¹H/¹³C NMR spectra were recorded on Bruker Avance 300/75 MHz, Bruker Avance 400/100 MHz or Bruker Avance 500/125 MHz instrument. Chemical shifts were reported in parts per million with the residual solvent peak used as the internal standard. Chemical shifts were tabulated as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q= quarter, dd = doublet of doublet, dt = doublet of triplet, m = multiplet, br = broad, app = apparent), coupling constants, and integration. Mass spectra were obtained on a Micromass Autospec double focusing instrument. IR spectra were obtained on an Identify IR-ATR spectrometer. Microwave reactions were performed using a Biotage Initiator in glass microwave vials (cap sealed) with continuous magnetic stirring and an external surface temperature sensor. LCMS analyses were completed on a Waters MicroMass ZQ with 2525 Binary Gradient Module, 2420 ELSD, 2996 PDA using MeCN/H₂O with 0.1% TFA. Melting points (uncorrected) were determined using a Mel-Temp instrument.

Synthetic Procedures and Spectral Characterization

Preparations of Allylic Acetates

tert-Butyl furan-2-ylcarbamate (12).¹ To a stirred solution of 2-furoyl chloride (805 mg, 6.17 mmol) in *t*-BuOH (4.0 mL) was added sodium azide (457 mg, 7.03 mmol) in one portion. The reaction mixture was stirred at rt for 24 h, and then at reflux (ca. 85 °C) for 16 h. The solvent was removed under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 9 : 1) to give **12** (751 mg, 67%) as a white solid: ¹H NMR (CDCl₃, 400 MHz) δ 7.06 (dd, 1 H, *J* = 1.2, 2.0 Hz), 6.58 (br, 1 H), 6.34 (dd, 1 H, *J* = 2.0, 3.2 Hz), 6.04 (br, 1 H), 1.50 (s, 9 H); ¹³C NMR (CDCl₃, 100 MHz) δ 151.8, 145.4, 136.1, 111.3, 95.2, 81.3, 28.1.

(*Z*)-4-((Methylsulfonyl)oxy)but-2-en-1-yl acetate (14). To a cooled (0 °C) solution of (*Z*)-4-hydroxybut-2-en-1-yl acetate² (278 mg, 2.14 mmol) and triethylamine (0.90 mL, 6.4 mmol) in anhydrous CH₂Cl₂ (5.0 mL) was added methanesulfonyl chloride (0.21 mL, 2.7 mmol). The reaction mixture was stirred at 0 °C for 45 min, quenched with water (5.0 mL) at 0 °C, extracted with CH₂Cl₂, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 1 : 1) to give **14** (247 mg, 55%) as a pale yellow liquid: ¹H NMR (CDCl₃, 400 MHz) δ 5.85 (ttd, 1 H, *J* = 1.2, 6.4, 10.8 Hz), 5.80 (ttd, 1 H, *J* = 1.2, 6.4, 11.2 Hz), 4.85 (d, 2 H, *J* = 6.0 Hz), 4.66 (d, 2 H, *J* = 6.0 Hz), 3.02 (s, 3 H), 2.06 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.6, 130.1, 126.0, 64.8, 59.5, 38.0, 31.5, 20.8.

(Z)-4-((tert-Butoxycarbonyl)(furan-2-yl)amino)but-2-en-1-yl acetate (15). To a solution of **12** (971 mg, 5.30 mmol) in dry DMF (7.0 mL) at 0 °C was added NaH (318 mg, 7.95 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 2 h. Then, 14 (499 mg, 3.36 mmol) was added dropwise over 5 min. The resulting solution was stirred at 0 °C for 2 h and then rt for 2 h, diluted with Et₂O (5 mL), quenched with saturated aqueous NH₄Cl (5 mL), extracted with Et₂O (3 x 15 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **15** (939 mg, 60%) as a pale yellow liquid: ATR-IR (neat) 2954, 2922, 2852, 1713, 1685, 1368, 1236, 1206, 1150, 1025 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.17 (dd, 1 H, *J* = 0.8, 2.0 Hz), 6.32 (dd, 1 H, *J* = 2.4, 3.2 Hz), 6.00 (br, 1 H), 5.74 (ttd, 1 H, *J* = 1.2, 6.8, 10.8 Hz), 5.66 (ttd, 1 H, *J* = 1.2, 6.8, 11.2 Hz), 4.59 (d, 2 H, J = 6.4 Hz), 4.27 (d, 2 H, J = 6.8 Hz), 2.04 (s, 3 H), 1.45 (s, 9 H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.2, 153.1, 147.8, 137.8, 129.4, 126.2, 110.6, 100.8, 81.0, 59.5, 45.0, 27.8, 20.5; MS (ESI) *m*/z (rel. intensity) 318 ([M+Na]⁺, 27), 259 (56), 218 (100), 203 (50), 136 (29); HRMS (EI) m/z calcd for C₁₅H₂₁NO₅Na [M+Na] 318.1317, found 318.1328.

(*E*)-4-Bromo-3-methylbut-2-en-1-yl acetate (18).³ To a solution of isoprene (1.96 mL, 19.6 mmol) in glacial acetic acid (10.0 mL) was added *N*-bromosuccinimide (2.59 g, 14.6 mmol). The reaction mixture was stirred at rt for 12 h, quenched with

water, extracted with CH_2Cl_2 , washed with water, aqueous NaHCO₃, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 32 : 1) to give **18** (1.66 g, 55%) as a colorless liquid: ¹H NMR (CDCl₃, 400 MHz) δ 5.72 (bt, 1 H, *J* = 6.8 Hz), 4.59 (d, 2 H, *J* = 6.8 Hz), 3.94 (s, 2 H), 2.06 (s, 3 H), 1.84 (td, 3 H, *J* = 0.8, 1.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 170.8, 137.2, 124.2, 60.9, 39.4, 20.9, 15.1.

(E)-4-((tert-Butoxycarbonyl)(furan-2-yl)amino)-3-methylbut-2-en-1-yl

acetate (19). To a solution of 12 (413 mg, 2.26 mmol) in dry DMF (5.0 mL) at 0 °C was added NaH (135 mg, 3.38 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, 18 (490 mg, 2.37 mmol) was added dropwise over 5 min. The resulting solution was stirred at 0 °C for 2 h and then rt for 2 h, diluted with Et₂O (5 mL), quenched with saturated aqueous NH₄Cl (5 mL), extracted with Et₂O (3 x 15 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **19** (539 mg, 77%) as a pale yellow liquid: ATR-IR (neat) 2973, 2932, 1735, 1709, 1610, 1506, 1504, 1364, 1228, 1158, 1051, 1021, 1003, 857, 766, 736 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.15 (dd, 1 H, J = 1.0, 2.0 Hz), 6.31 (dd, 1 H, J = 2.0, 3.0 Hz), 5.98 (br, 1 H), 5.43 (qt, 1 H, J = 1.0, 7.0 Hz), 4.58 (d, 2 H, / = 7.0 Hz), 4.11 (s, 2 H), 2.02 (s, 3 H), 1.71 (s, 3 H, / = 1.2 Hz), 1.44 (s, 9 H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.6, 153.7, 148.1, 137.9, 137.0, 120.1, 110.6, 100.9, 81.1, 60.5, 55.1, 27.9, 20.7, 14.1; MS (ESI) *m*/z (rel. intensity) 332 ([M+23]⁺, 100), 276 (42), 232 (90); HRMS (ESI) *m*/z calcd for C₁₆H₂₃NO₅Na [M+Na] 332.1474, found 332.1465.

(*E*)-4-((*tert*-Butoxycarbonyl)(3-methylfuran-2-yl)amino)-3-methylbut-2-en-1yl acetate (21). To a solution of *tert*-butyl (3-methylfuran-2-yl)carbamate⁴ (361 mg, 1.83 mmol) in dry DMF (5.0 mL) at 0 °C was added NaH (110 mg, 2.74 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, **18** (398 mg, 1.92 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et₂O (10 mL), quenched with saturated aqueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **21** (320 mg, 54%) as a colorless liquid: ATR-IR (neat) 2977, 2928, 1737, 1709, 1646, 1508, 1364, 1228, 1159, 1094, 1053, 1021, 887, 861, 740 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.09 (s, 1 H), 6.16 (s, 1 H), 5.42 (t, 1 H, *J* = 6.5 Hz), 4.55 (d, 2 H, *J* = 6.5 Hz), 4.05 (s, 2 H), 2.01 (s, 3 H), 1.85 (s, 3 H), 1.72 (s, 3 H), 1.39 (bs, 9 H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.8, 154.5, 144.0, 138.2, 137.6, 137.2, 121.1, 112.9, 80.8, 60.8, 55.2, 28.1, 20.9, 14.5, 9.5; HRMS (ESI) *m*/z calcd for C₁₇H₂₅NO₅Na [M+Na] 346.1630, found 346.1616.

(*E*)-4-((*tert*-Butoxycarbonyl)(5-methylfuran-2-yl)amino)-3-methylbut-2-en-1yl acetate (23). To a solution of *tert*-butyl (5-methylfuran-2-yl)carbamate⁴ (126 mg, 0.640 mmol) in dry DMF (2.0 mL) at 0 °C was added NaH (38.4 mg, 0.960 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, **18** (139 mg, 0.672 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et₂O (10 mL), quenched with saturated aqueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **23** (105 mg, 51%) as a pale yellow liquid: ATR-IR (neat) 2977, 2928, 1737, 1709, 1616, 1571, 1364, 1228, 1159, 1057, 1020, 956, 859, 775, 738 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 5.88 (s, 1 H), 5.84 (br, 1 H), 5.44 (t, 1 H, *J* = 7.0 Hz), 4.59 (d, 2 H, *J* = 6.5 Hz), 4.08 (s, 2 H), 2.22 (s, 3 H), 2.03 (s, 3 H), 1.71 (s, 3 H), 1.44 (bs, 9 H); ¹³C NMR (CDCl₃, 125 MHz) δ 171.0, 154.2, 147.8, 146.3, 137.4, 120.2, 106.4, 102.4, 81.1, 60.9, 60.4, 28.1, 21.0, 14.4, 13.6; HRMS (ESI) *m*/z calcd for C₁₇H₂₅NO₅Na [M+Na] 346.1630, found 346.1613.

(E)-4-((tert-Butoxycarbonyl)(5-(((tetrahydro-2H-pyran-2-

yl)oxy)methyl)furan-2-yl)amino)-3-methylbut-2-en-1-yl acetate (25). To a solution of *tert*-butyl (5-(((tetrahydro-2*H*-pyran-2-yl)oxy)methyl)furan-2yl)carbamate⁴ (298 mg, 1.00 mmol) in dry DMF (2.0 mL) at 0 °C was added NaH (60.0 mg, 1.50 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, 18 (218 mg, 1.05 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et₂O (10 mL), quenched with saturated aqueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **25** (340 mg, 80%) as a yellow liquid: ATR-IR (neat) 2973, 2939, 2868, 1737, 1713, 1620, 1562, 1454, 1441, 1390, 1366, 1228, 1200, 1159, 1133, 1116, 1016, 964, 904, 869, 816, 785 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.25 (d, 1 H, / = 3.2 Hz), 5.93 (br, 1 H), 5.43 (qt, 1 H, / = 0.8, 6.4 Hz), 4.69 (t, 1 H, / = 3.2 Hz), 4.57 (d, 1 H, / = 13.2 Hz), 4.56 (d, 2 H, / = 6.8 Hz), 4.42 (d, 1 H, / = 13.2 Hz), 4.13 (s, 2 H), 3.88 (ddd, 1 H, *J* = 2.8, 8.4, 11.2 Hz), 3.53 (td, 1 H, *J* = 4.4, 10.8 Hz), 2.02 (s, 3 H), 1.86-1.49 (m, 9 H), 1.44 (s, 9 H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.6, 153.5, 148.0,146.7, 137.0, 120.2, 110.4, 101.4, 96.6, 81.1, 61.6, 60.6, 60.4, 54.8, 30.2, 27.9, 25.2, 20.7, 18.9, 14.2; HRMS (ESI) *m*/z calcd for C₂₂H₃₃NO₇Na ([M+Na]⁺) 446.2155, found 446.2133.

(E)-4-((tert-Butoxycarbonyl)(5-phenylfuran-2-yl)amino)-3-methylbut-2-en-1yl acetate (27). To a solution of *tert*-butyl (5-phenylfuran-2-yl)carbamate⁴ (320 mg, 1.24 mmol) in dry DMF (3.0 mL) at 0 $^{\circ}\mathrm{C}$ was added NaH (74.2 mg, 1.85 mmol, 60 %in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, **18** (269 mg, 1.30 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et_2O (10 mL), guenched with saturated agueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na_2SO_4) , filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give 27 (328 mg, 69%) as a pale yellow liquid: ATR-IR (neat) 2977, 2930, 1735, 1709, 1597, 1549, 1446, 1390, 1366, 1228, 1156, 1060, 1020, 857, 759, 692 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.56 (d, 2 H, *J* = 7.5 Hz), 7.33 (t, 2 H, *J* = 7.5 Hz), 7.19 (t, 1 H, *J* = 7.5 Hz), 6.57 (d, 1 H, / = 3.5 Hz), 6.07 (br, 1 H), 5.51 (qt, 1 H, / = 1.0, 7.0 Hz), 4.59 (d, 2 H, / = 7.0 Hz), 4.22 (s, 2 H), 1.95 (s, 3 H), 1.74 (s, 3 H), 1.46 (s, 9 H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.6, 153.4, 147.6, 137.0, 130.5, 129.2, 128.4, 126.8, 123.0, 120.3, 114.6, 106.0, 81.3, 60.6, 54.8, 28.0, 20.6, 14.2; HRMS (ESI) m/z calcd for $C_{22}H_{27}NO_5Na$ [M+Na] 408.1787, found 408.1776.

(E)-4-((tert-Butoxycarbonyl)(5-(m-tolyl)furan-2-yl)amino)-3-methylbut-2-en-**1-yl acetate (29).** To a solution of *tert*-butyl (5-(*m*-tolyl)furan-2-yl)carbamate⁴ (170 mg, 0.622 mmol) in dry DMF (2.0 mL) at 0 °C was added NaH (37.3 mg, 1.25 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, **18** (135 mg, 0.653 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et₂O (10 mL), quenched with saturated aqueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO_2 (Hexanes : EA = 15 : 1) to give **29** (167 mg, 67%) as a yellow liquid: ATR-IR (neat) 2975, 2926, 1735, 1709, 1603, 1549, 1366, 1390, 1228, 1158, 1021, 1060, 949, 857, 779, 692 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.38-7.36 (m, 2 H), 7.22 (t, 1 H, *J* = 7.6 Hz), 7.02 (d, 1 H, *J* = 7.2 Hz), 6.55 (d, 1 H, *J* = 3.6 Hz), 6.07 (br, 1 H), 5.50 (qt, 1 H, *J* = 1.6, 7.2 Hz), 4.59 (d, 2 H, *J* = 7.2 Hz), 4.22 (s, 2 H); 2.35 (s, 3 H), 1.95 (s, 3 H), 1.75 (s, 3 H), 1.46 (s, 9 H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.6, 153.4, 148.8, 147.4, 138.0, 137.0, 128.4, 127.6, 123.6, 120.3, 120.2, 105.8, 102.5, 81.3, 60.6, 54.8, 27.9, 21.3, 20.6, 14.2; HRMS (ESI) m/z calcd for C₂₃H₂₉NO₅Na [M+Na] 422.1943, found 422.1951.

((E)-4-((tert-Butoxycarbonyl)(5-(3-(trifluoromethyl)phenyl)furan-2-

yl)amino)-3-methylbut-2-en-1-yl acetate (31). To a solution of *tert*-butyl (5-(3-(trifluoromethyl)phenyl)furan-2-yl)carbamate⁴ (362 mg, 1.11 mmol) in dry DMF (4.0 mL) at 0 °C was added NaH (66.3 mg, 1.66 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, **18** (240 mg, 1.16 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et₂O (10 mL), quenched with saturated aqueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na₂SO₄),

filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **31** (333 mg, 66%) as a yellow liquid: ATR-IR (neat) 2978, 2930, 1737, 1713, 1610, 1592, 1551, 1452, 1392, 1366, 1333, 1267, 1230, 1159, 1124, 1098, 1075, 1060, 1021, 857, 796, 783, 697 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.79 (s, 1 H), 7.74-7.72 (m, 1 H), 7.48-7.46 (m, 2 H), 6.68 (d, 1 H, *J* = 3.6 Hz), 6.12 (br, 1 H), 5.51 (qt, 1 H, *J* = 1.2, 6.8 Hz), 4.60 (d, 2 H, *J* = 6.8 Hz), 4.24 (s, 2 H), 1.98 (s, 3 H), 1.76 (s, 3 H), 1.48 (s, 9 H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.6, 153.2, 148.5, 147.0, 136.9, 131.3, 131.0 (q, *J*_{CF} = 32.2 Hz), 129.0, 126.0, 124.9 (q, *J*_{CF} = 271.0 Hz), 123.2 (q, *J*_{CF} = 3.6 Hz), 120.5, 119.6 (q, *J*_{CF} = 3.8 Hz), 107.6, 102.4, 81.6, 60.6, 54.7, 27.9, 20.6, 14.2; HRMS (ESI) *m*/z calcd for C₂₃H₂₆NO₅F₃Na [M+Na] 476.1661, found 476.1679.

(E)-4-((5-(3,5-Bis(trifluoromethyl)phenyl)furan-2-yl)(tert-

butoxycarbonyl)amino)-3-methylbut-2-en-1-yl acetate (33). To a solution of *tert*-butyl (5-(3,5-bis(trifluoromethyl)phenyl)furan-2-yl)carbamate⁴ (148 mg, 0.374 mmol) in dry DMF (2.0 mL) at 0 °C was added NaH (22.4 mg, 0.561 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, **18** (81.3 mg, 0.393 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et₂O (10 mL), quenched with saturated aqueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **33** (170 mg, 87%) as a yellow solid: Mp 70.3–71.8 °C; ATR-IR (neat) 2980, 2928, 2855, 1743, 1720, 1622, 1607, 1549, 1454, 1377, 1370, 1279, 1232, 1172, 1135, 1023, 952, 891, 856, 844, 788, 703, 682 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.92 (s, 2 H), 7.66 (s, 1 H),

6.79 (d, 1 H, *J* = 3.5 Hz), 6.17 (br, 1 H), 5.50 (qt, 1 H, *J* = 1.0, 7.0 Hz), 4.60 (d, 2 H, *J* = 7.0 Hz), 4.26 (s, 2 H), 1.96 (s, 3 H), 1.75 (s, 3 H), 1.48 (s, 9 H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.8, 153.0, 149.4, 145.4, 136.8, 132.4, 132.1 (q, *J*_{CF} = 33.0 Hz), 123.2 (q, *J*_{CF} = 270.0 Hz), 122.6 (q, *J*_{CF} = 3.8 Hz), 120.6, 119.8 (sp, *J*_{CF} = 3.8 Hz), 109.4, 102.4, 82.0, 60.6, 54.6, 28.0, 20.7, 14.3; HRMS (ESI) *m*/z calcd for C₂₄H₂₆NO₅F₆ [M+H] 522.1715, found 522.1694.

(E)-4-((tert-Butoxycarbonyl)(5-(4-fluorophenyl)furan-2-yl)amino)-3-

methylbut-2-en-1-yl acetate (35). To a solution of tert-butyl (5-(4**fluorophenyl)furan-2-yl)carbamate**⁴ (231 mg, 0.833 mmol) in dry DMF (3.0 mL) at 0 °C was added NaH (50.0 mg, 1.25 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, **18** (181 mg, 0.875 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et₂O (10 mL), guenched with saturated aqueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **35** (240 mg, 72%) as a yellow liquid: ATR-IR (neat) 2977, 2928, 1737, 1711, 1618, 1594, 1553, 1497, 1392, 1366, 1228, 1156, 1057, 1020, 835, 779 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.55-7.52 (m, 2 H), 7.05 (tt, 2 H, / =2.0, 9.0 Hz), 6.50 (d, 1 H, / = 3.5 Hz), 6.06 (br, 1 H), 5.52-5.48 (m, 1 H), 4.60 (d, 2 H, / = 7.0 Hz), 4.21 (s, 2 H), 1.98 (s, 3 H), 1.75 (s, 3 H), 1.47 (s, 9 H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.7, 162.3 (d, *J*_{CF} = 245.0 Hz), 153.5, 147.7, 137.1, 127.0 (d, J_{CF} = 3.8 Hz), 124.8 (d, J_{CF} = 7.5 Hz), 120.3, 115.5 (d, J_{CF} = 22.5 Hz), 105.6, 102.6, 81.4, 60.6, 55.0, 28.0, 20.7, 14.2; HRMS (ESI) m/z calcd for C₂₂H₂₆NO₅FNa ([M+Na]⁺) 426.1693, found 426.1703.

(E)-4-((tert-Butoxycarbonyl)(5-(4-methoxyphenyl)furan-2-yl)amino)-3methylbut-2-en-1-yl acetate (37). To a solution of tert-butyl (5-(4**methoxyphenyl)furan-2-yl)carbamate**⁴ (371 mg, 1.28 mmol) in dry DMF (3.0 mL) at 0 °C was added NaH (76.8 mg, 1.92 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, 18 (279 mg, 1.34 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et₂O (10 mL), quenched with saturated aqueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **37** (356 mg, 67%) as a yellow liquid: ATR-IR (neat) 2973, 2928, 1735, 1711, 1620, 1605, 1581, 1554, 1498, 1456, 1441, 1392, 1366, 1292, 1273, 1247, 1230, 1159, 1060, 1021, 951, 831, 779 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.51 (td, 2 H, *J* = 2.5, 9.5 Hz), 6.90 (td, 2 H, *J* = 2.5, 9.5 Hz), 6.43 (d, 1 H, J = 3.0 Hz), 6.04 (br, 1 H), 5.50 (qt, 1 H, J = 1.5, 7.0 Hz), 4.60 (d, 2 H, J = 7.0 Hz), 4.20 (s, 2 H), 3.82 (s, 3 H), 1.99 (s, 3 H), 1.75 (s, 3 H), 1.47 (s, 9 H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.9, 158.8, 153.8, 149.1, 147.1, 137.3, 124.7, 123.9, 120.4, 114.1, 104.4, 102.8, 81.4, 60.8, 55.3, 55.2, 28.2, 20.9, 14.4; HRMS (ESI) m/z calcd for C₂₃H₂₉NO₆Na [M+Na] 438.1893, found 438.1895.

(*E*)-4-((*tert*-Butoxycarbonyl)(5-(3,3-dimethylbut-1-yn-1-yl)furan-2-yl)amino)-3-methylbut-2-en-1-yl acetate (39). To a solution of *tert*-butyl (5-(3,3dimethylbut-1-yn-1-yl)furan-2-yl)carbamate⁴ (119 mg, 0.451 mmol) in dry DMF (2.0 mL) at 0 °C was added NaH (27.1 mg, 0.677 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, **18** (98.1 mg, 0.474 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et₂O (10 mL), quenched with saturated aqueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **39** (95.0 mg, 54%) as a yellow liquid: ATR-IR (neat) 2969, 2928, 2865, 1737, 1715, 1607, 1541, 1448, 1472, 1392, 1364, 1271, 1228, 1158, 1062, 1020, 980, 857, 779 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 6.38 (d, 1 H, *J* =3.5 Hz), 5.95 (br, 1 H), 5.42 (qt, 1 H, *J* = 1.0, 6.5 Hz), 4.59 (d, 2 H, *J* = 7.0 Hz), 4.14 (s, 2 H), 2.03 (s, 3 H), 1.70 (s, 3 H), 1.44 (s, 9 H), 1.30 (s, 9 H); ¹³C NMR(CDCl₃, 125 MHz)) δ 170.9, 153.4, 147.4, 137.0, 132.7, 120.2, 115.2, 102.0, 101.9, 81.6, 69.5, 60.8, 54.5, 30.7, 28.1, 28.1, 20.9, 14.4; HRMS (ESI) *m*/z calcd for C₂₂H₃₁NO₅Na [M+Na] 412.2100, found 412.2094.

(*E*)-4-((*tert*-Butoxycarbonyl)(5-(3,3-dimethylbut-1-yn-1-yl)-4-methylfuran-2yl)amino)-3-methylbut-2-en-1-yl acetate (41). To a solution of *tert*-butyl (5-(3,3dimethylbut-1-yn-1-yl)-4-methylfuran-2-yl)carbamate⁴ (76.0 mg, 0.274 mmol) in dry DMF (0.5 mL) at 0 °C was added NaH (16.4 mg, 0.411 mmol, 60 % in mineral oil) in 4 portions. The reaction mixture was stirred at 0 °C for 1 h. Then, **18** (59.6 mg, 0.288 mmol) was added dropwise over 5 min. The resulting solution was stirred at rt for 2 h, diluted with Et₂O (10 mL), quenched with saturated aqueous NH₄Cl (10 mL), extracted with Et₂O (3 x 10 mL), washed with water and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on SiO₂ (Hexanes : EA = 15 : 1) to give **41** (78.0 mg, 71%) as a yellow liquid: ATR-IR (neat) 2971, 2932, 2158, 1737, 1713, 1618, 1581, 1554, 1500, 1456, 1443, 1392, 1364, 1230, 1159, 1060, 1023, 951, 857, 831, 777 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 5.88 (br, 1 H), 5.41 (qt, 1 H, *J* = 1.2, 6.8 Hz), 4.59 (d, 2 H, *J* = 6.8 Hz), 4.13 (s, 2 H), 2.03 (s, 3 H), 2.01 (s, 3 H), 1.69 (s, 3 H), 1.45 (s, 9 H), 1.31 (s, 9 H); ¹³C NMR(CDCl₃, 125 MHz)) δ 170.8, 153.3, 146.6, 137.1, 125.8, 119.9, 115.2, 104.4, 101.8, 81.5, 68.7, 60.7, 54.2, 30.8, 28.0, 20.8, 14.4, 10.8; HRMS (ESI) *m*/z calcd for C₂₃H₃₃NO₅Na [M+Na] 426.2256, found 426.2253.

Conversions to Indoles

3-Methyl-1*H***-indole (20).** To a solution of **19** (55.5 mg, 0.179 mmol) and P(0*i*-Pr)₃ (7.5 mg, 0.036 mmol) in NMP (1.8 mL) was added Pd(PPh₃)₄ (10 mg, 0.0090 mmol). The reaction mixture was stirred under microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give **20** (19.5 mg, 83%) as a yellow solid: Mp 89.2–90.6 °C; ATR-IR (neat) 3413, 2921, 736 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.87 (br, 1 H), 7.60 (d, 1 H, *J* = 7.6 Hz), 7.36 (d, 1 H, *J* = 8.0 Hz), 7.20 (dt, 1 H, *J* = 0.8, 8.0 Hz), 7.14 (dt, 1 H, *J* = 1.2, 8.0 Hz), 6.98 (d, 1 H, *J* = 1.2 Hz), 2.35 (d, 3 H, *J* = 0.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 136.2, 128.3, 121.8, 121.5, 119.1, 118.8, 111.7, 110.9, 9.6; MS (EI) *m*/z (%) 131 ([M]⁺, 57), 130 (100), 86 (55), 84 (82); HRMS (EI) *m*/z calcd for C₉H₉N [M] 131.0735, found 131.0703. Spectral data are consistent with literature reference.⁵

3,7-Dimethyl-1*H***-indole (22).** To a solution of **21** (46 mg, 0.14 mmol) and P(0*i*-Pr)₃ (5.9 mg, 0.028 mmol) in NMP (0.70 mL) was added Pd(PPh₃)₄ (8.1 mg, 0.0081 mmol). The reaction mixture was stirred under microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give **22** (18 mg, 86%) as a yellow solid: Mp 57.3–59.1 °C; ATR-IR (neat) 3417, 2921, 742 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.81 (br, 1 H), 7.46 (d, 1 H, *J* = 7.6 Hz), 7.07 (t, 1 H, *J* = 7.6 Hz), 7.02–6.98 (m, 2 H), 2.49 (s, 3 H), 2.35 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 135.8, 127.8, 122.4, 121.2, 120.0, 119.3, 116.5, 112.2, 16.5, 9.8; HRMS (EI) *m*/z calcd for C₁₀H₁₁N 145.0891, found 145.0909. Spectral data are consistent with literature reference.⁶

3,5-Dimethyl-1*H***-indole (24).** To a solution of **23** (33 mg, 0.10 mmol) and P(0*i*-Pr)₃ (4.3 mg, 0.021 mmol) in NMP (0.51 mL) was added Pd(PPh₃)₄ (5.9 mg, 0.0051 mmol). The reaction mixture was stirred under microwave radiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give **24** (13 mg, 84%) as a yellow solid: Mp 70.9–72.6 °C; ATR-IR (neat) 3409, 2919, 742 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.78 (br, 1 H), 7.37 (d, 1 H, *J* = 1.0 Hz), 7.24 (d, 1 H, *J* = 8.5 Hz), 7.02 (dd, 1 H, *J* = 1.0, 8.5 Hz), 6.94 (d, 1 H, *J* = 1.0 Hz), 2.47 (s, 3 H), 2.31 (d, 3 H, *J* = 1.0 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 134.5, 128.5, 128.3, 123.4, 121.7, 118.5, 111.2, 110.6, 21.5, 9.6; HRMS (EI) *m*/z calcd for C₁₀H₁₀N [M-H] 144.0813, found 144.0798. Spectral data are consistent with literature reference.⁷

3-Methyl-5-(((tetrahydro-2*H***-pyran-2-yl)oxy)methyl)-1***H***-indole (26). To a solution of 25** (63 mg, 0.15 mmol) and P(O*i*-Pr)₃ (6.2 mg, 0.030 mmol) in NMP (0.75 mL) was added Pd(PPh₃)₄ (8.6 mg, 0.0074 mmol). The reaction mixture was stirred under microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give **26** (22 mg, 59%) as a pale yellow liquid: ATR-IR (neat) 3411, 2930, 1116, 1074, 1023, 794 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.91 (br, 1 H), 7.58 (s, 1 H), 7.32 (d, 1 H, *J* = 8.0 Hz), 7.22 (dd, 1 H, *J* = 10, 8.5 Hz), 6.97 (s, 1 H), 4.90 (d, 1 H, *J* = 11.0 Hz), 4.75 (t, 1 H, *J* = 5.0 , 11.0 Hz), 2.33 (d, 3 H, *J* = 0.5 Hz), 1.90-1.84 (m, 1 H), 1.76-1.70 (m, 1 H), 1.67-1.51 (m, 4 H); ¹³C NMR (CDCl₃,125 MHz) δ 135.9, 128.8, 128.3, 122.8, 122.0, 119.0, 111.8, 110.8, 97.2, 62.2, 30.7, 25.6, 19.5, 9.6; HRMS (ESI) *m*/z calcd for C₁₅H₁₉NO₂Na [M+Na] 268.1313, found 268.1335.

3-Methyl-5-phenyl-1*H***-indole (28).** To a solution of **27** (57 mg, 0.15 mmol) and $P(Oi-Pr)_3$ (6.1 mg, 0.029 mmol) in NMP (0.73 mL) was added $Pd(PPh_3)_4$ (8.5 mg, 0.0073 mmol). The reaction mixture was stirred under microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give **28** (24 mg, 77%) as a yellow liquid: ATR-IR (neat) 3416, 3062, 2921, 762 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.92 (br, 1 H), 7.78 (dd, 1 H, *J* = 1.0, 1.5 Hz), 7.68 (d, 1 H, *J* = 1.5

Hz), 7.67 (d, 1 H, J = 1.0 Hz), 7.46-7.40 (m, 4 H), 7.32 (tt, 1 H, J = 1.0, 7.5 Hz), 7.01 (d, 1 H, J = 1.0 Hz), 2.38 (d, 3 H, J = 1.0 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 142.7, 135.7, 132.8, 128.8, 128.6, 127.4, 126.2, 122.2, 121.7, 117.4, 112.2, 111.1, 9.7; HRMS (EI) m/z calcd for C₁₅H₁₃N [M] 207.1048, found 207.1065.

3-Methyl-5-(*m*-tolyl)-1*H*-indole (30). To a solution of **29** (34 mg, 0.085 mmol) and P(0*i*-Pr)₃ (3.5 mg, 0.017 mmol) in NMP (0.43 mL) was added Pd(PPh₃)₄ (4.9 mg, 0.0043 mmol). The reaction mixture was stirred under microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give **30** (16 mg, 87%) as a yellow liquid: ATR-IR (neat) 3417, 3025, 2921, 785 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.91 (br, 1 H), 7.77 (s, 1 H), 7.49-7.39 (m, 4 H), 7.34 (t, 1 H, *J* = 8.0 Hz), 7.14 (d, 1 H, *J* = 8.0 Hz), 7.00 (s, 1 H), 2.44 (s, 3 H), 2.38 (d, 3 H, *J* = 0.5 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 142.7, 138.1, 135.7, 132.9, 128.7, 128.5, 128.2, 127.0, 124.5, 122.2, 121.8, 117.4, 112.1, 111.1, 21.6, 9.7; HRMS (EI) *m*/z calcd for C₁₆H₁₅N 221.1204 [M], found 221.1216.

3-Methyl-5-(3-(trifluoromethyl)phenyl)-1*H***-indole (32).** To a solution of **31** (47 mg, 0.10 mmol) and $P(Oi-Pr)_3$ (4.3 mg, 0.021 mmol) in NMP (0.51 mL) was added $Pd(PPh_3)_4$ (6.0 mg, 0.0051 mmol). The reaction mixture was stirred under

microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give **32** (12 mg, 41%) as a yellow liquid: ATR-IR (neat) 3418, 2921, 1331, 1070, 792 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.96 (br, 1 H), 7.91 (s, 1 H), 7.85 (dd, 1 H, *J* = 1.5, 4.0 Hz), 7.78 (s, 1 H), 7.56-7.55 (m, 2 H), 7.44 (s, 2 H), 7.04 (d, 1 H, *J* = 1.0 Hz), 2.39 (d, 3 H, *J* = 1.0 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 143.5, 136,1, 132,3, 131.0 (q, *J*_{CF} = 31.0 Hz), 130.6, 129.0, 128.9, 124.4 (q, *J*_{CF} = 271.0 Hz), 124.0 (q, *J*_{CF} = 3.8 Hz), 122.9 (q, *J*_{CF} = 3.8 Hz), 122.6, 121.5, 117.6, 112.3, 111.4, 9.7; HRMS (EI) *m*/z calcd for C₁₆H₁₂NF₃ [M] 275.0922, found 275.0900.

5-(3,3-Dimethylbut-1-yn-1-yl)-3-methyl-1*H***-indole (34). To a solution of 33** (88 mg, 0.17 mmol) and P(0*i*-Pr)₃ (7.1 mg, 0.034 mmol) in NMP (0.85 mL) was added Pd(PPh₃)₄ (9.8 mg, 0.0085 mmol). The reaction mixture was stirred under microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give **34** (28 mg, 48%) as a yellow solid: 109.2–110.8 °C; ATR-IR (neat) 3420, 2926, 1376, 1277, 1172, 1131, 798, 684 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.08 (s, 1 H), 8.02 (br, 1 H), 7.80 (s, 1 H), 7.79 (d, 1 H, *J* = 0.5 Hz), 7.46 (d, 1 H, *J* = 8.0 Hz), 7.44 (dd, 1 H, *J* = 1.5, 8.5 Hz), 7.06 (q, 1 H, *J* = 1.0 Hz), 2.41 (d, 3 H, *J* = 1.0 Hz); ¹³C NMR (CDCl₃,125 MHz) δ 144.8, 136.4, 131.8 (q, *J*_{CF} = 32.5 Hz), 129.7, 129.0, 127.3(q, *J*_{CF} = 2.9 Hz), 123.6 (q, *J*_{CF} = 270.0 Hz), 122.9, 121.3, 119.7 (sp, *J*_{CF} = 3.8 Hz); 117.8, 112.5, 111.7, 9.7; HRMS (EI) *m*/z calcd for C₁₇H₁₁NF₆ [M] 343.0796, found 343.0815.

5-(4-Fluorophenyl)-3-methyl-1*H***-indole (36).** To a solution of **35** (48 mg, 0.12 mmol) and P(0*i*-Pr)₃ (4.9 mg, 0.024 mmol) in NMP (0.60 mL) was added Pd(PPh₃)₄ (6.8 mg, 0.0059 mmol). The reaction mixture was stirred under microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give **36** (18 mg, 66%) as a yellow solid: Mp 82.9–84.1 °C; ATR-IR (neat) 3413, 2923, 839, 814 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.93 (br, 1 H), 7.72 (s, 1 H), 7.61 (dd, 2 H, *J* = 5.5, 8.5 Hz), 7.39 (dd, 2 H, *J* = 8.0, 11.0 Hz), 7.13 (dd, 2 H, *J* = 8.5, 8.5 Hz), 7.02 (s, 1 H), 2.37 (s, 3 H); ¹³C NMR (CDCl₃, 125 MHz) δ 161.9 (d, *J*_{CF} = 243.0 Hz), 138.8 (d, *J*_{CF} = 3.0 Hz), 135.7, 131.8, 128.8 (d, *J*_{CF} = 7.7 Hz), 128.8, 122.4, 121.6, 117.3, 115.4 (d, *J*_{CF} = 21.1 Hz), 112.2, 111.2, 9.7; HRMS (ESI) *m*/z calcd for C₁₅H₁₃NF [M+H] 226.1032, found 226.1018.

5-(4-Methoxyphenyl)-3-methyl-1*H***-indole (38).** To a solution of **37** (53 mg, 0.13 mmol) and P(Oi-Pr)₃ (5.3 mg, 0.025 mmol) in NMP (0.64 mL) was added Pd(PPh₃)₄ (7.4 mg, 0.0063 mmol). The reaction mixture was stirred under microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 :

1) to give **38** (19 mg, 64%) as a yellow solid: Mp 130.2–133.0 °C; ATR-IR (neat) 3410, 2919, 1240 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.89 (br, 1 H), 7.73-7.72 (m, 1 H), 7.60 (td, 2 H, *J* = 2.5, 9.0 Hz), 7.40 (dd, 1 H, *J* = 2.0, 8.0 Hz), 7.38 (dd, 1 H, *J* = 0.5, 8.5 Hz), 7.01–6.98 (m, 3 H), 3.86 (s, 3 H), 2.37 (d, 3 H, *J* = 1.0 Hz); ¹³C NMR (CDCl₃,100 MHz) δ 158.4, 135.5, 135.4, 132.5, 128.8, 128.3, 122.2, 121.5, 116.9, 114.1, 112.0, 111.1, 55.4, 9.7; HRMS (ESI) *m*/z calcd for C₁₆H₁₆NO [M+H] 238.1232, found 238.1257.

5-(3,3-Dimethylbut-1-yn-1-yl)-3-methyl-1*H***-indole (40).** To a solution of **39** (51 mg, 0.13 mmol) and P(0*i*-Pr)₃ (5.5 mg, 0.026 mmol) in NMP (0.65 mL) was added Pd(PPh₃)₄ (7.6 mg, 0.0065 mmol). The reaction mixture was stirred under microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give **40** (15 mg, 52%) as a pale yellow liquid: ATR-IR (neat) 3415, 2922, 2166, 796 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.88 (br, 1 H), 7.65 (s, 1 H), 7.22 (br, 2 H), 6.95 (s, 1 H), 2.30 (s, 3 H), 1.34 (s, 9 H); ¹³C NMR (CDCl₃,125 MHz) δ 135.5, 128.2, 125.6, 122.5, 122.1, 114.5, 111.9, 110.7, 95.6, 80.2, 31.3, 27.9, 9.6; HRMS (EI) *m*/z calcd for C₁₅H₁₇N [M] 211.1360, found 211.1350.

5-(3,3-Dimethylbut-1-yn-1-yl)-3,6-dimethyl-1*H***-indole (42). To a solution of 41 (54 mg, 0.13 mmol) and P(O***i***-Pr)₃ (5.6 mg, 0.027 mmol) in NMP (0.67 mL) was added Pd(PPh₃)₄ (7.8 mg, 0.0067 mmol). The reaction mixture was stirred under microwave irradiation at 180 °C for 20 min, quenched with ether and water, extracted with ether, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (Hexanes : EA = 16 : 1) to give 42** (8.3 mg, 27%) as a pale yellow liquid: ATR-IR (neat) 3396, 2922, 2166, 1277, 1124, 1072, 796 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.72 (br, 1 H), 7.61 (s, 1 H), 7.13 (s, 1 H), 6.87 (s, 1 H), 2.49 (s, 3 H), 2.28 (d, 3 H, *J* = 1.0 Hz), 1.36 (s, 9 H); HRMS (EI) *m*/z calcd for C₁₆H₁₉N 225.1517, found 225.1503.

References

- 1. A. Padwa, M. A. Brodney and S. M. Lynch, Org. Synth. 2002, 78, 202-211.
- J. P. Genet, S. Thorimbert, S. Mallart and N. Kardos, *Synthesis*, 1993, 3, 321-324.
- 3. J. H. Babler and W. J. Buttner, *Tetrahedron Lett.*, 1976, **17**, 239-242.
- 4. J. Xu, Master of Science Thesis, 2013, University of Pittsburgh, Pittsburgh, USA.
- Y. Tsuji, S. Kotachi, K. T. Huh and Y. Watanabe, *J. Org. Chem.* 1990, 55, 580– 584.
- M. J. Kornet, P. A. Thio, N. Malone and W. C. Lubawy, *J. Pharm. Sci.* 1975, 64, 639-642.
- T. Jensen, H. Pedersen, B. Bang-Andersen, R. Madsen and M. Jørgensen, Angew. Chem., Int. Ed. 2008, 47, 888-890.

S23

jix-290-021 400HNMR(400a) 072910

jix-290-021 100CNMR(400a) 072910

 \sim

.OAc

J1x-290-007 100CNM	R (400a)	0/1410 80.8 .2	7.81	9.43 5.20).62	0.80	0 0 0 0 0 0 0 0 0 0 0 0 0 0	51	00.	45	
^K O ^N N ^{Boc} 15	170		13.	120	— 110		81. 77 76.	- 59.	45.	27.	
								I			
					I						
					1- b- 44,00-0						****
	0 170 1	60 150 ·					90 80 7 0				ространици. Постовани Постовани Постовани Постовани Постовани Постова

S27

jix-290-034-2 1H NMR(400a) 090110

-124.18

-137.24

-170.82

jix-290-051 13C NM	1R(400a)	090910					
O N OAc 19 Boc					81.05 77.32 77.00 76.68		
210 200 190 18	30 170 1	60 150 140	130 120 11	0 100 9	90 80 70	60 50 40	30 20 ppm

S31

jix-331-055 1H NMR(500) 062611

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm
						·····														
Boc	21							/												
		OAc		-170.82	U U Z U (L 7	- T - T - T - T - T - T - T - T - T - T	~144.03 ~138.18 ~137.58	~137.23	-121.14	—112.90			/ 80.77 / 77.25 / 77.00	76.74	- 60.80			-28.08		
jix-33	1-055	13C	NMR ((500)	0626	511														

jix-315-061 13C NMR(500) 121710

-170.59	-153.50 -148.00 -146.73	-136.98	-120.24	-110.42	-101.36 -96.61	<pre></pre>	<pre> <61.65 <60.59 <60.36 <54.79 </pre>	<pre> > 30.18 > 30.18 </pre>
	$ \rangle /$						$\langle \rangle / /$	$\mathbf{X} + \mathbf{Y} + $

jix-315-092 13C NMR(500) 012711

jix-331-028 13C NMR(400b) 021711

jix-331-019 1H NMR(400a) 021111

jix-331-019 13C NMR(500) 062711

jix-331-036 13C NMR(500) 022411

 	 I	 	 	أللس	l	 		 l	 	

jix-331-013 13C NMR(500) 062711

37

jix-373-017 13C NMR(500) 102011

		153.	137.(132.	 $\sim^{102.0}$	81.6 77.2 77.0 69.5 60.7 54.5	30.6 28.1 28.1 28.0 14.4
<i>t</i> -Bu	OAc					

70

60

50

40

30

20

ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80

jix-406-039 13C NMR(500) 052212

$$\begin{array}{c} & 170.777 \\ & 153.266 \\ & 146.57 \\ & 146.57 \\ & 1146.57 \\ & 1137.08 \\ & 115.17 \\ & 115.17 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.94 \\ & 119.96 \\ & 114.36 \\ & 114.36 \\ & 10.76 \\ & 10.76 \\ & 10.76 \\ & 10.76 \\ & 10.76 \\ & 114.36 \\ & 11$$

 $\begin{array}{c}
136.25\\
128.27\\
121.84\\
121.52\\
119.09\\
119.09\\
111.72\\
110.90\\
77.25\\
76.74\\
76.74\end{array}$

63

6.

69

•

0

 \sim

N H 22

 $\begin{array}{c} 135.84 \\ 127.81 \\ 127.81 \\ 122.38 \\ 1121.24 \\ 1120.04 \\ 112.23 \\ 112.23 \\ 112.23 \\ 112.23 \\ 16.53 \\ 16.53 \\ 0.77 \\ 0.77 \\ 0.6.68 \\ 0.77 \\ 0.77 \\ 0.6.68 \\ 0.77 \\ 0.77 \\ 0.6.68 \\ 0.77 \\ 0.77 \\ 0.6.68 \\ 0.77$

jix-315-065 1H NMR(500) 122010

 		 	 		 100	110	100	•••••	•••••				 	
 			 	******		l	<u></u>			19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	al ang and a first of a	a baytta galandar galandar		

26	1 11 11 1	17 1			

jix-344-012 13C NMR(500) 062211

jix-331-008 13C NMR(500) 042011

jix-331-029 13C NMR(500) 062011

jix-331-023 1H NMR(500) 062411

ÇF₃

jix-344-016 1H NMR(500) 062311

jix-344-016 13C NMR(500) 062311

1 1

4

86

.

 ∞

jix-344-047 1H NMR(500) 073011

L

1 1

1

しししノノノ

S72

38

MeO.

 $\circ \infty$

37(36

. .

 $\sim \sim$

 \langle
jix-344-047 13C NMR(400b) 072811

S73

jix-344-013 1H NMR(500) 062111

