Microwave-assisted synthesis of novel hetero[5]helicene-like

molecules and coumarin derivatives

Wei Lin, Xiuxiu Hu, Shuai Song, Qi Cai, Yun Wang, Daqing Shi

Contents

.

1.	Crystal data of compounds 3a and 4a	2
2.	¹ H NMR and ¹³ C NMR SpectraS	7

1. Crystal data of compounds 3a and 4a

A. Crystal data of compound 3a

Table 1. Crystal data and structure refinement for 3a	CCDC 1561314
---	--------------

Empirical formula	C27H21N3O2
Formula weight	419.47
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
	a = 10.0070(9) A alpha = 90 deg.
Unit cell dimensions	b = 11.0039(11) A beta = 105.024(2) deg.
	c = 18.1201(16) A gamma = 90 deg.
Volume	1927.1(3) A ³
Z, Calculated density	4, 1.446 Mg/m ³
Absorption coefficient	0.093 mm ⁻¹
F(000)	880
Crystal size	0.18 x 0.14 x 0.13 mm
T heta range for data collection	2.70 to 25.02 deg.
Limiting indices	-11<=h<=11, -13<=k<=11, -20<=l<=21
Reflections collected / unique	9567 / 3374 [R(int) = 0.1236]
Completeness to theta $= 25.02$	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9880 and 0.9835
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3374 / 0 / 321
Goodness-of-fit on F^2	1.053
Final R indices [I>2sigma(I)]	R1 = 0.0752, wR2 = 0.1788
R indices (all data)	R1 = 0.4187, wR2 = 0.2666
Extinction coefficient	0.013(3)
Largest diff. peak and hole	0.270 and -0.246 e.A ⁻³

 Table 2. Selected bond lengths (Å) of compound 3a

Bond	Bond Lengths	Bond	Bond Lengths	Bond	Bond Lengths
N(1)-C(18)	1.335(6)	C(9)-C(10)	1.368(7)	С(16')-Н(16С)	0.9700
N(1)-N(2)	1.337(5)	C(10)-C(11)	1.346(7)	C(16')-H(16D)	0.9700
N(1)-C(22)	1.375(6)	C(10)-H(10)	0.9300	C(17')-H(17D)	0.9600
N(2)-C(20)	1.294(6)	C(11)-C(12)	1.360(8)	С(17')-Н(17Е)	0.9600
N(3)-C(14)	1.309(7)	С(11)-Н(11)	0.9300	C(17')-H(17F)	0.9600
N(3)-C(18)	1.313(6)	C(12)-C(13)	1.315(9)	C(18)-C(19)	1.356(7)
O(1)-C(5)	1.337(6)	C(12)-H(12)	0.9300	C(19)-C(20)	1.402(6)
O(1)-C(1)	1.340(7)	C(13)-H(13)	0.9300	C(20)-C(21)	1.452(6)
O(2)-C(1)	1.175(6)	C(14)-C(15)	1.501(17)	C(21)-H(21A)	0.9600
C(1)-C(2)	1.429(8)	C(14)-C(15')	1.53(5)	C(21)-H(21B)	0.9600
C(2)-C(3)	1.371(7)	C(15)-C(16)	1.50(2)	C(21)-H(21C)	0.9600

C(2)-C(14)	1.370(7)	C(15)-H(15A)	0.9700	C(22)-C(27)	1.362(8)
C(3)-C(19)	1.380(7)	C(15)-H(15B)	0.9700	C(22)-C(23)	1.363(8)
C(3)-C(4)	1.418(7)	C(16)-C(17)	1.52(3)	C(23)-C(24)	1.369(8)
C(4)-C(5)	1.352(7)	C(16)-H(16A)	0.9700	C(23)-H(23)	0.9300
C(4)-C(9)	1.400(7)	C(16)-H(16B)	0.9700	C(24)-C(25)	1.362(9)
C(5)-C(6)	1.358(7)	C(17)-H(17A)	0.9600	C(24)-H(24)	0.9300
C(6)-C(7)	1.315(8)	C(17)-H(17B)	0.9600	C(25)-C(26)	1.364(8)
C(6)-H(6)	0.9300	C(17)-H(17C)	0.9600	C(25)-H(25)	0.9300
C(7)-C(8)	1.380(8)	C(15')-C(16')	1.53(7)	C(26)-C(27)	1.363(8)
C(7)-H(7)	0.9300	C(15')-H(15C)	0.9700	C(26)-H(26)	0.9300
C(8)-C(13)	1.386(8)	C(15')-H(15D)	0.9700	С(27)-Н(27)	0.9300
C(8)-C(9)	1.390(7)	C(16')-C(17')	1.51(7)		

Table 3.	Selected b	bond angles	(°) of	compound 3a
----------	------------	-------------	--------	-------------

Angles	(°)	Angles	(°)
C(18)-N(1)-N(2)	110.0(4)	C(10)-C(9)-C(4)	122.7(5)
C(18)-N(1)-C(22)	131.4(4)	C(8)-C(9)-C(4)	118.7(5)
N(2)-N(1)-C(22)	118.7(4)	C(11)-C(10)-C(9)	120.8(6)
C(20)-N(2)-N(1)	107.4(4)	C(10)-C(11)-C(12)	120.4(7)
C(14)-N(3)-C(18)	113.6(5)	C(13)-C(12)-C(11)	120.3(6)
C(5)-O(1)-C(1)	121.4(5)	C(12)-C(13)-C(8)	121.1(6)
C(18)-N(1)-N(2)	109.8(4)	N(3)-C(14)-C(2)	123.6(5)
O(2)-C(1)-O(1)	115.9(6)	N(3)-C(14)-C(15)	113.4(6)
O(2)-C(1)-C(2)	127.2(6)	C(2)-C(14)-C(15)	122.3(6)
O(1)-C(1)-C(2)	116.6(5)	N(3)-C(14)-C(15')	106.5(12)
C(3)-C(2)-C(14)	120.6(5)	C(2)-C(14)-C(15')	122.8(12)
C(3)-C(2)-C(1)	118.5(5)	C(15)-C(14)-C(15')	37.4(13)
C(14)-C(2)-C(1)	120.7(5)	C(16)-C(15)-C(14)	107.8(12)
C(2)-C(3)-C(19)	115.1(5)	C(15)-C(16)-C(17)	109.4(15)
C(2)-C(3)-C(4)	118.2(5)	C(14)-C(15')-C(16')	107(4)
C(19)-C(3)-C(4)	126.6(5)	C(17')-C(16')-C(15')	115(4)
C(5)-C(4)-C(9)	117.2(5)	N(3)-C(18)-N(1)	124.2(5)
C(5)-C(4)-C(3)	116.5(5)	N(3)-C(18)-C(19)	127.8(5)
C(9)-C(4)-C(3)	126.1(5)	N(1)-C(18)-C(19)	107.9(4)
O(1)-C(5)-C(4)	121.2(5)	C(18)-C(19)-C(3)	117.3(5)
O(1)-C(5)-C(6)	115.7(5)	C(18)-C(19)-C(20)	104.4(5)
C(4)-C(5)-C(6)	123.1(6)	C(3)-C(19)-C(20)	137.9(5)
C(7)-C(6)-C(5)	118.87(6)	N(2)-C(20)-C(19)	110.1(5)
C(7)-C(6)-H(6)	120.6	N(2)-C(20)-C(21)	117.5(5)
C(5)-C(6)-H(6)	120.6	C(19)-C(20)-C(21)	131.9(5)
C(6)-C(7)-C(8)	121.8(6)	C(27)-C(22)-C(23)	120.9(5)
C(6)-C(7)-H(7)	119.1	C(27)-C(22)-N(1)	119.0(5)
C(8)-C(7)-H(7)	119.1	C(23)-C(22)-N(1)	120.4(5)
C(7)-C(8)-C(13)	122.2(6)	C(22)-C(23)-C(24)	119.1(6)

C(7)-C(8)-C(9)	119.0(6)	C(25)-C(24)-C(23)	120.6(7)
C(13)-C(8)-C(9)	118.7(6)	C(24)-C(25)-C(26)	119.5(6)
C(10)-C(9)-C(8)	118.2(6)	C(25)-C(26)-C(27)	120.6(6)
		C(22)-C(27)-C(26)	119.3(6)

B. Crystal data of compound 4a

Table 4	Crystal data a	and structure	refinement	for 4a	CCDC	1561315
1 4010 1.	Ci y Stur dutu t	ind Structure	10111011101110		CCDC	1501515

Empirical formula	C27 H23 N3 O
Formula weight	405.48
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
	a = 10.8840(9) A alpha = 104.061(2)deg.
Unit cell dimensions	b = 14.4830(13) A beta = 106.620(2) deg.
	c = 14.9970(12) A gamma = 100.8970(10) deg.
Volume	2110.7(3)A ³
Z, Calculated density	4, 1.276 Mg/m ³
Absorption coefficient	0.079 mm ⁻¹
F(000)	856
Crystal size	0.38 x 0.21 x 0.11 mm
Theta range for data collection	2.85 to 25.02 deg.
Limiting indices	-12<=h<=8, -17<=k<=17, -17<=l<=17
Reflections collected / unique	10773 / 7310 [R(int) = 0.0271]
Completeness to theta $= 25.02$	98.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9914 and 0.9706
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7310 / 0 / 563
Goodness-of-fit on F ²	1.052
Final R indices [I>2sigma(I)]	R1 = 0.0527, wR2 = 0.0931
R indices (all data)	R1 = 0.1150, wR2 = 0.1069
Largest diff. peak and hole	0.172 and -0.280 e.A ⁻³

Table 5. Selected bond lengths (Å) of compound 4a

Bond	Bond	Bond	Bond Lengths	Bond	Bond
	Lengths				Lengths
N(1)-C(5)	1.331(3)	C(6)-C(7)	1.396(3)	C(29)-C(30)	1.496(3)
N(1)-C(6)	1.345(2)	C(7)-C(8)	1.433(3)	C(30)-C(31)	1.504(3)
N(2)-C(6)	1.378(3)	C(8)-C(9)	1.499(3)	C(31)-C(37)	1.392(3)
N(2)-N(3)	1.387(2)	C(10)-C(11)	1.507(3)	C(31)-C(32)	1.405(3)
N(2)-C(22)	1.423(3)	C(11)-C(12)	1.526(3)	C(33)-C(34)	1.401(3)
N(3)-C(8)	1.320(3)	C(12)-C(13)	1.519(3)	C(34)-C(37)	1.403(3)

Supporting Information

N(4)-C(32)	1.335(3)	C(14)-C(15)	1.361(3)	C(34)-C(35)	1.433(3)
N(4)-C(33)	1.343(3)	C(15)-C(16)	1.413(3)	C(35)-C(36)	1.502(3)
N(5)-C(33)	1.375(3)	C(16)-C(21)	1.413(3)	C(37)-C(38)	1.508(3)
N(5)-N(6)	1.392(3)	C(16)-C(17)	1.424(3)	C(38)-C(39)	1.539(3)
N(5)-C(49)	1.417(3)	C(17)-C(18)	1.409(3)	C(39)-C(40)	1.500(3)
N(6)-C(35)	1.323(3)	C(18)-C(19)	1.366(3)	C(41)-C(42)	1.363(3)
O(1)-C(5)	1.383(2)	C(19)-C(20)	1.403(3)	C(42)-C(43)	1.409(3)
O(1)-C(1)	1.399(2)	C(20)-C(21)	1.358(3)	C(43)-C(48)	1.414(3)
O(2)-C(32)	1.377(3)	C(22)-C(27)	1.380(3)	C(43)-C(44)	1.420(3)
O(2)-C(28)	1.399(2)	C(22)-C(23)	1.383(3)	C(44)-C(45)	1.416(3)
C(1)-C(2)	1.358(3)	C(23)-C(24)	1.384(3)	C(45)-C(46)	1.369(3)
C(1)-C(14)	1.411(3)	C(24)-C(25)	1.372(3)	C(46)-C(47)	1.400(4)
C(2)-C(17)	1.425(3)	C(25)-C(26)	1.376(3)	C(47)-C(48)	1.368(4)
C(2)-C(3)	1.508(3)	C(26)-C(27)	1.377(3)	C(49)-C(50)	1.377(3)
C(3)-C(4)	1.513(3)	С(27)-Н(27)	0.9300	C(49)-C(54)	1.384(3)
C(4)-C(10)	1.393(3)	C(28)-C(29)	1.352(3)	C(50)-C(51)	1.383(3)
C(4)-C(5)	1.400(3)	C(28)-C(41)	1.411(3)	C(51)-C(52)	1.373(3)
				C(52)-C(53)	1.378(4)

 Table 6.
 Selected bond angles (°) of compound 4a

Angles	(°)	Angles	(°)
C(5)-N(1)-C(6)	112.44(19)	C(24)-C(25)-C(26)	118.4(3)
C(6)-N(2)-N(3)	109.67(19)	C(25)-C(26)-C(27)	121.4(3)
C(6)-N(2)-C(22)	131.94(19)	C(26)-C(27)-C(22)	119.7(2)
N(3)-N(2)-C(22)	118.37(19)	C(29)-C(28)-O(2)	123.5(2)
C(8)-N(3)-N(2)	106.80(19)	C(29)-C(28)-C(41)	123.4(2)
C(5)-O(1)-C(1)	119.14(18)	O(2)-C(28)-C(41)	113.1(2)
C(32)-O(2)-C(28)	119.10(19)	C(28)-C(29)-C(44)	118.2(2)
C(2)-C(1)-O(1)	123.6(2)	C(28)-C(29)-C(30)	121.1(2)
C(2)-C(1)-C(14)	123.3(2)	C(44)-C(29)-C(30)	120.7(2)
O(1)-C(1)-C(14)	113.2(2)	C(29)-C(30)-C(31)	113.8(2)
C(1)-C(2)-C(17)	118.0(2)	C(37)-C(31)-C(32)	118.3(2)
C(1)-C(2)-C(3)	121.1(2)	C(37)-C(31)-C(30)	121.7(2)
C(17)-C(2)-C(3)	120.8(2)	C(32)-C(31)-C(30)	120.0(2)
C(2)-C(3)-C(4)	113.11(19)	N(4)-C(32)-O(2)	110.7(2)
C(10)-C(4)-C(5)	118.0(2)	N(4)-C(32)-C(31)	126.8(2)
C(10)-C(4)-C(3)	121.3(2)	O(2)-C(32)-C(31)	122.4(2)
C(5)-C(4)-C(3)	120.66(19)	N(4)-C(33)-N(5)	125.5(2)
N(1)-C(5)-O(1)	110.19(19)	N(4)-C(33)-C(34)	126.8(2)
N(1)-C(5)-C(4)	127.5(2)	N(5)-C(33)-C(34)	107.7(2)
O(1)-C(5)-C(4)	122.3(2)	C(33)-C(34)-C(37)	118.0(2)
N(1)-C(6)-N(2)	125.3(2)	C(33)-C(34)-C(35)	104.7(2)
N(1)-C(6)-C(7)	126.7(2)	C(37)-C(34)-C(35)	137.2(2)
N(2)-C(6)-C(7)	107.93(19)	N(6)-C(35)-C(34)	110.9(2)

C(6)-C(7)-C(10)	118.2(2)	N(6)-C(35)-C(36)	118.4(2)
C(6)-C(7)-C(8)	104.2(2)	C(34)-C(35)-C(36)	130.8(2)
C(10)-C(7)-C(8)	137.6(2)	C(31)-C(37)-C(34)	117.2(2)
N(3)-C(8)-C(7)	111.4(2)	C(31)-C(37)-C(38)	120.3(2)
N(3)-C(8)-C(9)	118.8(2)	C(34)-C(37)-C(38)	122.4(2)
C(7)-C(8)-C(9)	129.8(2)	C(37)-C(38)-C(39)	112.1(2)
C(4)-C(10)-C(7)	117.1(2)	C(40)-C(39)-C(38)	113.2(2)
C(4)-C(10)-C(11)	122.0(2)	C(42)-C(41)-C(28)	118.5(3)
C(7)-C(10)-C(11)	120.87(19)	C(41)-C(42)-C(43)	121.2(3)
C(10)-C(11)-C(12)	114.34(19)	C(42)-C(43)-C(48)	121.8(3)
C(13)-C(12)-C(11)	111.9(2)	C(42)-C(43)-C(44)	119.1(2)
C(15)-C(14)-C(1)	118.9(2)	C(48)-C(43)-C(44)	119.1(3)
C(14)-C(15)-C(16)	121.1(2)	C(45)-C(44)-C(43)	118.4(2)
C(15)-C(16)-C(21)	122.2(2)	C(45)-C(44)-C(29)	122.1(2)
C(15)-C(16)-C(17)	118.8(2)	C(43)-C(44)-C(29)	119.5(2)
C(21)-C(16)-C(17)	118.9(3)	C(46)-C(45)-C(44)	121.2(3)
C(18)-C(17)-C(16)	117.8(2)	C(45)-C(46)-C(47)	120.1(3)
C(18)-C(17)-C(2)	122.3(2)	C(48)-C(47)-C(46)	120.6(3)
C(16)-C(17)-C(2)	119.8(2)	C(47)-C(48)-C(43)	120.7(3)
C(19)-C(18)-C(17)	121.9(2)	C(50)-C(49)-C(54)	119.5(3)
C(18)-C(19)-C(20)	119.8(3)	C(50)-C(49)-N(5)	121.5(2)
C(21)-C(20)-C(19)	120.2(3)	C(54)-C(49)-N(5)	119.0(3)
C(20)-C(21)-C(16)	121.3(3)	C(49)-C(50)-C(51)	120.3(2)
C(27)-C(22)-C(23)	119.7(2)	C(52)-C(51)-C(50)	120.5(3)
C(27)-C(22)-N(2)	119.4(2)	C(51)-C(52)-C(53)	119.0(3)
C(23)-C(22)-N(2)	120.9(2)	C(54)-C(53)-C(52)	121.1(3)
C(22)-C(23)-C(24)	119.4(2)	C(53)-C(54)-C(49)	119.6(3)
C(25)-C(24)-C(23)	121.4(2)		

2. ¹H NMR and ¹³C NMR Spectra

¹H NMR of 11-methyl-13-phenyl-2-propylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*]pyridin-3(13*H*)-one (**3a**)

¹³C NMR of 11-methyl-13-phenyl-2-propylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*] pyridin-3(13*H*)-one (**3a**)

¹H NMR of 9-methoxy-11-methyl-13-phenyl-2-propylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*] pyridin-3(13*H*)-one **(3b)**

¹³C NMR of 9-methoxy-11-methyl-13-phenyl-2-propylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*] pyridin-3(13H)-one (3b)

¹H NMR of 9-hydroxy-11-methyl-13-phenyl-2-propylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*] pyridin-3(13*H*)-one (3c)

¹³C NMR of 9-hydroxy-11-methyl-13-phenyl-2-propylbenzo[5,6]chromeno[4,3-d]pyrazolo[3,4-b] pyridin-3(13*H*)-one (3c)

¹H NMR of 11,13-diphenyl-2-propylbenzo[5,6]chromeno[4,3-d]pyrazolo[3,4-b]pyridin-3(13H)-one (3d)

 13 C NMR of 11,13-diphenyl-2-propylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*]pyridin-3(13*H*)-one (3d)

ppm (t1)

¹H NMR of 11-cyclopropyl-9-methoxy-13-phenyl-2-propylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*]pyridin -3(13*H*)-on **(3e)**

¹³C NMR of 11-cyclopropyl-9-methoxy-13-phenyl-2-propylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*]pyridin -3(13*H*)-on **(3e)**

¹H NMR of 2-isopropyl-11-methyl-13-phenylbenzo[5,6]chromeno[4,3-d]pyrazolo[3,4-b]pyridin-3(13H)-one (3f)

¹³C NMR of 2-isopropyl-11-methyl-13-phenylbenzo[5,6]chromeno[4,3-d]pyrazolo[3,4-b]pyridin-3(13H)-one (3f)

¹H NMR of 2-isopropyl-9-methoxy-11-methyl-13-phenylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*]pyridin-3(13*H*)-one **(3g)**

¹³C NMR of 2-isopropyl-9-methoxy-11-methyl-13-phenylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*]pyridin-3(13*H*)-one **(3g)**

¹H NMR of 11-methyl-9-phenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine (**4a**)

¹³C NMR of 11-methyl-9-phenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine (**4a**)

¹H NMR of 2-methoxy-11-methyl-9-phenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*] pyrazolo [4,3-*e*]pyridine **(4b)**

¹³C NMR of 2-methoxy-11-methyl-9-phenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*] pyrazolo [4,3-*e*]pyridine (**4b**)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm (t1)

¹H NMR of 2-Ethoxy-11-methyl-9-phenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*] pyrazolo[4,3-*e*]pyridine (4c)

¹³C NMR of 2-Ethoxy-11-methyl-9-phenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*] pyrazolo[4,3-*e*]pyridine (4c)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm (t1)

¹H NMR of 11,12-dimethyl-9-phenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine **(4d)**

¹³C NMR of 11,12-dimethyl-9-phenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine **(4d)**

ן דירוידין דירוין דיר 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm(t1)

¹H NMR of 2-methoxy-11,12-dimethyl-9-phenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo [4,3-*e*]pyridine **(4e)**

¹³C NMR of 2-methoxy-11,12-dimethyl-9-phenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo [4,3-*e*]pyridine **(4e)**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm (t1)

¹H NMR of 12-ethyl-11-methyl-9-phenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine(**4f**)

¹³C NMR of 12-ethyl-11-methyl-9-phenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine(**4f**)

¹H NMR of 9,11-Diphenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine **(4g)**

¹³C NMR of 9,11-Diphenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine **(4g)**

¹H NMR of 2-methoxy-9,11-diphenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-b]pyrazolo [4,3-*e*]pyridine (4h)

¹³C NMR of 2-methoxy-9,11-diphenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo [4,3-*e*]pyridine (4h)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm (t1)

¹H NMR of 2-ethoxy-9,11-diphenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-b]pyrazolo [4,3-e]pyridine **(4i)**

¹³C NMR of 2-ethoxy-9,11-diphenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-b]pyrazolo [4,3-e]pyridine **(4i)**

ן דיקרידין דיריקרידין דיריקרידין דיריקרידין דיריקרידין דיריקרידין דיריקרידין דיריקרידין דיריקרידין דיריקרידין דיר 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm (t1) ¹H NMR of 12-methyl-9,11-diphenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine **(4j)**

¹³C NMR of 12-methyl-9,11-diphenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine **(4j)**

¹H NMR of 2-methoxy-12-methyl-9,11-diphenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo [4,3-*e*]pyridine **(4k)**

¹³C NMR of 2-methoxy-12-methyl-9,11-diphenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo [4,3-*e*]pyridine **(4k)**

¹H NMR of 12-ethyl-9,11-diphenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine (**4**I)

¹³C NMR of 12-ethyl-9,11-diphenyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine (**4**I)

¹H NMR of 9-methyl-11-phenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine **(4m)**

¹³C NMR of 9-methyl-11-phenyl-12-propyl-9,13-dihydrobenzo[5,6]chromeno[2,3-*b*]pyrazolo[4,3-*e*] pyridine **(4m)**

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm (t1)