# Synthesis of 4-benzylpyridines via Pd-catalyzed $\mathrm{CH}_{3}$-arylation of 4picoline <br> Jing Wu, ${ }^{\text {a,b }}$ Dadian Wang, ${ }^{\text {a }}$ Xiang Chen, ${ }^{\text {a }}$ Qingwen Gui, ${ }^{\text {a }}$ Hua Li, ${ }^{\text {b }}$ Ze Tan, ${ }^{* a}$ Genping Huang*b and Guangwei Wang*b <br> ${ }^{a}$ State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China <br> ${ }^{b}$ Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China 

## Supporting Information

## Table of contents

## 1. General information

2. Pd-catalyzed arylation of 4-methylpyridine
2.1 Optimization of reaction conditions
2.2 General procedure for Pd-catalyzed arylation of 4-methylpyridine
2.3 Reaction of coupling 4-picoline with 1-chloro-4-(trifluoromethyl)benzene

### 2.4 Control experiments

2.5 Synthesis of 1,3,5-tris(pyridin-4-ylmethyl)benzene
3. Characterization data of products

## 1. General information

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR were recorded in $\mathrm{CDCl}_{3}$ at room temperature on the Bruker AVIII-400 spectrometer $\left(400 \mathrm{MHz},{ }^{1} \mathrm{H}\right)$. The chemical-shifts scale is based on internal TMS. The peak patterns are indicated as follows: $s$, singlet; d, doublet; t , triplet; q , quartet; m, multiplet; qui, quintet; sxt, sextet. The coupling constants, J are reported in Hertz (Hz). High-resolution mass spectral (HRMS) analyses were carried out using a TOF MS instrument with an ESI source.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification, all reactions were run under $\mathrm{N}_{2}$ and were heated in the oil bath, Fresh catalyst $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ were used in all experiments. Prior to starting experiments, the reaction flask must be heated by using heat gun in vacuum, then the base $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ must be heated by using heat gun as well. Products were purified by flash column chromatography on 200-300 mesh silica gel, $\mathrm{SiO}_{2}$.

## 2. Pd-catalyzed arylation of 4-methylpyridine

### 2.1 Optimization of reaction conditions

Table 1. Screening of reaction solvents ${ }^{a}$


| entry | cosolvent | ${\text { Yield }(\%)^{b}}^{\text {4-picoline }^{c}}$ |
| :---: | :---: | :---: |
| 1 | DMF | 86 |
| 2 | DMSO | 14 |
| 3 | Dioxane | 6 |
| 4 | DMI | 0 |
| 5 | NMP | 0 |
| 6 | toluene | 0 |
| 7 | THF | 10 |
| 8 | 0 |  |

${ }^{a}$ Reaction conditions: 1a ( 5.0 mmol ), 2a ( 0.5 mmol ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.025 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.25 \mathrm{mmol})$, cosolvent ( 2.0 mL ), under $80^{\circ} \mathrm{C}, 72 \mathrm{~h} .{ }^{5}$ Isolated yields. ${ }^{c}$ Reaction conditions: $\mathbf{1 a}(3.0 \mathrm{~mL}), \mathbf{2 a}(0.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.025 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.25 \mathrm{mmol})$, under $80^{\circ} \mathrm{C}, 72 \mathrm{~h}$.

### 2.2 General procedure for Pd-catalyzed arylation of 4-methylpyridine



To a dried 25 mL sealed tube, were added the base $\mathrm{Cs}_{2} \mathrm{CO}_{3}(407 \mathrm{mg}, 1.25 \mathrm{mmol})$, then it must be heated by using heat gun in vacuum. And 2a ( $78.5 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), 1a ( 3 mL ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}$, 0.025 mol ) were added in the tube when it changed room temperature. The tube was capped and stirred at $80^{\circ} \mathrm{C}$ for 72 h . The reaction mixture was cooled to room temperature and quenched with water. It was extracted 3 times by using EtOAc, the organic phase was combined and dried with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, then concentrated. The resulting residue was purified by chromatography on silica gel $($ petroleum ether/triethylamine $=20: 1)$ to give the pure compound 3a.

### 2.3 Reaction of coupling 4-picoline with 1-chloro-4-(trifluoromethyl)benzene



To a dried 25 mL sealed tube, were added the base $\mathrm{Cs}_{2} \mathrm{CO}_{3}(407 \mathrm{mg}, 1.25 \mathrm{mmol})$, then it must be heated by using heat gun in vacuum. And 1-chloro-4-(trifluoromethyl)benzene ( $90 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), 4-picoline $(3 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 0.025 \mathrm{~mol})$ were added in the tube when it changed room temperature. The tube was capped and stirred at $140^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was cooled to room temperature and quenched with water. Then it was extracted 3 times by using EtOAc, the organic phase was combined and dried with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, then concentrated. The resulting residue was purified by chromatography on silica gel (petroleum ether/triethylamine $=20: 1$ ) to give the pure compound 4-methyl-3-(4-(trifluoromethyl)phenyl)pyridine. 4-methyl-3-(4(trifluoromethyl)phenyl)pyridine ${ }^{1}: 42 \mathrm{mg}, 36 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $8.41(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H})$.

### 2.4 Control experiments

To two dried 25 mL sealed tubes, were added respectively the base $\mathrm{Cs}_{2} \mathrm{CO}_{3}(407 \mathrm{mg}, 1.25 \mathrm{mmol})$,
then they must be heated by using heat gun in vacuum. After cooling down to rt, bromobenzene $(78.5 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathbf{1 a}(1.5 \mathrm{~mL}, 15.4 \mathrm{mmol})$ or $\mathbf{1 a - d}(1.5 \mathrm{~mL}, 15.4 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}$, 0.025 mol ) were added in the tubes. The tubes were capped and stirred at $80^{\circ} \mathrm{C}$ for 72 h . The two reaction mixtures were cooled to room temperature, combined and quenched with water. The mixture was extracted 3 times by using EtOAc, the organic phase was combined and dried with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, then concentrated. The resulting residue was purified by chromatography on silica gel (petroleum ether/triethylamine $=20: 1$ ) to give the product 3a and $\mathbf{3 a -} \boldsymbol{d}_{4}$ in less than $50 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 8.41(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3.47 \mathrm{H}), 7.17(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1.74 \mathrm{H}), 7.10(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3.30 \mathrm{H}), 7.03(\mathrm{~s}, 3.47 \mathrm{H}), 3.89(\mathrm{~s}, 2.29 \mathrm{H})$. The KIE value was calculated as $k_{\mathrm{H}} / k_{\mathrm{D}}=1.45$.


### 2.5 Synthesis of 1,3,5-tris(pyridin-4-ylmethyl)benzene



To a dried 25 mL sealed tube, were added the base $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.222 \mathrm{~g}, 3.75 \mathrm{mmol})$, then it must be heated by using heat gun in vacuum. And 1,3,5-tribromobenzene ( $155.5 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), 4-pycoline
$(3 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(87 \mathrm{mg}, 0.075 \mathrm{mmol})$ were added in the tube when it changed room temperature. The tube was capped and stirred at $80{ }^{\circ} \mathrm{C}$ for 72 h . The reaction mixture was cooled to room temperature, and was extracted 3 times by using EtOAc, the organic phase was combined and dried with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, then concentrated. The resulting residue was purified by chromatography on silica gel (petroleum ether/triethylamine $=15: 1$ ) to give the desired product. 1,3,5-tris(pyridin-4ylmethyl)benzene Synthesis ${ }^{2}$ : $70 \mathrm{mg}, 40 \%$ yield, white solid, $\mathrm{mp}: 102-106{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.42(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 6.98(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}), 6.79(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 148.91,148.54,138.93,127.11,123.07,39.97$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+} 352.1815$, found 352.1806 .

## 3. Characterization data of products

## 4-benzylpyridine (3a) ${ }^{3}$



Compound 3a: $72 \mathrm{mg}, 86 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 148.95,148.81,137.85,128.01,127.70,125.65,123.14$, 40.21 .

## 4-(4-methylbenzyl)pyridine (3aa) ${ }^{4}$



Compound 3aa: $67 \mathrm{mg}, 74 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.48(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~m}, 6 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 149.29,148.78,135.23,134.79,128.37,127.88,123.11,39.79$, 20.00; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$184.1128, found 184.1117 .

## 4-(3-methylbenzyl)pyridine (3ab) ${ }^{5}$



Compound 3ab: $67 \mathrm{mg}, 74 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.39(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 149.07, 148.78, 137.75, 137.31, 128.75, 127.56, 126.36, 125.02, 123.13, 40.13, 20.32; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$184.1128, found 184.1128 .

## 4-(3-methoxybenzyl)pyridine (3ac) ${ }^{6}$

Compound 3ac: $69 \mathrm{mg}, 70 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ):
 $\delta 8.40(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 158.84,148.82,148.78,139.36,128.68,123.12,120.38$, 113.93, 110.78, 54.13, 40.19; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$ 200.1077, found 200.1073.

## 4-(4-methoxybenzyl)pyridine (3ad) ${ }^{5}$



Compound 3ad: $66 \mathrm{mg}, 67 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.41(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, 2H), $3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 157.38,149.45,148.82$, 129.92, 123.05, 113.12, 54.26, 39.34; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}(\mathrm{M}+$ H) ${ }^{+}$200.1077, found 200.1078 .

## 4-(benzo[d][1,3]dioxol-5-ylmethyl)pyridine (3ae) ${ }^{5}$



Compound 3ae: $76 \mathrm{mg}, 72 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.42(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 149.12,148.85,146.92,145.33,131.57,123.00,121.00,108.39$, 107.37, 99.99, 39.88; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$214.0870, found 214.0869.

## 4-([1,1'-biphenyl]-4-ylmethyl)pyridine (3af)



Compound 3af: $87 \mathrm{mg}, 71 \%$ yield, white solid, mp: $68-70{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.43(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}$, 2H), $7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, 2H), 3.90 (s, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 148.88, 148.85, 139.67, 138.64, 136.90, $128.41,127.75,126.41,126.25,125.98,123.16,39.84$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$246.1284, found 246.1278

## N,N-dimethyl-4-(pyridin-4-ylmethyl)aniline (3ag) ${ }^{5}$



Compound 3ag: $18 \mathrm{mg}, 17 \%$ yield, white solid, mp: 42-43 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.40(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 150.04,148.70,148.44,128.66,125.70,123.07,111.88$, 39.55, 39.26; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}$213.1393, found 213.1392.

## 4-(4-chlorobenzyl)pyridine (3ah) ${ }^{7}$

 Compound 3ah: $75 \mathrm{mg}, 75 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.42(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 148.94,148.33,136.29,131.54,129.33,127.82$, 123.03, 39.47; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}(\mathrm{M}+\mathrm{H})^{+}$204.0582, found 204.0581.

## 4-(4-fluorobenzyl)pyridine (3ai) ${ }^{8}$



Compound 3ai: $71 \mathrm{mg}, 76 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.42(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 148.93, 148.74, $133.52(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.46(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 123.02,114.65,114.44,39.35$; ${ }^{19} \mathrm{~F}$ NMR ( $375 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-116.24$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN}$ (M $+\mathrm{H})^{+}$188.0877, found 188.0874 .
ethyl 4-(pyridin-4-ylmethyl)benzoate (3aj) ${ }^{5}$
Compound 3aj: $80 \mathrm{mg}, 67 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ):
 $\delta 8.43(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.00(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 165.30, 148.98, 147.98, 142.97, 128.98, 128.05, 128.00, 123.10, 59.91, 40.11, 13.30; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$242.1183, found 242.1179.

## 4-(pyridin-4-ylmethyl)benzonitrile (3ak) ${ }^{5}$



Compound 3ak: $73 \mathrm{mg}, 76 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.45(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.01(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 149.16$, 147.12, 143.35, 131.53, 128.77, 123.09, 117.64, 109.79, 40.17; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}$195.0924, found 195.0918.

## 4-(3-(trifluoromethyl)benzyl)pyridine (3al) ${ }^{5}$



3al


Compound 3al: $104 \mathrm{mg}, 88 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.44(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 149.06,147.81,138.78,131.39,130.09(\mathrm{q}, J=32.1 \mathrm{~Hz})$, $128.20,124.68(\mathrm{q}, J=3.76 \mathrm{~Hz}), 123.06,123.01(\mathrm{~d}, J=270.73 \mathrm{~Hz}), 122.63(\mathrm{q}$, $J=3.73 \mathrm{~Hz}$ ), $39.90 ;{ }^{19} \mathrm{~F}$ NMR ( $375 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-62.63$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$238.0845, found 238.0847.

## 4-(4-(trifluoromethyl)benzyl)pyridine (3am)

Compound 3am: 97 mg , 82\% yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.45(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$ : $\delta 149.07,147.75,141.91,128.34,128.30(\mathrm{~d}, J=65.9 \mathrm{~Hz}), 126.67(\mathrm{q}, J=3.77$ $\mathrm{Hz}), 123.12(\mathrm{~d}, J=270.2 \mathrm{~Hz}), 123.09,39.94 ;{ }^{19} \mathrm{~F}$ NMR ( $375 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ -62.48; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$238.0845, found 238.0847.

## 4-(2-methylbenzyl)pyridine (3an) ${ }^{7}$



Compound 3an: $32 \mathrm{mg}, 35 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.40(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 148.76, $148.54,135.73,135.62,129.53,129.09,126.08,125.23,122.95,37.85,18.57 ;$ HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$184.1128, found 184.1121.

## 4-(2,5-dimethylbenzyl)pyridine (3ao)



Compound 3ao: $41 \mathrm{mg}, 43 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.40(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 148.77, 148.68, 135.53, 134.69, 132.40, 129.86, 129.43, 126.71, 122.96, 37.83, 19.90, 19.08; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$198.1284, found 198.1270.


Compound 3ap: 49 mg , 50\% yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.38(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.83(\mathrm{~m}$, 2H), $3.88(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 156.34, $149.18,148.58,129.49,127.13,126.42,123.11,119.59,109.56,54.27,34.57$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$200.1077, found 200.1071.

## 4-(naphthalen-1-ylmethyl)pyridine (3aq) ${ }^{9}$

Compound 3aq: $70 \mathrm{mg}, 64 \%$ yield, white solid, $\mathrm{mp}: 81-82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.37(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 148.83,148.66,133.38,132.97,130.85,127.80,126.77,126.67$, 125.23, 124.77, 124.50, 122.90, 122.88, 37.43; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$220.1128, found 220.1108.

## 4-(naphthalen-2-ylmethyl)pyridine (3ar) ${ }^{9}$



Compound 3ar: $71 \mathrm{mg}, 65 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.41(\mathrm{dd}, J=6.0,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.17(\mathrm{dd}, J=1.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 148.87,148.78,135.28,132.50,131.20,127.40$, 126.64, 126.51, 126.44, 126.28, 125.23, 124.70, 123.21, 40.31; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$220.1128, found 220.1124.

## 3-(pyridin-4-ylmethyl)pyridine (3as)



Compound 3as: $60 \mathrm{mg}, 71 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.44(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{dt}, J=1.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=4.8,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 149.19$, $149.05,147.63,147.25,135.37,133.37,123.03,122.60,37.30 ;$ HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}$171.0924, found 171.0910.

## 5-(pyridin-4-ylmethyl)pyrimidine (3at)



Compound 3at: $19 \mathrm{mg}, 23 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 2 \mathrm{H}), 8.50(\mathrm{dd}, J=6.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, 2H), 3.91 ( $\mathrm{s}, 2 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 156.46, 156.07, 149.35, 146.13, 131.33, 122.88, 34.82; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}$
172.0876, found 172.0871.

## 4-benzyl-3-methylpyridine (3aw) ${ }^{10}$



Compound 3aw: $46 \mathrm{mg}, 51 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17$ $(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, 2H), 2.17 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 149.74,146.84,146.67$, $137.21,131.05,127.85,127.64,125.50,123.30,37.69,15.35$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$184.1128, found 184.1114 .

## 4-(4-fluorobenzyl)-3-methylpyridine (3ax)

Compound 3ax: $57 \mathrm{mg}, 57 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ):
 $\delta 8.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.87(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 149.82,146.75,146.63,131.90(\mathrm{~d}, J=113.4 \mathrm{~Hz}), 129.2963$, $129.2179,127.75(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 123.15,114.59,114.38,36.88,15.31 ;{ }^{19} \mathrm{~F}$ NMR ( $375 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-116.43$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN}(\mathrm{M}+$ H) ${ }^{+}$202.1034, found 202.1011.

## 4-(4-chlorobenzyl)-3-methylpyridine (3ay)



Compound 3ay: $60 \mathrm{mg}, 56 \%$ yield, colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.87(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 149.84,146.75,146.28,135.67,131.40,130.99,129.15,127.79$, 123.19, 37.04, 15.32. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}(\mathrm{M}+\mathrm{H})^{+}$218.0738, found 218.0726.

## References

1. M. S. Dionicio, B. Melillo, L. Sanchez, Y. Liang, E. Lam, K. N. Houk, A. B. Smith, J. Am. Chem. Soc., 2016, 138, 1836.
2. D. K. Chand, M. Fujita, K. Biradha, S. Sakamoto, K. Yamaguchi, Dalton Trans., 2003, 13, 2750.
3. Y. Kato, T. Mase, Tetrahedron, 1999, 40, 8823.
4. S. M. N. Efange, R. H. Michelson, R. P. Remmel, R. J. Boudreau, A. K. Dutta, A. Freshler, J. Med. Chem., 1990, 33, 3133.
5. S. Duez, A. K. Steib, S. M. Manolikakes, P. Knochel, Angew. Chem., Int. Ed., 2011, 50, 7686.
6. J. Bosch, J. Bonjoch, A. Diez, A. Linares, M. Moral, M. Rubiralta, Tetrahedron, 1985, 41, 1753.
7. P. H. Lee, K. Lee, J. S. Shim, S. G. Lee, S. Kim, Heterocycles, 2006, 67, 777.
8. B. Agai, A. Proszenyak, G. Tarkanyi, L. Vida, F. Faigl, Eur. J. Org. Chem., 2004, 17, 3623.
9. F.-L. Dai, Q.-W. Gui, J.-D. Liu, Z.-Y. Yang, X. Chen, R.-Q. Guo, Z. Tan, Chem. Commun., 2013, 49, 4634.
10. T. L. Shing, W. L. Chia, M. J. Shiao, T. Y. Chau, Synthesis, 1991, 1991, 849.



| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |





त्य
ण






| 1 | 1 | 1 | 170 | 1 | , | , | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{array}{r} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{array}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |








气喜
ぶ
ぶ








| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 |  |  |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 170 |  |  | 140 | 130 | 120 | 110 | fl (ppm) | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |




劳





$\stackrel{5}{8}$
$\stackrel{\overline{5}}{1}$




| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{aligned} & 100 \\ & (\mathrm{ppm}) \end{aligned}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |




| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |



## 




| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |



mō
nosi
亿is








