Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Syn-BN-Heteroacence Cored Conjugated Oligomers with Finely Tuned Blue-Violet Luminescent Properties

Wanzheng Zhang,^a Yubin Fu,^b Peirong Qiang,^a Jens Hunger,^b Shuai Bi,^a Wenbei Zhang,^a Fan Zhang^{*a}

^aSchool of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
^bCenter for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany

E-mail: fan-zhang@sjtu.edu.cn

Table of Contents

1 Experimental Details	S2
2 ¹ H and ¹³ C NMR Spectra for New Compounds	S7
3 X-ray Crystallographic Analysis	S13
4 Optical Spectra	S14
5 HRMS Spectra	S19
6 Thermal Stabilities of 3a-6c .	S24
7 References	S24

1 Experimental Details

Materials and Equipment.

All reagents were purchased from Sigma-Aldrich and Admas-beta. Thiophene-2boronic acid pinacol ester¹ were prepared using literature methods. All reactions were carried out under a nitrogen atmosphere and performed using Schlenk techniques. *Syn*-BN-heteroacenes **1** and **4** were prepared according to our previous report.²

¹H and ¹³C NMR spectra were referenced to residual signals of the deuterated solvent. High-resolution electrospray ionization mass spectrometry was performed on a OTof spectrometer. High-resolution MALDI-MS measurements were performed on Bruker solariX 7T FTICR. Ultraviolet-visible (UV-Vis) spectra were recorded on a HITACHI U-4100 Spectrophotometer. The fluorescence spectroscopy (PL) emission spectra were obtained with a FluoroMax-4 spectrophotometer. Thermogravimetric analysis (TGA) was measured with a heating rate of 20 °C min⁻¹ under flowing N₂. CV was performed in anhydrous dichloromethane containing recrystallized tetra-n-butylammoniumhexafluorophosphate (TBAPF₆, 0.1M) as supporting electrolyte at 298 K. A conventional three electrode cell was used with a platinum working electrode (surface area of 0.3 mm²) and a platinum wire as the counter electrode. The Pt working electrode was routinely polished with a polishing alumina suspension and rinsed with acetone before use. The measured potentials were recorded with respect to the Ag/AgCl reference electrode. All electrochemical measurements were carried out under an atmospheric pressure of nitrogen. Geometry optimizations and the analysis of HOMOs and LUMOs were performed at the DFT level (RB3LYP/6-311G(d)). The initial structures were determined by X-ray diffraction analyses. All calculations were performed using Gaussian 09.

Compound 2

N-bromosuccinimide (NBS, 190 mg, 1.06 mmol) was added to a solution of compound **1** (320 mg, 0.53 mmol) in 15 mL CHCl₃ at 0 °C, and the mixed solution was stirred at this temperature for 2 hours. After removal of the solvent under reduced pressure, the residue was washed with petroleumether to give compound **2** as a yellow solid (280 mg, 69%). ¹H NMR (400 MHz, CDCl₃, ppm): 8.29 (s, 1H), 7.73 (s, 1H), 7.57-7.55 (m, 4H), 7.50-7.44 (m, 6H), 7.11 (s, 2H), 4.17 (t, 4H, J = 8.0 Hz), 1.86-1.80 (m, 4H), 1.28-1.16 (m, 12H), 0.81 (t, 6H, J = 8 Hz); ¹³C NMR (100 MHz, CDCl₃, ppm): 151.3, 140.5, 139.7, 138.9, 135.2, 131.9, 127.9, 127.8, 121.2, 117.9, 111.2, 103.4; m/z[M+H]⁺ calcd for C₃₈H₄₁B₂Br₂N₂S₂ 769.1261; HR-ESI observed 769.1235.

Compound 3a

In a Schlenk flask, **2** (160 mg, 0.21 mmol), thiophene-2-boronic acid pinacol ester (190 mg, 0.89 mmol) and Na₂CO₃ (99 mg, 0.93 mmol) were charged under the protection of nitrogen. After adding 20 mL toluene, 7 mL ethanol and 7 mL water, the mixture was degassed for 30 min. Pd(PPh₃)₄ (24 mg, 0.02 mmol) was added, then the mixture

was heated to 90 °C and stirred overnight. The reactant was poured into brine and extracted with ethyl acetate for several times. The organic phase was dried over MgSO₄ and the solvent was evaporated in vacuo. The product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 4:1) to give product **3a** as yellow solid (100 mg, 61%). ¹H NMR (400 MHz, CDCl₃, ppm): 8.54 (s, 1H), 7.74 (s, 1H), 7.63-7.61 (m, 4H), 7.53-7.46 (m, 6H), 7.28-7.27 (m, 2H), 7.24-7.22 (m, 3H), 7.05-7.03 (m, 2H), 4.18 (t, 4H, J = 8 Hz), 1.91-1.83 (m, 4H), 1.25-1.18 (m, 12H), 0.82 (t, 6H, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃, ppm): 149.2, 139.2, 137.5, 135.5, 131.9, 128.8, 127.9, 127.8, 124.6, 124.3, 121.6, 118.4, 103.4, 48.6, 31.5, 30.1, 26.9, 22.6, 14.0; m/z[M+H]⁺ calcd for C₄₆H₄₇B₂N₂S₄ 777.2818; HR-ESI observed 777.2797.

Compound 3b

In a Schlenk flask, **2** (77 mg, 0.1 mmol), trimethylsilylacetylene (37 mg, 0.38 mmol), CuI (4.5 mg, 0.024 mmol), triethylamine (0.5 ml, 3.6 mmol), Pd(PPh₃)₂Cl₂ (7 mg, 0.01 mmol) and 20 ml THF were charged under the protection of nitrogen. The mixture was heated to 70 °C and stirred overnight. The reactant was poured into brine and extracted with ethyl acetate for several times. The organic phase was dried over MgSO₄ and the solvent was evaporated in vacuo. The product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 5:1) to give product **3b** as yellow solid (62 mg, 77%). ¹H NMR (400 MHz, CDCl₃, ppm): 8.46 (s, 1H), 7.71 (s, 1H), 7.57-7.55 (m, 4H), 7.49-7.43(m, 6H), 7.31 (s, 2H), 4.17 (t, 4H, *J* = 8 Hz), 1.88-1.82 (m, 4H), 1.28-1.20 (m, 12H), 0.81 (t, 6H, *J* = 8.0 Hz), 0.26 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm): 151.0, 140.6, 139.8, 138.9, 138.7, 131.9, 127.8, 121.9, 121.0, 118.1, 103.4, 99.9, 98.0, 48.6, 31.5, 30.0, 26.9, 22.6, 14.0, 0.1; *m/z*[M+H]⁺ calcd for C₄₈H₅₉B₂N₂S₂Si₂ 805.3855; HR-ESI observed 805.3796.

Compound 3c

In a Schlenk flask, **2** (120 mg, 0.16 mmol), tolylboronic (70 mg, 0.51 mmol) and Cs_2CO_3 (170 mg, 0.5 mmol) were charged under the protection of nitrogen. After adding 23 mL toluene, 8 mL ethanol and 8 mL water, the mixture was degassed for 30 min. Pd(PPh₃)₄ (30 mg, 0.026 mmol) was added, then the mixture was heated to 90 °C and stirred overnight. The reactant was poured into brine and extracted with ethyl acetate for several times. The organic phase was dried over MgSO₄ and the solvent was evaporated in vacuo. The product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 3:1) to give product **3c** as yellow solid (100 mg, 72%). ¹H NMR (400 MHz, CDCl₃, ppm): 8.64 (s, 1H), 7.74 (s, 1H), 7.65-7.59 (m, 8H), 7.52-7.46 (m, 6H), 7.34 (s, 2H), 7.20 (d, 2H, *J* = 8 Hz), 4.19 (t, 4H, *J* = 8 Hz), 2.38 (s, 6H), 1.88-1.82 (m, 4H), 1.28-1.20 (m, 12H), 0.81 (t, 6H, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃, ppm): 149.3, 142.5, 139.0, 137.4, 132.0, 131.6, 129.5, 127.8, 127.7, 126.1, 121.7, 118.6, 103.3, 48.6, 31.5, 30.1, 26.9, 22.6, 21.2, 14.0; *m/z*[M]⁺ calcd for $C_{52}H_{54}B_2N_2S_2$ 792.3909; HR-MALDI-MS observed 792.3907.

Compound 5

N-bromosuccinimide (NBS, 370 mg, 2.05 mmol) was added to a solution of compound

4 (730 mg, 1 mmol) in 30 mL CHCl₃ at 0 °C, and the mixed solution was stirred at this temperature for 2 hours. After removal of the solvent under reduced pressure, the residue was washed with petroleumether to give compound **5** as a yellow solid (620 mg, 71%). ¹H NMR (400 MHz, CDCl₃, ppm): 8.52 (s, 1H), 7.74 (s, 1H), 7.56-7.54 (m, 10H), 7.29 (s, 2H), 4.16 (t, 4H, J = 8 Hz), 1.89-1.82 (m, 4H), 1.31-1.20 (m, 12H), 0.82 (t, 6H, J = 8 Hz); ¹³C NMR (100 MHz, CDCl₃, ppm): 151.4, 144.4, 140.0, 139.1, 135.3, 131.2, 130.8, 128.5, 121.7, 121.0, 119.0, 114.0, 103.3, 48.8, 31.4, 30.1, 26.9, 22.6, 14.0; m/z[M]⁺ calcd for C₄₂H₄₀B₂Br₂N₂S₄ 880.0622; HR-MALDI-MS observed 880.0621.

Compound 6a

In a Schlenk flask, 5 (130 mg, 0.15 mmol), thiophene-2-boronic acid pinacol ester (170 mg, 0.8 mmol) and Na₂CO₃ (85 mg, 0.8 mmol) were charged under the protection of nitrogen. After adding 20 mL toluene, 7 mL ethanol and 7 mL water, the mixture was degassed for 30 min. Pd(PPh₃)₄ (34 mg, 0.03 mmol) was added, then the mixture was heated to 90 °C and stirred overnight. The reactant was poured into brine and extracted with ethyl acetate for several times. The organic phase was dried over MgSO₄ and the solvent was evaporated in vacuo. The product was purified by chromatography on silica gel (PE/CH₂Cl₂ = 4:1) to give product **6a** as yellow solid (100 mg, 75%). ¹H NMR (400 MHz, CDCl₃, ppm): 8.54 (s, 1H), 7.74 (s, 1H), 7.62-7.54 (m, 10H), 7.38 (s, 2H), 7.19, (d, 2H, J = 4.8 Hz), 7.08 (d, 2H, J = 3.6 Hz), 6.98-6.96 (m, 2H), 4.16 (t, 4H, J = 6.4 Hz), 1.90-1.84 (m, 4H), 1.29-1.21 (m, 12H), 0.82 (m, 6H, J=6.8 Hz); ¹³C NMR (100 MHz, CDCl₃, ppm): 152.3, 143.4, 140.3, 139.8, 139.3, 138.11, 137.4, 131.5, 131.1, 128.6, 128.4, 127.9, 124.6, 124.0, 121.1, 119.4, 115.8, 103.5, 49.0, 31.7, 30.4, 27.1, 22.8, 14.2; *m/z*[M]⁺ calcd for C₅₀H₄₆B₂N₂S₆888.2166; HR-MALDI-MS observed 888.2172.

Compound 6b

In a Schlenk flask, **5** (180 mg, 0.2 mmol), trimethylsilylacetylene (82 mg, 0.84 mmol), CuI (13 mg, 0.07 mmol), triethylamine (0.2 ml, 1.4 mmol), Pd(PPh₃)₂Cl₂ (14 mg, 0.02 mmol) and 15 ml THF were charged under the protection of nitrogen. The mixture was heated to 70 °C and stirred overnight. The reactant was poured into brine and extracted with ethyl acetate for several times. The organic phase was dried over MgSO₄ and the solvent was evaporated in vacuo. The product was purified by chromatography on silica gel (PE/CH₂Cl₂= 5:1) to give product **6b** as yellow solid (150 mg, 82%). ¹H NMR (400 MHz, CDCl₃, ppm): 8.54 (s, 1H), 7.75 (s, 1H), 7.57-7.55 (m, 4H), 7.59-7.55 (m, 6H), 7.44 (s, 2H), 4.16 (t, 4H, *J* = 8 Hz), 1.90-1.82 (m, 4H), 1.29-1.20 (m, 12H), 0.82 (t, 6H, *J* = 8.0 Hz), 0.23 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm): 154.1, 145.4, 140.2, 139.6, 135.9, 131.4, 130.8, 128.6, 128.5, 125.2, 124.7, 121.5, 119.2, 103.4, 100.0, 98.7, 49.0, 31.6, 29.9, 27.1, 22.8, 24.2, 0.1; *m/z*[M]⁺ calcd for C₅₂H₅₈B₂N₂S₄Si₂ 916.3202; HR-MALDI-MS observed 916.3220

Compound 6c

In a Schlenk flask, **5** (180 mg, 0.2 mmol), tolylboronic (100 mg, 0.76 mmol) and Cs_2CO_3 (290 mg, 0.9 mmol) were charged under the protection of nitrogen. After

adding 20 mL toluene, 7 mL ethanol and 7 mL water, the mixture was degassed for 30 min. Pd(PPh₃)₄ (23 mg, 0.02 mmol) was added, then the mixture was heated to 90 °C and stirred overnight. The reactant was poured into brine and extracted with ethyl acetate for several times. The organic phase was dried over MgSO₄ and the solvent was evaporated in vacuo. The product was purified by chromatography on silica gel (PE/CH₂Cl₂= 3:1) to give product **6c** as yellow solid (110 mg, 62%). ¹H NMR (400 MHz, CDCl₃, ppm): 8.51 (s, 1H), 7.68 (s, 1H), 7.61-7.54 (m, 10H), 7.43 (s, 2H), 7.39 (d, 2H, J = 8 Hz), 7.12 (d, 2H, J = 8 Hz), 4.12 (t, 4H, J = 8 Hz), 2.34, (s, 6H), 1.88-1.81 (m, 4H), 1.27-1.17 (m, 12H), 0.83 (t, 6H, J =8.0 Hz), 0.26 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm): 152.0, 147.1, 143.4, 140.5, 139.2, 137.7, 137.6, 132.4, 131.6, 131.1, 129.7, 128.5, 128.3, 125.8, 121.1, 119.5, 114.6, 103.3, 49.0, 31.7, 30.4, 27.1, 22.8, 21.4, 14.2; m/z[M]⁺ calcd for C₅₆H₅₄B₂N₂S₄904.3350; HR-MALDI-MS observed 904.3355.

2¹H and ¹³C NMR Spectra for New Compounds

Figure S12 ¹³C NMR spectrum of 6a (CDCl₃)

3 X-ray Crystallographic Analysis.

Table S1 Crystal data for compound 3b.			
Compound	3b		
Formula	$C_{48}H_{58}B_2N_2S_2Si_2$		
Formula Weight	804.88		
T, <i>K</i>	100		
Crystal system	triclinic		
Space group	P 1		
Shape	prism		
Crystal dimension, mm ³	0.11×0.07×0.04		
<i>a</i> , Å	8.3587(3)		
<i>b</i> , Å	16.6395(5)		
<i>c</i> , Å	17.2793(6)		

α, °	97.127(2)
<i>β</i> , °	98.680(2)
γ, °	103.468(2)
<i>V</i> , Å3	2278.52(13)
Z	2
ρ calc, g/cm-3	1.173
F(000)	860
heta range, °	1.606 to 28.999
wR2 (all data)	0.1202
wR2	0.1107
R1 (all data)	0.0628
R1	0.0449
Independent reflections	12133
Reflections measured	46089
Goodness of fit indictor	1.032

Table S2 ORTEP drawing molecular structure, selected distances, and angles of 3b

distances (Å)				
Si1-C1	1.8354(17)	C18-C17	1.3997(19)	
Si2A-C15	1.850(2)	C8-C7	1.383(2)	
N2-C18	1.4052(17)	C17-C16	1.3984(19)	
N2-B2	1.434(2)	C7-C16	1.414(2)	
N1-C16	1.4050(18)	C7-C6	1.4301(19)	
N1-B1	1.432(2)	C5-C6	1.378(2)	
C9-C18	1.4137(19)	C5-B1	1.526(2)	
C9-C8	1.3841(19)	C31-B2	1.574(2)	
C9-C10	1.429(2)	C25-B1	1.570(2)	
C11-C10	1.375(2)	C2-C1	1.201(2)	
C11-B2	1.532(2)	C14-C15	1.199(2)	

angles (°)				
C18-N2-C43	116.35(11)	N1-B1-C5	117.00(13)	
C18-N2-B2	122.75(12)	N1-B1-C25	122.90(14)	
B2-N2-C43	120.47(12)	C5-B1-C25	119.90(13)	
C16-N1-C37	117.58(12)	N2-B2-C11	116.35(13)	
C16-N1-B1	122.70(13)	N2-B2-C31	124.41(13)	
B1-N1-C37	119.60(12)	C11-B2-C31	119.20(13)	
C2-C3-S1	117.77(12)	C14-C13-S2	118.92(13)	

Optical Spectra

Figure S17 Normalized absorption spectra of compound 3a in CH_2Cl_2 (solid line) and in film (dashed line).

Figure S18 Normalized absorption spectra of compound 3b in CH_2Cl_2 (solid line) and in film (dashed line).

Figure S19 Normalized absorption spectra of compound 3c in CH_2Cl_2 (solid line) and in film (dashed line).

Figure S20 Normalized absorption spectra of compound 6a in CH_2Cl_2 (solid line) and in film (dashed line).

Figure S21 Normalized absorption spectra of compound 6b in CH_2Cl_2 (solid line) and in film (dashed line).

Figure S22 Normalized absorption spectra of compound 6c in CH_2Cl_2 (solid line) and in film (dashed line).

Figure S23 Normalized emission spectra of compound **3a** in CH₂Cl₂ (solid line, excitation at $\lambda = 407$ nm) and in film (dotted line, excitation at $\lambda = 414$ nm).

Figure S24 Normalized emission spectra of compound **3b** in CH₂Cl₂ (solid line, excitation at λ = 395 nm) and in film (dotted line, excitation at λ = 405 nm).

Figure S25 Normalized emission spectra of compound **3c** in CH₂Cl₂ (solid line, excitation at λ = 401 nm) and in film (dotted line, excitation at λ = 409 nm).

Figure S26 Normalized emission spectra of compound **6a** in CH₂Cl₂ (solid line, excitation at λ = 415 nm) and in film (dotted line, excitation at λ = 427 nm).

Figure S27 Normalized emission spectra of compound **6b** in CH₂Cl₂ (solid line, excitation at λ = 406 nm) and in film (dotted line, excitation at λ = 413 nm).

Figure S28 Normalized emission spectra of compound **6c** in CH₂Cl₂ (solid line, excitation at λ = 411 nm) and in film (dotted line, excitation at λ = 422 nm).

5 HRMS Spectra.

Analysis Info

Analysis Name D:\Data\gaojh\Q-TOF-Gaojh-150129-zwz-3.d Method tune-posAPCI-200-900_150128.m Sample Name zwz-3 Comment Acquisition Date 1/28/2015 4:24:49 PM

Operator Jiang Instrument / Ser# micrOTOF-Q II 10324

Figure S29 HR-ESI mass spectrum of compound 2.

Mass Spectrum SmartFormula Report

Analysis Info Analysis Name Method ZWZ-2 Sample Name Comment

D:\Data\gaojh\QTOF-Gaojh150618-ZWZ-2_01.d tune-posAPCI-300-1200_141111.m

6/18/2015 2:51:09 PM Acquisition Date

Operator Jiang Instrument / Ser#

micrOTOF-Q II 10324

Figure S31 HR-ESI mass spectrum of compound 3b.

Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 11/29/2016 5:13:53 PM D:\Data\DH\201611\20161129\ZWZ-5_20161129_0_A10_00006.d Analysis Name ESI_POS_150-1500_20161117 Method Operator ZWZ-5_20161129 Instrument Sample Name solariX Comment **Acquisition Parameter** Acquisition Mode Polarity Single MS Acquired Scans Calibration Date Mon Nov 14 03:15:10 Positive 150.5 m/z 1500.0 m/z No. of Cell Fills 1 Data Acquisition Size Data Processing Size 2096152 4194304 Broadband Low Mass Broadband High Mass No. of Laser Shots 200 Laser Power 7.0 lp 0.001 sec Apodization Sine-Bell Multiplication Source Accumulation Ion Accumulation Time 0.050 sec 0.080 sec Laser Shot Frequency Intens. x10⁸ +MS 1+ 792.39069 3 2 1 2+ 396.19564 0 200 400 600 1000 1200 1400 800 m/z Meas. m/z # Ion Formula Score rdb e Conf N-Rule m/z err [ppm] Mean err [ppm] mSigma 100.00 86.20 0.5 10.0 21.0 792.390688 1 C39H62B2O11S2 792.391417 1.0 29.3 odd ok C37H50B2N14OS2 odd 792.391407 30.5 2 1.0 ok 0.5 3 C38H56B2N7O6S2 86.17 792.391412 1.0 30.6 15.5 even ok C37H60B2N3O10S2 792.390074 31.7 92.84 -1.3 10.5 4 -0.7 even ok 5 C52H54B2N2S2 48.43 792.390904 0.3 -0.0 28.0 62.6 odd ok

Analysis Info Acquisition Date 11/29/2016 6:33:11 PM D:\Data\DH\201611\20161129\ZWZ-1 20161129 0 A11 000007.d Analysis Name Method ESI_POS_150-1500_20161117 Operator ZWZ-1_20161129 Instrument Sample Name solariX Comment Acquisition Parameter Acquisition Mode Single MS Acquired Scans 4 Mon Nov 14 03:15:10 Calibration Date Polarity Broadband Low Mass Positive 150.5 m/z No. of Cell Fills No. of Laser Shots Data Acquisition Size Data Processing Size 2096152 4194304 1 200

7.0 lp

Apodization

Sine-Bell Multiplication

Figure S33 HR-MALDI-MS spectrum of compound 5.

1500.0 m/z

Laser Power

Broadband High Mass

Figure S34 HR-MALDI-MS spectrum of compound 6a.

Source Accumulation Ion Accumulation Time 0.050 sec 0.001 sec Laser Shot Frequency 0.080 sec Intens. x10⁷ +MS 1+ 916.<mark>3</mark>2197 1.5 1.0 1+ 845.23555 0.5 2+ 458.16127 0.0 200 400 600 800 1000 1200 1400 m/z

m/z

916.320199

err [ppm]

-0.2

7.0 lp

Apodization

Mean err [ppm]

577.4

mSigma

79.0

Sine-Bell Multiplication

rdb e Conf N-Rule

ok

28.0 odd

Figure S35 HR-MALDI-MS spectrum of compound 6b.

Ion Formula

C52H58B2N2S4Si2

Broadband High Mass

Meas. m/z #

1

916.321970

1500.0 m/z

Laser Power

Score

100.00

Figure S36 HR-MALDI-MS spectrum of compound 6c.

6 Thermal Stabilities of 3a-6c.

7 References.

(1) Y. Dienes, S. Durben, T. Kárpáti, T. Neumann, U. Englert, L. Nyulászi, T. Baumgartner, *Chem. Eur. J.*, 2007, **13**, 7487.

(2) W. Z. Zhang, F. Zhang, R. Z. Tang, Y. B. Fu, X. Y. Wang, X. D. Zhuang, G. F. He and X. L. Feng, *Org. Lett.*, 2016, **18**, 3618.