Laser flash photolysis of nanocrystalline α -azido-*p*-methoxyacetophenone

Sujan K. Sarkar,^a DeVonna M. Gatlin,^a Anushree Das,^a Breyinn Loftin,^a Jeanette A. Krause,^a Manabu Abe^b and Anna D. Gudmundsdottir^a

Contents

1.	Cha	haracterization of azide 1 and product 72									
2.	Pho	otos of Crystals of azide 1 before and after irradiation4									
3.	Мо	lecular modeling5									
	3.1.	Optimization of 1A5									
	3.2.	TD-DFT calculation on 1A6									
	3.3.	Optimization of azide 1C8									
	3.4.	TD-DFT calculation for azide 1A9									
	3.5.	Optimization of T_1 of 1A10									
	3.6.	TD-DFT calculation of T1 of 1A11									
	3.7.	Spin density calculation of T1 of 1A15									
	3.8.	Optimization of T1 of 1C16									
	3.9.	TD-DFT calculations for T_1 of 1C17									
	3.10.	Spin density calculation for T_1 of 1C20									
	3.11.	TS and IRC calculation for forming benzoyl radical 4 and 5 from T_1 of 121									
	3.12.	Optimization of benzoyl radical 423									
	3.13.	TD-DFT calculation for benzoyl radical 424									
	3.14.	Spin density calculation of benzoyl radical 425									
	3.15.	Optimization of CH_2N_3 radical 526									
	3.16.	TD-DFT calculation of CH_2N_3 radical 527									
	3.17.	Spin density calculation for CH_2N_3 radical 528									
	3.18.	TS and IRC to form CH_2N radical 6 from radical 5									
	3.19.	Optimization of CH_2N radical 6									
	3.20.	TD-DFT for imine radical 6									
	3.21.	Optimization of N_2									

3.22.	Optimization of p-MeO-PhCONCH ₂ 7	31
3.23.	Optimization of T_A of 1A	32
3.24.	TS and IRC to form nitrene 10 from T_{A} of 1	33
3.25.	Optimization of triplet nitrene 10	35

1. Characterization of azide 1 and product 7

Figure S1. ¹H-NMR spectrum of azide **1**.

Figure S2. ¹H-NMR and IR spectra of product **7**

2. Photos of Crystals of azide 1 before and after irradiation.

Figure S3. Crystals of azide **1** 1a) before and b) after irradiation with mercury arc lamp through Pyrex filter. The scale is shown in the lower right corners of the figures

3. Molecular modeling

3.1. Optimization of 1A

DFT/B3LYP 6-31+G(d), E = -663.02209626 a.u.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 б	0	-0.603269	-1.262126	-0.024608
2	б	0	-0.007680	0.007822	0.118925
3	6	0	-0.845452	1.133340	0.165287
4	6	0	-2.229502	1.013094	0.075456
5	6	0	-2.805352	-0.260389	-0.068087
6	6	0	-1.980668	-1.397857	-0.118498
7	1	0	0.006089	-2.159980	-0.066990
8	1	0	-0.389510	2.112592	0.274176
9	1	0	-2.845315	1.904364	0.116594
10	1	0	-2.444857	-2.372843	-0.230294
11	6	0	-5.041299	0.608101	-0.122300
12	1	0	-4.859712	1.300911	-0.953180
13	1	0	-6.037840	0.175299	-0.219058
14	1	0	-4.964763	1.143737	0.831906
15	8	0	1.957421	1.326033	0.323760
16	8	0	-4.139149	-0.495248	-0.166287
17	6	0	1.461290	0.214012	0.217790
18	6	0	2.377762	-1.022584	0.149871
19	1	0	2.040339	-1.784238	0.857015
20	1	0	2.300562	-1.459783	-0.858936
21	7	0	3.767754	-0.750970	0.506304
22	7	0	5.092257	0.739650	-0.778891
23	7	0	4.381966	0.053204	-0.209418

3.2. TD-DFT calculation on 1A

Singlet

Excitation energies and oscillator strengths:

Excited Stat <s**2>=0.000 48 -> 9 49 -> 9 50 -> 9</s**2>	te 1: 51 51 51	Singlet-A 0.32377 0.56214 0.23515	3.7905 (eV 327.09	nm f=0.0007
Excited Stat <s**2>=0.000 48 -> 9 48 -> 9 49 -> 9 50 -> 9 50 -> 9</s**2>	te 2: 51 52 52 53 51 52	Singlet-A -0.22682 -0.17451 0.52539 0.11203 0.11109 0.29833	4.3142 (eV 287.38	nm f=0.0033
Excited Stat <s**2>=0.000 48 -> 9 49 -> 9 50 -> 9 50 -> 9</s**2>	te 3: 51 52 51 52	Singlet-A -0.39077 -0.21097 0.51354 -0.10120	4.4608	ev 277.94	nm f=0.1904

Triplet

Excitation energies and oscillator strengths:

Excited <\$**2>=2.	State .000	1:	Triplet-A	3.11	.07 eV	398.57 n	m f=0.0000
45	-> 51		-0.11786				
47	-> 53		-0.15230				
49	-> 51		-0.22012				
50	-> 51		0.62867				
Excited	State	2:	Triplet-A	3.36	574 eV	368.19 n	um f=0.0000
<s**2>=2.</s**2>	.000						
47	-> 51		-0.10768				
48	-> 51		0.41024				
49	-> 51		0.50886				
50	-> 51		0.15990				
Excited	State	3:	Triplet-A	3.80)86 eV	325.54 n	m f=0.0000
<s**2>=2.</s**2>	.000						
48	-> 51		-0.10208				
48	-> 52		-0.22523				
49	-> 52		0.54611				
49	-> 53		0.11309				
50	-> 52		0.29484				

3.3. Optimization of azide 1C

DFT/UB3LYP 6-31+G(d), E = -663.01815909 a.u.

Center	Atomic	Atomic	Atomic Coordinates (Angstro						
Number	Number	Туре	X	Y	Z				
1	6	0	0.471615	-1.044607	0.000060				
2	б	0	0.095535	0.314129	0.000024				
3	б	0	1.110482	1.283214	0.000012				
4	б	0	2.456648	0.927049	0.000023				
5	б	0	2.812451	-0.431760	0.000026				
б	б	0	1.808608	-1.415697	0.000054				
7	1	0	-0.278600	-1.830069	0.000084				
8	1	0	0.823776	2.330330	0.00007				
9	1	0	3.213321	1.703496	0.000031				
10	1	0	2.103661	-2.460496	0.000072				
11	6	0	5.163178	0.045771	-0.000122				
12	1	0	5.137444	0.676162	0.897307				
13	1	0	6.075512	-0.552124	-0.000222				
14	1	0	5.137197	0.676098	-0.897587				
15	8	0	-1.614777	1.960515	0.000048				
16	8	0	4.090226	-0.893001	0.000052				
17	6	0	-1.320928	0.777147	0.000011				
18	6	0	-2.413308	-0.300119	-0.000065				
19	1	0	-2.286390	-0.939658	-0.886402				
20	1	0	-2.286411	-0.939811	0.886150				
21	7	0	-3.734450	0.337875	0.00003				
22	7	0	-5.655749	-1.054519	-0.000025				
23	7	0	-4.688199	-0.445469	-0.000033				

3.4. TD-DFT calculation for azide 1A

Triplet Excited State 1: Triplet-A 3.1271 eV 396.48 nm f=0.0000 <S**2>=2.000 45 -> 51 -0.12025 47 -> 53 0.16478 49 -> 51 -0.10116 50 -> 51 0.65765 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -662.903240254Copying the excited state density for this state as the 1-particle RhoCI density. 3.3999 eV 364.67 nm f=0.0000 Excited State 2: Triplet-A <S**2>=2.000 48 -> 51 0.68552 48 -> 59 -0.14843 Triplet-A 3.8047 eV 325.87 nm f=0.0000 Excited State 3: <S**2>=2.000 49 -> 52 0.65232 50 -> 52 0.21559 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 3 LETran= 64.

3.5. Optimization of T₁ of 1A

DFT/UB3LYP 6-31+G(d), E = -662.91515691 a.u. Standard orientation:

Center	Atomic	rdinates (Angstroms)			
Number	Number	Туре	Х	Y	Z
1	б	0	-0.357156	1.053282	0.416475
2	6	0	0.086142	-0.308469	0.414557
3	б	0	-0.884817	-1.317406	0.108227
4	б	0	-2.216313	-0.997116	-0.107919
5	6	0	-2.634554	0.344913	-0.048474
6	б	0	-1.683903	1.362991	0.219222
7	1	0	0.357254	1.855459	0.570357
8	1	0	-0.567221	-2.354236	0.089577
9	1	0	-2.925400	-1.793489	-0.305866
10	1	0	-2.027822	2.392886	0.246351
11	б	0	-4.920519	-0.179275	-0.554475
12	1	0	-5.044058	-0.912633	0.252169
13	1	0	-5.840629	0.394923	-0.670325
14	1	0	-4.687250	-0.696025	-1.493528
15	8	0	1.845077	-1.830385	0.161216
16	8	0	-3.911304	0.773372	-0.229923
17	6	0	1.449447	-0.676305	0.640774
18	б	0	2.530143	0.275622	1.090717
19	1	0	2.106915	1.014342	1.774242
20	1	0	3.313761	-0.280437	1.617899
21	7	0	3.136151	1.074522	-0.021682
22	7	0	4.811754	0.070889	-1.374199
23	7	0	3.999730	0.495430	-0.690669

3.6. TD-DFT calculation of T1 of 1A

Excited State 1: 3.012-A 0.4642 eV 2671.07 nm f=0.0163 <S**2>=2.018 51A -> 54A -0.11694 43B -> 50B -0.1308245B -> 50B 0.24820 46B -> 50B 0.15340 48B -> 50B 0.16383 49B -> 50B 0.91607 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -662.898098827Copying the excited state density for this state as the 1-particle RhoCI density. 1.4824 eV 836.38 nm f=0.0084 Excited State 2: 3.020-A <S**2>=2.030 45B -> 50B 0.14787 47B -> 50B 0.22514 48B -> 50B 0.91564 49B -> 50B -0.22314 Excited State 3: 3.020-A 1.5154 eV 818.17 nm f=0.0033 <S**2>=2.031 45B -> 50B -0.11522 47B -> 50B 0.95300 48B -> 50B -0.15738 49B -> 50B 0.15546 Excited State 4: 3.018-A 2.1891 eV 566.37 nm f=0.0057 <S**2>=2.027 51A -> 52A 0.36623 51A -> 54A 0.17157 43B -> 50B -0.3122745B -> 50B 0.45768 46B -> 50B 0.61274 47B -> 50B 0.14958 48B -> 50B -0.26623 49B -> 50B -0.16127 Excited State 5: 3.026-A 2.3779 eV 521.39 nm f=0.0748 <S**2>=2.039 51A -> 52A 0.77749

51A -> 53A 51A -> 54A 43B -> 50B 45B -> 50B 46B -> 50B 49B -> 50B		0.46119 -0.12567 0.12739 -0.24749 -0.18398 0.16346			
Excited State <s**2>=2.038 51A -> 52A 51A -> 53A 45B -> 50B</s**2>	6:	3.025-A -0.45381 0.86339 0.10732	2.4065 eV	515.21 nm	f=0.0175
Excited State <s**2>=2.031 51A -> 52A 51A -> 54A 51A -> 56A 43B -> 50B 45B -> 50B 46B -> 50B</s**2>	7:	3.021-A -0.10356 -0.20805 0.14735 0.18419 -0.58422 0.72072	2.8077 eV	441.59 nm	f=0.0114
Excited State <s**2>=2.074 48A -> 53A 51A -> 54A 51A -> 55A 51A -> 56A 45B -> 50B 49B -> 50B 49B -> 51B</s**2>	8:	3.049-A -0.10995 0.75863 0.12171 -0.10884 -0.28628 0.11911 0.48997	3.0864 eV	401.72 nm	f=0.0611
Excited State <s**2>=2.100 51A -> 54A 51A -> 56A 44B -> 50B 49B -> 51B</s**2>	9:	3.066-A 0.32591 0.86517 0.16052 -0.19436	3.4128 eV	363.29 nm	f=0.0114
Excited State <s**2>=2.031 51A -> 56A 41B -> 50B 42B -> 50B 44B -> 50B</s**2>	10:	3.021-A -0.16633 -0.18481 0.22204 0.92439	3.4793 eV	356.35 nm	f=0.0016
Excited State <s**2>=2.026 51A -> 54A 51A -> 55A 51A -> 57A</s**2>	11:	3.018-A -0.15901 0.91865 0.31652	3.5390 eV	350.33 nm	f=0.0004

Excited State	12:	3.091-A	3.6794	eV	336.97	nm	f=0.0941
<s**2>=2.139</s**2>							
48A -> 53A		0.10854					
51A -> 54A		-0.14458					
40B -> 50B		0.20711					
43B -> 50B		0.70377					
45B -> 50B		0.36657					
46B -> 50B		0.11016					
48B -> 52B		-0.11765					
49B -> 51E		0.44584					
Excited State	13:	3.540-A	3.8037	eV	325.96	nm	f=0.0132
<s**2>=2.883</s**2>							
49A -> 52A		0.27575					
50A -> 52A		-0.27244					
51A -> 54A		0.14502					
51A -> 55A		-0.16288					
51A -> 57A		0.49248					
40B -> 50B		0.10286					
43B -> 50B		0.31737					
45B -> 50B		0.11270					
48B -> 51B		0.26996					
48B -> 52B		0.31131					
49B -> 51B		-0.28405					
49B -> 52B		-0.32575					
Evaited State	14.	2 1 0 0 3					
DACILEU SLALE	14.	3.182-A	3.8272	eV	323.95	nm	t=0.0434
<pre><s**2>=2.281</s**2></pre>	14·	3.182-A	3.8272	eV	323.95	nm	t=0.0434
<pre><s**2>=2.281</s**2></pre>	14.	-0.12848	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281</s**2></pre>	14·	-0.12848 0.11463	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A</s**2></pre>	14•	-0.12848 0.11463 -0.14307	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A</s**2></pre>	14•	-0.12848 0.11463 -0.14307 -0.29228	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A 51A -> 55A 51A -> 56A</s**2></pre>	14•	3.182-A -0.12848 0.11463 -0.14307 -0.29228 0.14316	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A 51A -> 56A 51A -> 56A 51A -> 57A</s**2></pre>		-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281</s**2></pre>		-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 55A 51A -> 55A -> 55A 51A -> 55A -> 55A -> 55A -> 55A -> 55A -></s**2></pre>		-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A 51A -> 55A 51A -> 55A 51A -> 57A 43B -> 50B 48B -> 51B 48B -> 52B</s**2></pre>		-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A 51A -> 55A 51A -> 56A 51A -> 57A 43B -> 50B 48B -> 51B 48B -> 52B 49B -> 51B</s**2></pre>		-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A 51A -> 55A 51A -> 55A 51A -> 57A 43B -> 50B 48B -> 51B 48B -> 52B 49B -> 51B 49B -> 52B</s**2></pre>		-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624	3.8272	eV	323.95	nm	±=0.0434
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A 51A -> 55A 51A -> 56A 51A -> 57A 43B -> 50B 48B -> 51B 48B -> 52B 49B -> 51B 49B -> 52B</s**2></pre>	15:	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A	3.8272	eV	323.95	nm	f=0.0434
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A 51A -> 55A 51A -> 56A 51A -> 57A 43B -> 50B 48B -> 51B 48B -> 52B 49B -> 51B 49B -> 52B Excited State <s**2>=2.663</s**2></s**2></pre>	14.	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A	3.8272	eV eV	323.95	nm	f=0.1160
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A 51A -> 55A 51A -> 56A 51A -> 50B 43B -> 50B 48B -> 51B 48B -> 51B 49B -> 51B 49B -> 52B 49B -> 52B £xcited State <s**2>=2.663 49A -> 52A</s**2></s**2></pre>	14.	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A 0.25715	3.9881	eV eV	323.95	nm	f=0.1160
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A 51A -> 55A 51A -> 56A 51A -> 57A 43B -> 50B 48B -> 51B 48B -> 51B 49B -> 51B 49B -> 52B Excited State <s**2>=2.663 49A -> 52A 49A -> 54A</s**2></s**2></pre>	14.	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A 0.25715 -0.10393	3.9881	eV eV	310.89	nm	f=0.1160
<pre><s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 54A 51A -> 55A 51A -> 55A 51A -> 56A 51A -> 57A 43B -> 50B 48B -> 51B 48B -> 52B 49B -> 52B 49B -> 52B Excited State <s**2>=2.663 49A -> 52A 50A -> 52A</s**2></s**2></pre>	15:	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A 0.25715 -0.10393 -0.29271	3.8272	eV eV	323.95	nm	f=0.1160
<pre> Excited State <s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 55A 51A -> 55A 51A -> 55A 51A -> 56A 51A -> 57A 43B -> 50B 48B -> 51B 48B -> 52B 49B -> 51B 49B -> 52B Excited State <s**2>=2.663 49A -> 52A 50A -> 52A 51A -> 54A </s**2></s**2></pre>	15:	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A 0.25715 -0.10393 -0.29271 -0.28581	3.9881	eV eV	323.95	nm	f=0.1160
<pre> Excited State <s**2>=2.281 49A -> 52A 50A -> 52A 51A -> 55A 51A -> 55A 51A -> 55A 51A -> 56A 51A -> 50B 43B -> 50B 48B -> 51B 48B -> 52B 49B -> 51B 49B -> 52B 51A -> 52A 50A -> 52A 51A -> 54A 51A -> 54A 51A -> 56A </s**2></pre>	15:	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A 0.25715 -0.10393 -0.29271 -0.28581 0.23663	3.9881	eV eV	310.89	nm	f=0.1160
<pre>Excited State <s**2>=2.281</s**2></pre>	15:	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A 0.25715 -0.10393 -0.29271 -0.28581 0.23663 -0.13297	3.9881	eV	310.89	nm	f=0.1160
<pre>Excited State <s**2>=2.281</s**2></pre>	15:	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A 0.25715 -0.10393 -0.29271 -0.28581 0.23663 -0.13297 -0.10803	3.9881	eV eV	323.95	nm	f=0.1160
<pre>Excited State <s**2>=2.281</s**2></pre>	15:	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A 0.25715 -0.10393 -0.29271 -0.28581 0.23663 -0.13297 -0.10803 0.12811	3.9881	eV eV	323.95	nm	f=0.1160
<pre>Excited State <s**2>=2.281</s**2></pre>	14.	-0.12848 0.11463 -0.14307 -0.29228 0.14316 0.76478 -0.16991 -0.13787 -0.20203 0.27568 0.18624 3.413-A 0.25715 -0.10393 -0.29271 -0.28581 0.23663 -0.13297 -0.10803 0.12811 -0.31176	3.9881	eV eV	323.95	nm	f=0.1160

S13

48B	->	51B		0.19505					
48B	->	52B		0.22386					
48B	->	55B		0.11386					
49B	->	50B		-0.10391					
49B	->	51B		0.43826					
49B	->	52B		-0.23822					
Excited	Sta	ate	16:	3.017-A	4.0928	eV	302.93	nm	f=0.0001
<s**2>=2</s**2>	.026	5							
51A	->	58A		0.97119					
51A	->	59A		-0.11518					
51A	->	63A		0.13483					

3.7. Spin density calculation of T1 of 1A

							Natural									
Atom	No	Charge	Core	Valence	Rydberg	Total		Atom	No		Charge	Core	Valence	Rydberg	Total	Spin Density
с	1	-0.17529	0.99955	2.16768	0.00806	3.17529		с		1	-0.05139	0.99955	2.04467	0.00717	3.05139	-0.1239
С	2	-0.07528	0.9995	2.0664	0.00938	3.07528		с		2	-0.00489	0.99947	1.99774	0.00768	3.00489	-0.07039
С	3	-0.20761	0.99957	2.19814	0.00991	3.20761		С		з	0.00439	0.99956	1.98793	0.00811	2.99561	-0.212
С	4	-0.1188	0.99952	2.1121	0.00719	3.1188		С		4	-0.19515	0.99952	2.18859	0.00705	3.19515	0.07635
С	5	0.05236	0.99943	1.93635	0.01185	2.94764		С		5	0.26996	0.99943	1.71937	0.01123	2.73004	-0.2176
С	6	-0.11329	0.99953	2.10536	0.0084	3.11329		с		6	-0.13058	0.99953	2.12289	0.00816	3.13058	0.01729
н	7	0.1274	. 0	0.37193	0.00067	0.3726		н		7	0.12342	0	0.37589	0.00069	0.37658	0.00398
н	8	0.13451	0	0.36487	0.00062	0.36549		н		8	0.12743	0	0.37189	0.00068	0.37257	0.00708
н	9	0.12303	0	0.37655	0.00041	0.37697		н		9	0.12531	0	0.37427	0.00042	0.37469	-0.00228
н	10	0.12877	0	0.37063	0.0006	0.37123		н		10	0.12966	0	0.36974	0.0006	0.37034	-0.00089
С	11	-0.16238	0.99975	2.15513	0.0075	3.16238		С		11	-0.16649	0.99975	2.15941	0.00733	3.16649	0.00411
н	12	0.10513	0	0.39411	0.00076	0.39487		н		12	0.1095	0	0.38992	0.00058	0.3905	-0.00437
н	13	0.12059	0	0.37929	0.00011	0.37941		н		13	0.12052	0	0.37937	0.00011	0.37948	7E-05
н	14	0.10575	i 0	0.39343	0.00081	0.39425		н		14	0.10983	0	0.38958	0.00059	0.39017	-0.00408
0	15	-0.58864	0.99993	3.58035	0.00837	4.58864		0		15	0.25232	0.99993	2.74272	0.00503	3.74768	-0.84096
0	16	-0.29513	0.99987	3.28542	0.00985	4.29513		0		16	-0.21885	0.99987	3.20965	0.00933	4.21885	-0.07628
с	17	-0.08608	0.99952	2.06835	0.01821	3.08608		с		17	0.33101	0.99952	1.65396	0.01551	2.66899	-0.41709
С	18	-0.18334	0.99962	2.17259	0.01112	3.18334		с		18	-0.15334	0.99959	2.14502	0.00873	3.15334	-0.03
н	19	0.13035	0	0.36928	0.00038	0.36965		н		19	0.13697	0	0.36253	0.0005	0.36303	-0.00662
н	20	0.12562	0	0.37335	0.00103	0.37438		н		20	0.13054	0	0.36866	0.0008	0.36946	-0.00492
N	21	-0.19624	0.99972	2.68142	0.0151	3.69624		N		21	-0.15598	0.99972	2.64221	0.01405	3.65598	-0.04026
N	22	-0.06043	0.99984	2.54698	0.01362	3.56043		N		22	0.00326	0.99984	2.4839	0.01301	3.49674	-0.06369
N	23	0.10902	0.99979	2.37426	0.01693	3.39098		N		23	0.10253	0.99978	2.38135	0.01634	3.39747	0.00649

3.8. Optimization of T1 of 1C

DFT/UB3LYP 6-31+G(d), -662.90704690 a.u.

Center	Atomic	ordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z	
1	6	0	0.471370	-1.103053	-0.000182	
2	б	0	0.053931	0.296838	-0.000087	
3	б	0	1.127123	1.323415	0.000021	
4	б	0	2.446513	0.970390	0.000108	
5	6	0	2.817296	-0.406063	0.000058	
б	б	0	1.788922	-1.432979	-0.000086	
7	1	0	-0.274771	-1.890636	-0.000332	
8	1	0	0.814520	2.360212	0.000056	
9	1	0	3.207884	1.743859	0.000225	
10	1	0	2.115261	-2.469146	-0.000142	
11	б	0	5.179369	0.032583	-0.000048	
12	1	0	5.159898	0.660479	0.897941	
13	1	0	6.077081	-0.585964	-0.000255	
14	1	0	5.159442	0.660442	-0.898049	
15	8	0	-1.583032	1.960904	-0.000023	
16	8	0	4.081699	-0.883727	0.000254	
17	б	0	-1.303635	0.729772	-0.000081	
18	б	0	-2.412296	-0.326886	-0.000168	
19	1	0	-2.316868	-0.975860	-0.886024	
20	1	0	-2.316802	-0.976069	0.885523	
21	7	0	-3.722886	0.339537	-0.000061	
22	7	0	-5.673927	-1.010406	0.000246	
23	7	0	-4.692692	-0.421823	0.000100	

3.9. TD-DFT calculations for T₁ of 1C

Excitation energies and oscillator strengths:

Excited State 1: 3.016-A 0.4917 eV 2521.61 nm f=0.0000 <S**2>=2.024 49B -> 50B 0.98274 49B -> 51B 0.17479 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -662.888977780Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 3.048-A 1.3703 eV 904.77 nm f=0.0020 <S**2>=2.072 51A -> 52A 0.66583 47B -> 50B -0.65488 48B -> 50B 0.33319 Excited State 3: 3.020-A 1.5165 eV 817.56 nm f=0.0176 <S**2>=2.030 51A -> 52A -0.29879 47B -> 50B 0.16311 48B -> 50B 0.93743 Excited State 4: 3.015-A 1.8235 eV 679.92 nm f=0.0009 <S**2>=2.023 51A -> 52A 0.67131 47B -> 50B 0.73261 Excited State 5: 3.032-A 2.4032 eV 515.91 nm f=0.0040 <S**2>=2.048 47A -> 52A -0.10076 51A -> 55A 0.53908 51A -> 58A -0.29863 45B -> 50B 0.76542 Excited State 6: 3.023-A 2.4198 eV 512.38 nm f=0.0002 <S**2>=2.035 51A -> 53A 0.99644 Excited State 7: 3.018-A 2.7111 eV 457.31 nm f=0.0000 <S**2>=2.028 44B -> 50B 0.11461 46B -> 50B 0.99069 Excited State 8: 3.020-A 2.9105 eV 425.98 nm f=0.0008 <S**2>=2.031 51A -> 54A 0.95991 51A -> 56A 0.23578

Excited State 9: 3.022-A 3.1886 eV 388.84 nm f=0.0024 <S**2>=2.033 51A -> 54A -0.23572 51A -> 56A 0.96481 Excited State 10: 3.049-A 3.3566 eV 369.37 nm f=0.1802 <S**2>=2.074 47A -> 52A 0.14068 51A -> 55A 0.76144 51A -> 58A 0.38222

 51A -> 58A
 0.38222

 43B -> 50B
 -0.27681

 45B -> 50B
 -0.38436

 Excited State 11: 3.022-A 3.3930 eV 365.42 nm f=0.0000 <S**2>=2.033 0.97239 44B -> 50B 46B -> 50B -0.11679 49B -> 51B -0.12195 Excited State 12: 3.019-A 3.4319 eV 361.27 nm f=0.0006 <S**2>=2.029 51A -> 57A 0.97059 51A -> 60A 0.16524 Excited State 13: 3.055-A 3.5609 eV 348.19 nm f=0.1625 <S**2>=2.084 47A -> 52A -0.16968 51A -> 58A 0.68089 51A -> 71A 0.11232 43B -> 50B 0.61672 45B -> 50B 0.25412 Excited State 14: 3.022-A 3.7138 eV 333.85 nm f=0.0000 <S**2>=2.033 51A -> 57A -0.17244 51A -> 59A -0.13386 51A -> 60A 0.95557 51A -> 64A 0.15099 Excited State 15: 3.118-A 3.7638 eV 329.41 nm f=0.0000 <S**2>=2.181 44B -> 50B 0.12983 49B -> 50B -0.18208 49B -> 51B 0.93132 49B -> 61B -0.1431749B -> 64B -0.13416 Excited State 16: 3.043-A 3.7801 eV 327.99 nm f=0.2020 <S**2>=2.065 51A -> 55A 0.31886 0.31886 -0.51077 51A -> 58A 51A -> 61A 0.20654

51A 41B 43B 45B 47B	-> 71A -> 50B -> 50B -> 50B -> 53B		0.12591 -0.18812 0.57794 -0.37295 0.12495					
Excited <s**2>=3 48A 50A 48B</s**2>	State .992 -> 53A -> 53A -> 52B	17:	4.119-A 0.11345 -0.67916 0.68916	3.7954	eV	326.67	nm	f=0.0000
Excited <s**2>=2 51A 51A 51A</s**2>	State .033 -> 54A -> 59A -> 60A	18:	3.022-A -0.10930 0.97174 0.12725	3.8382	eV	323.03	nm	f=0.0006
Excited <s**2>=2 50A 50A 51A 43B 48B</s**2>	State .164 -> 55A -> 58A -> 61A -> 63A -> 50B -> 56B	19:	3.107-A 0.11283 0.12186 0.92362 -0.17806 -0.12822 0.16036	4.0287	eV	307.76	nm	f=0.0441
Excited <s**2>=3 46A 50A 50A 51A 51A 46B 48B</s**2>	State .847 -> 53A -> 55A -> 58A -> 58A -> 61A -> 52B -> 56B	20:	4.048-A 0.25442 0.39706 0.45183 -0.10961 -0.24384 -0.25591 0.60173	4.0620	eV	305.23	nm	f=0.0033

3.10. Spin density calculation for T_1 of 1C

Natural	#VALU	E!						Natural								
	Atom	No	Charge	Core	Valence	Rydberg	Total		Atom	No	Charg	e Core	Valence	Rydberg	Total	Calculated Spin Density
		0														
	с	1	-0.17078	0.99956	2.162	0.00923	3.17078		с		-0.10	512 0.999	6 2.09854	0.00702	3.10512	-0.06566
	С	2	-0.23076	0.99952	2.22206	0.00917	3.23076		С	1	2 0.24	452 0.999.	1 1.7484	0.00757	2.75548	-0.47528
	с	3	-0.2618	0.99958	2.24908	0.01314	3.2618		С	1	3 0.04	124 0.999.	7 1.95052	0.00866	2.95876	-0.30304
	с	4	-0.11841	0.99952	2.11161	0.00729	3.11841		с		-0.18	661 0.999	2 2.18028	0.00682	3.18661	0.0682
	С	5	-0.07229	0.99949	2.05966	0.01313	3.07229		С		5 0.38	653 0.999-	9 1.60301	0.01098	2.61347	-0.45882
	с	6	-0.16308	0.99954	2.15368	0.00987	3.16308		С		5 -0.03	695 0.999	4 2.02941	0.008	3.03695	-0.12613
	н	7	0.12549	· a	0.37407	0.00044	0.37451		н	10	7 0.1	223	0 0.37723	0.00047	0.3777	0.00319
	н	8	0.14192	0	0.35743	0.00064	0.35808		н		0.13	224	0 0.36705	0.00072	0.36776	0.00968
	н	9	0.12449	·	0.3751	0.00041	0.37551		н	1	0.1	256	0 0.37397	0.00043	0.3744	-0.00111
	н	10	0.13155	a	0.36791	0.00053	0.36845		н	19	0.12	725	0 0.37219	0.00056	0.37275	0.0043
	С	11	-0.16151	0.99975	2.15436	0.0074	3.16151		С	1:	l -0.17	053 0.999	5 2.16373	0.00705	3.17053	0.00902
	н	12	0.10613	C	0.39302	0.00085	0.39387		н	1	2 0.1	151	0 0.38446	0.00044	0.3849	-0.00897
	н	13	0.12209	· 0	0.37779	0.00012	0.37791		н	13	3 0.12	189	0 0.37799	0.00013	0.37811	0.0002
	н	14	0.10613	C	0.39302	0.00085	0.39387		н	1-	4 0.1	151	0 0.38446	0.00044	0.3849	-0.00897
	0	15	-0.45932	0.99991	3.44827	0.01114	4.45932		0	1	5 -0.06	602 0.999	1 3.05747	0.00865	4.06602	-0.3933
	0	16	-0.32346	0.99987	3.31331	0.01029	4.32346		0	1	6 -0.1	593 0.999	3.15046	0.00897	4.1593	-0.16416
	с	17	0.13157	0.99957	1.85034	0.01852	2.86843		С	1	0.20	923 0.999	7 1.77362	0.01758	2.79077	-0.07766
	С	18	-0.16964	0.99963	2.16213	0.00787	3.16964		С	14	3 -0.17	585 0.999	4 2.16841	0.0078	3.17585	0.00621
	н	19	0.11764	. a	0.38128	0.00109	0.38236		н	15	0.12	339	0 0.37583	0.00078	0.37661	-0.00575
	н	20	0.11764	. c	0.38128	0.00109	0.38236		н	2	0.12	338	0 0.37584	0.00078	0.37662	-0.00574
	N	21	-0.15634	0.99969	2.64337	0.01328	3.65634		N	2	-0.15	361 0.999	9 2.64041	0.01351	3.65361	-0.00273
	N	22	-0.04431	0.99984	2.5306	0.01387	3.54431		N	2	2 -0.0	399 0.999	4 2.52623	0.01384	3.5399	-0.00441
	N	23	0.10705	0.99979	2.37629	0.01688	3.39295		N	2	0.10	612 0.999	9 2.37731	0.01679	3.39388	0.00093

3.11. TS and IRC calculation for forming benzoyl radical 4 and 5 from T_1 of 1

DFT/UB3LYP 6-31+G(d), E = -662.89761649 a.u.

Imaginary frequency = 1

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.648733	1.536360	0.127577
2	б	0	0.080578	0.435278	0.625631
3	б	0	-0.576733	-0.803713	0.740523
4	б	0	-1.915239	-0.946631	0.369824
5	б	0	-2.617924	0.153833	-0.140133
б	б	0	-1.971738	1.399044	-0.258168
7	1	0	-0.174391	2.512629	0.064301
8	1	0	-0.032358	-1.656652	1.134366
9	1	0	-2.393404	-1.913689	0.481194
10	1	0	-2.536666	2.243890	-0.640565
11	б	0	-4.638753	-1.100442	-0.443814
12	1	0	-4.696595	-1.449766	0.595128
13	1	0	-5.643028	-0.883990	-0.811413
14	1	0	-4.179445	-1.877047	-1.068812
15	8	0	2.161757	-0.303028	1.629493
16	8	0	-3.922511	0.125804	-0.535958
17	б	0	1.458372	0.583585	1.132700
18	б	0	2.545011	1.208906	-0.386481
19	1	0	1.879575	1.896812	-0.894422
20	1	0	3.344715	1.651199	0.205511
21	7	0	2.862429	0.126422	-1.191754
22	7	0	4.560022	-1.450896	-0.636038
23	7	0	3.753061	-0.661656	-0.803568

3.12. Optimization of benzoyl radical 4

DFT/UB3LYP 6-31+G(d), E = -459.46643887 a.u. Standard orientation:

Center	Atomic	Atomic	Coor	dinates (Ang	gstroms)
Number	Number	Туре	Х	Y	Z
1	б	0	-0.842659	1.431114	-0.000010
2	6	0	-1.524771	0.200197	-0.000031
3	б	0	-0.783405	-0.994529	-0.000012
4	б	0	0.608377	-0.968162	-0.000010
5	б	0	1.277208	0.269641	0.00007
б	б	0	0.543184	1.469697	0.000017
7	1	0	-1.417376	2.353281	-0.000024
8	1	0	-1.309644	-1.945061	-0.000004
9	1	0	1.160878	-1.901103	-0.000013
10	1	0	1.085014	2.410364	0.000031
11	б	0	3.445716	-0.760015	-0.00002
12	1	0	3.270325	-1.365599	-0.897644
13	1	0	4.474181	-0.396670	0.00007
14	1	0	3.270322	-1.365628	0.897620
15	8	0	-3.740947	-0.754028	0.000041
16	8	0	2.627664	0.407869	0.000015
17	б	0	-2.994889	0.182006	-0.000027

3.13. TD-DFT calculation for benzoyl radical 4

Excitation energies and oscillator strengths: Excited State 1: 2.007-A 1.8075 eV 685.93 nm f=0.0007 <S**2>=0.757 36A -> 37A 0.97890 36A -> 42A 0.15374 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -459.400013212Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 3.463-A 3.2470 eV 381.84 nm f=0.0005 <S**2>=2.748 33A -> 37A -0.1073434A -> 38A -0.19030 35A -> 37A 0.68591 33B -> 37B -0.10020 34B -> 38B 0.18534 35B -> 37B 0.64558 Excited State 3: 2.015-A 3.5612 eV 348.15 nm f=0.0000 <S**2>=0.765 36A -> 38A 0.99687 Excited State 4: 2.033-A 3.9790 eV 311.60 nm f=0.0000 <S**2>=0.783 33B -> 36B -0.14896 35B -> 36B 0.98394 Excited State 5: 3.454-A 4.2428 eV 292.22 nm f=0.0008 <S**2>=2.733 34A -> 37A 0.58663 34A -> 38A -0.26797 35A -> 37A -0.13854 35A -> 38A -0.31108 34B -> 37B 0.48043 34B -> 38B 0.27372 35B -> 38B 0.36715 Excited State 6: 3.446-A 4.4194 eV 280.55 nm f=0.0018 <S**2>=2.719 34A -> 37A 0.49351 34A -> 38A 0.44874 35A -> 37A 0.17970 35A -> 38A 0.29386 34B -> 37B 0.35619 34B -> 38B -0.47076 35B -> 38B -0.24657

3.14. Spin density calculation of benzoyl radical 4

								Natural									
At	om	No	Charge	Core	Valence	Rydberg	Total		Atom	No		Charge	Core	Valence	Rydberg	Total	Spin Density
c		1	-0.0797	0.99954	2.07159	0.00861	3.07974		с		1	-0.08618	0.99954	2.07959	0.00705	3.08618	0.00644
С		2	-0.1682	5 0.99949	2.15327	0.0155	3.16826		с		2	-0.09626	0.99939	2.08782	0.00905	3.09626	-0.072
c		3	-0.0862	0.99954	2.07769	0.00904	3.08627		с		з	-0.0751	0.99953	2.06807	0.0075	3.0751	-0.01117
С		4	-0.1640	0.99952	2.15729	0.00724	3.16405		С		4	-0.15983	0.99951	2.15325	0.00707	3.15983	-0.00422
С		5	0.1781	0.99943	1.81091	0.01154	2.82188		С		5	0.17138	0.99943	1.81773	0.01147	2.82862	0.00674
С		6	-0.1414	0.99952	2.13388	0.00808	3.14148		с		6	-0.13868	0.99952	2.1311	0.00806	3.13868	-0.0028
н		7	0.1256	L 0	0.37252	0.00187	0.37439		н		7	0.13001	0	0.36968	0.00031	0.36999	-0.0044
н		8	0.1273	9 O	0.37076	0.00185	0.37261		н		8	0.13104	0	0.36852	0.00044	0.36896	-0.00365
н		9	0.1229	7 0	0.37646	0.00058	0.37703		н		9	0.12568	0	0.37391	0.00041	0.37432	-0.00271
н		10	0.129	5 0	0.36976	0.00064	0.3704		н		10	0.12949	0	0.36987	0.00064	0.37051	0.00011
С		11	-0.164	0.99975	2.15725	0.0074	3.1644		С		11	-0.16422	0.99975	2.15708	0.00738	3.16422	-0.00018
н		12	0.1071	7 0	0.39219	0.00064	0.39283		н		12	0.10704	0	0.39232	0.00064	0.39296	0.00013
н		13	0.1208	9 0	0.379	0.00011	0.37911		н		13	0.12098	0	0.37892	0.0001	0.37902	-9E-05
н		14	0.1071	7 0	0.39219	0.00064	0.39283		н		14	0.10704	0	0.39232	0.00064	0.39296	0.00013
0		15	-0.3861	0.9999	3.36949	0.01673	4.38612		0		15	-0.11485	0.9999	3.10351	0.01144	4.11485	-0.27127
0		16	-0.2625	0.99986	3.25299	0.00965	4.26251		0		16	-0.26486	0.99986	3.25532	0.00967	4.26486	0.00235
c		17	-0.0660	0.99972	2.03071	0.03567	3.06609		С		17	0.57731	0.99943	1.40521	0.01804	2.42269	-0.6434

$\textbf{3.15.} \quad \textbf{Optimization of } CH_2N_3 \text{ radical 5}$

DFT/UB3LYP 6-31+G(d), E = -203.44880419 a.u. Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)							
Number	Number	Туре	Х	Y	Z					
1	 6	0	1.582450	0.279219	0.000042					
2	1	0	2.541316	-0.216963	0.000075					
3	1	0	1.488715	1.360532	-0.000174					
4	7	0	0.498547	-0.538371	-0.000052					
5	7	0	-1.773385	0.207624	0.000001					
6	7	0	-0.657267	-0.071949	0.000030					

3.16. TD-DFT calculation of CH₂N₃ radical 5

Excited State 1: 2.074-A 2.0331 eV 609.82 nm f=0.0000 <S**2>=0.826 15A -> 16A 0.99166 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -203.374087795Copying the excited state density for this state as the 1-particle RhoCI density. 3.6736 eV 337.50 nm f=0.0282 Excited State 2: 2.073-A <S**2>=0.824 15A -> 17A 0.88526 13B -> 16B 0.16056 14B -> 15B 0.41648 Excited State 3: 2.037-A 4.4955 eV 275.79 nm f=0.0224 <S**2>=0.787 15A -> 18A 0.98371 15A -> 19A 0.12281 Excited State 4: 3.429-A 4.7412 eV 261.51 nm f=0.0043 <S**2>=2.689 12A -> 16A 0.13678 14A -> 16A 0.73425 15A -> 17A 0.14176 12B -> 16B -0.11936 13B -> 16B -0.60259 Excited State 5: 2.080-A 4.8554 eV 255.35 nm f=0.0003 <S**2>=0.831 15A -> 19A 0.21101 13B -> 15B 0.95592 14B -> 16B 0.13050

3.17. Spin density calculation for CH_2N_3 radical 5

Natural								Natural						SpinDensity				
	Atom	No	С	harge	Core	Valence	Rydberg	Total		Atom	No	(Charge	Core	Valence	Rydberg	Total	
	С		1	-0.49132	0.99976	2.47049	0.02108	3.49132		C		1	0.23533	0.99976	1.75354	0.01137	2.76467	0.72665
	Н		2	0.12204	0	0.37785	0.00011	0.37796		н		2	0.10048	0	0.39941	0.00011	0.39952	-0.02156
	н		3	0.11133	0	0.38802	0.00065	0.38867		н		3	0.08975	0	0.40959	0.00066	0.41025	-0.02158
	N		4	-0.1156	0.99968	2.6022	0.01372	3.6156		N		4	-0.18351	0.99968	2.67165	0.01218	3.68351	-0.06791
	N		5	-0.19037	0.99984	2.67483	0.01569	3.69037		N		5	0.14745	0.99984	2.34149	0.01122	3.35255	0.33782
	N		6	0.06392	0.99978	2.41946	0.01683	3.43608		N		6	0.11049	0.99978	2.37385	0.01587	3.38951	0.04657

3.18. TS and IRC to form CH₂N radical 6 from radical 5

DFT/UB3LYP 6-31+G(d), E = -203.44703849 a.u.

Imaginary frequency = 1
Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 б	0	1.564813	0.274071	-0.022607
2	1	0	2.531696	-0.206044	-0.090896
3	1	0	1.478539	1.354472	0.067318
4	7	0	0.512321	-0.529960	-0.041877
5	7	0	-1.761586	0.201129	-0.103402
6	7	0	-0.664894	-0.070149	0.168025

3.19. Optimization of CH₂N radical 6

DFT/UB3LYP 6-31+G(d), E = -93.98904087 a.u. Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.505984	0.00000	0.00008
2	1	0	1.081332	-0.938544	0.000159
3	1	0	1.081332	0.938544	-0.000126
4	7	0	-0.742652	0.000000	-0.000011

3.20. TD-DFT for imine radical 6.

Excited State 1: 1.997-A 3.9285 eV 315.60 nm f=0.0000 <S**2>=0.747 8A -> 9A 0.51261 7B -> 8B 0.85437 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -93.8446704080Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.011-A 4.5325 eV 273.54 nm f=0.0060 <S**2>=0.761 6B -> 8B 0.99387 Excited State 3: 2.018-A 4.6122 eV 268.82 nm f=0.0000 <S**2>=0.768 8A -> 9A 7B -> 8B 0.85131 -0.51665

3.21. Optimization of N₂

DFT/B3LYP 6-31+G(d), E = -109.52977937 a.u. Standard orientation:

Center	Atomic	Atomic	Coord	inates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	7	0	0.000000	0.000000	0.552562
2	7	0	0.000000	0.000000	-0.552562

3.22. Optimization of p-MeO-PhCONCH₂ 7

DFT/B3LYP 6-31+G(d), E = -553.56854408 a.u. Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.265684	-1.168701	0.198496
2	6	0	0.775611	0.142807	0.125441
3	б	0	-0.124691	1.210693	-0.004525
4	б	0	-1.498807	0.991340	-0.066039
5	б	0	-1.993012	-0.322094	0.004698
б	б	0	-1.100968	-1.400087	0.138631
7	1	0	0.951437	-2.000847	0.315936
8	1	0	0.269088	2.221093	-0.058093
9	1	0	-2.169579	1.836895	-0.168228
10	1	0	-1.505871	-2.405703	0.199656
11	б	0	-4.277913	0.389184	-0.172372
12	1	0	-4.138253	0.948049	-1.106228
13	1	0	-5.247196	-0.111272	-0.188700
14	1	0	-4.235139	1.077510	0.681004
15	8	0	2.689412	1.566522	0.219010
16	8	0	-3.312036	-0.650179	-0.045059
17	б	0	2.227384	0.433659	0.165993
18	7	0	3.069907	-0.719753	0.193898
19	б	0	4.122996	-0.689868	-0.518719
20	1	0	4.817782	-1.529874	-0.474902
21	1	0	4.371686	0.150085	-1.178965

3.23. Optimization of T_A of 1A

DFT/UB3LYP 6-31+G(d), E = -662.95052346 a.u. Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	б	0	-0.598770	1.240064	0.001020
2	б	0	-0.021874	-0.040882	-0.114047
3	6	0	-0.875143	-1.155840	-0.140386
4	6	0	-2.257230	-1.013541	-0.057672
5	6	0	-2.815173	0.270864	0.057890
б	6	0	-1.974062	1.397246	0.087962
7	1	0	0.023382	2.129555	0.029916
8	1	0	-0.433453	-2.143838	-0.225525
9	1	0	-2.885499	-1.896595	-0.082561
10	1	0	-2.424216	2.380806	0.179682
11	6	0	-5.064034	-0.563432	0.124998
12	1	0	-4.894331	-1.240170	0.971390
13	1	0	-6.053781	-0.113121	0.210221
14	1	0	-4.994110	-1.120794	-0.817126
15	8	0	1.925971	-1.396281	-0.226850
16	8	0	-4.144859	0.526983	0.146562
17	6	0	1.443251	-0.278261	-0.192575
18	6	0	2.367659	0.975631	-0.215889
19	1	0	2.002420	1.685393	-0.964310
20	1	0	2.310759	1.441839	0.780784
21	7	0	3.736561	0.681752	-0.553991
22	7	0	5.301460	-0.642945	0.440543
23	7	0	4.372292	0.081224	0.578022

3.24. TS and IRC to form nitrene 10 from $T_A \mbox{ of } 1$

DFT/UB3LYP 6-31+G(d), E = -662.95041240 a.u.
Imaginary frequency = 1
Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	б	0	-0.597335	1.240976	-0.004168
2	6	0	-0.020646	-0.038703	-0.133091
3	6	0	-0.873390	-1.153984	-0.159693
4	6	0	-2.254812	-1.013267	-0.063248
5	6	0	-2.812508	0.269898	0.066076
6	б	0	-1.971923	1.396653	0.096004
7	1	0	0.024635	2.130603	0.024921
8	1	0	-0.431800	-2.141007	-0.255995
9	1	0	-2.882707	-1.896584	-0.088455
10	1	0	-2.421896	2.379253	0.198358
11	б	0	-5.060056	-0.566485	0.149526
12	1	0	-4.881388	-1.248388	0.989914
13	1	0	-6.049259	-0.117551	0.247464
14	1	0	-4.999212	-1.117918	-0.796724
15	8	0	1.926832	-1.391482	-0.279083
16	8	0	-4.141570	0.524494	0.168761
17	б	0	1.444086	-0.274048	-0.228107
18	6	0	2.366104	0.981451	-0.251119
19	1	0	2.004335	1.684326	-1.009152
20	1	0	2.296593	1.458692	0.739721
21	7	0	3.738165	0.694801	-0.573346
22	7	0	5.291923	-0.645355	0.512862
23	7	0	4.361551	0.057631	0.631834

3.25. Optimization of triplet nitrene 10

DFT/UB3LYP 6-31+G(d), E = -553.47344578 a.u. Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Z
1	б	0	-0.236680	-1.186414	0.000065
2	6	0	-0.762132	0.121500	0.000028
3	6	0	0.138484	1.198536	-0.000030
4	6	0	1.515750	0.994263	-0.000052
5	6	0	2.021217	-0.316482	-0.000005
б	б	0	1.133243	-1.406142	0.000055
7	1	0	-0.895438	-2.049509	0.000115
8	1	0	-0.262591	2.207373	-0.000056
9	1	0	2.180676	1.850486	-0.000102
10	1	0	1.542656	-2.411611	0.000093
11	6	0	4.305865	0.417569	-0.000065
12	1	0	4.211646	1.041323	0.897411
13	1	0	5.277982	-0.077218	-0.000050
14	1	0	4.211632	1.041244	-0.897594
15	8	0	-2.648278	1.564519	0.000158
16	8	0	3.341964	-0.632946	-0.000011
17	6	0	-2.220858	0.423035	0.000079
18	6	0	-3.201152	-0.784541	0.000088
19	1	0	-2.987054	-1.411972	-0.885373
20	1	0	-2.987499	-1.411493	0.886001
21	7	0	-4.571989	-0.428450	-0.000372