Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

One-flask synthesis of pyrazolone thioethers involving catalyzed and uncatalyzed

thioetherification pathways of pyrazolones

Prasun Mukherjee, Asish R. Das*

Department of Chemistry, University of Calcutta, Kolkata-700009, India

*Corresponding author: Tel.: +913323501014, +919433120265; fax: +913323519754;

	Content	Page Numbers
I.	Materials, method and General Synthetic procedures	S2-S4
II.	X-ray analysis data of compound 2s and 3a	S5-S8
III.	Characterization data for the products of Table 2 and 3	S9-S18
IV.	⁻¹ H and ¹³ C NMR spectra for the products of Table 2 and 3	S19-S43

E-mail: ardchem@caluniv.ac.in, ardas66@rediffmail.com

Materials and method:

¹H-NMR and ¹³C-NMR spectral analysis were carried out on 300 MHz, 75 MHz instruments where tetramethylsilane (TMS) was used as internal standard. Infrared spectra were recorded in KBr pallets in reflection mode on a FTIR spectrophotometer. High Resolution Mass Spectra were obtained using a mass spectrometer. Elemental analyses were done using an autoanalyzer. Suitable single crystals of compound **2s** and **3a** were mounted on a X-ray diffractometer equipped with a graphite monochromator. All the reactions were monitored by thin layer chromatography carried out on aluminum-blocked silica gel plates coated with silica gel G under UV light and also by exposure to iodine vapor for detection. Melting points were recorded on a Köfler Block apparatus and are uncorrected. Synthetic grade chemicals from available companies were used for carrying out the organic reactions. For column chromatography 100-200 mesh silica gel was used. All the organic solvents, used in the reaction, were appropriately dried and distilled prior to use.

General Procedure for the Synthesis of Pyrazolone Derivatives:

Sodium acetate (328 mg, 4.0 mmol) was added in a suspension of aromatic hydrazine hydrochloride derivatives (4.0 mmol) in 5 ml of EtOH and 1 ml of water, and the mixture was stirred at rt for 5 min. Then, to the mixture ethyl acetoacetate (521 mg, 4.0 mmol) was added, and the resultant mixture was heated to reflux for 3 h. After that, the mixture was poured dropwise onto crushed ice (50 g) with vigorous stirring, and the resulting precipitate was then filtered off and crystallized from EtOH. These pyrazolone derivatives were then employed for the synthesis of pyrazolonethioethers without further purification.

General Procedure for the Palladium Catalyzed Synthesis of Pyrazolone thioethers (2a-s):

In a 25 ml double neck RB flask fitted with a rubber septum and condenser, were added pyrazolone derivatives (1.5 mmol), elemental sulfur (1.3 equiv, 62 mg), triethylamine (1 drop) and 2 ml ethanol. The resulting mixture was then heated to reflux for 40 min. After that the volatiles were removed under vacuo followed by the addition of $C_{52}CO_3$ (1.2 equiv, 391 mg). The reaction vial was then evacuated and backfilled with argon (3 times) and 1.0 mmol of iodobenzene derivatives, a solution of $Pd(OAc)_2$ (2 mol%, 4 mg) and Xantphos (2 mol%, 12 mg) in 1 ml DMSO and additional 1 ml of DMSO were added to the reaction vial through a syringe. Solid iodobenzene derivatives were taken into the reaction vial prior to evacuation and backfilling with argon. The resulting mixture was then stirred at 130 °C in a preheated oil bath for 2.5 h. After completion of the reaction (monitored by TLC) the mixture was cooled to rt and quenched by addition of H₂O followed by the extraction with EtOAc (3×10 ml). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was then removed in vacuo and the residue was purified by column chromatography over silica gel (100-200 mesh) with ethyl acetate and petroleum ether (1:4-3:2, v/v) as the eluent to afford the pyrazolone thioethers.

<u>General Procedure for the Synthesis of Pyrazolone thioethers (3a-f) from 2,3-</u> <u>dichloropyrazine:</u>

In a 25 ml RB flask fitted with a condenser, were added pyrazolone derivatives (1.5 mmol), elemental sulfur (1.3 equiv, 62 mg), triethylamine (1 drop) and 2 ml ethanol. The resulting mixture was then heated to reflux for 40 min. After that the volatiles were removed under vacuo followed by the addition of 2,3-dichloropyrazine (1.0 mmol, 149 mg), Cs_2CO_3 (1.2 equiv, 391 mg) and DMSO (2 ml). The resulting mixture was then stirred at 80 °C for 20 min. After completion of the reaction (monitored by TLC) the mixture was cooled to rt and quenched by

addition of H₂O followed by the extraction with EtOAc (3×10 ml). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was then removed in vacuo and the residue was purified by column chromatography over silica gel (100-200 mesh) with ethyl acetate and petroleum ether (1:4–3:2, v/v) as the eluent to afford the pyrazolone thioethers.

II. X-ray Crystallography Data of Compound 2s (CCDC 1557690) and 3a (CCDC 1557692):

The X-ray structure of **2s**. The ellipsoid contour percent probability level is 50%.

The X-ray structure of **3a**. The ellipsoid contour percent probability level is 50%.

Single crystal X-ray data for compound 2s (CCDC 1557690) and 3a (CCDC 1557692):

Single crystals suitable for X-ray diffraction of **2s** and **3a** were grown from ethyl acetate. The crystals were carefully chosen using a stereo zoom microscope supported by a rotatable polarizing stage. In all the cases the data were collected at 296(2) K on a CCD diffractometer with graphite monochromated Mo-K α radiation (0.71073 Å). The data were processed using the package SAINT.¹ Structures were solved by direct and Fourier methods and refined by full-matrix least squares based on F2 using SHELXTL² and SHELXL-97³ packages.

Compounds	28	3a
empirical formula	C ₁₆ H ₁₃ Cl N ₂ O S	C ₁₄ H ₁₁ Cl N ₄ O S
fw	316.79	320.79
crystal system	Monoclinic	Monoclinic
space group	<i>C</i> 2/ <i>c</i>	P 21/c
<i>a</i> (Å)	42.263(6)	9.676(5)
b(Å)	5.9743(8)	12.483(6)
<i>c</i> (Å)	11.7282(16)	11.857(6)
α (°)	90.00	90.00
β(°)	91.856(5)	98.414(16)
γ(°)	90.00	90.00
$V(\text{\AA}^3)$	2959.7(7)	1416.7(12)
Ζ	8	4
Т, К	296(2)	296(2)
Wavelength (Å)	0.71073	0.71073
2θ (°)	1.92–51.82	4.26-51.84
$\mu (\mathrm{mm}^{-1})$	0.398	0.421
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.422	1.504
F(000)	1312	664
absorption correction	multi-Scan	multi-Scan
index ranges	$-51 \le h \le 51$	$-10 \le h \le 11$
	$-6 \le k \le 7$	$-15 \le k \le 15$

Table S1. Crystallographic data for the compound 2s and 3a

	$-14 \le l \le 14$	$-13 \le l \le 14$
reflections collected	16616	16684
independent reflections	2843 (0.0443)	2740 (0.0638)
(R_{int})		
(
Goodness-of-fit on F ²	0.997	0.970
R_1^a/WR_2^b	0.0472/0.1303	0.0442/0.1182
1 2		
$(I > 2\sigma(I))$		
R_1^{a}/WR_2^{b} (for all data)	0.0722/0.1479	0.0818/ 0.1393
Largest diff. peak/hole /	0.384/-0.310	0.301/-0.286
e Å ⁻³		

 ${}^{a}R_{1} = \left[\sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|\right]. {}^{b}wR_{2} = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum wF_{o}^{4}\right]^{1/2}$

References:

1. APEX-II, SAINT-Plus, and TWINABS; Bruker-Nonius AXS Inc.: Madison, WI, 2004.

2 SHELXTL, version 6.10; Bruker AXS Inc.: Madison, WI, 2002.

3. Sheldrick, G. M. SHELXL-97, Crystal Structure Refinement Program; University of Göttingen: Göttingen, Germany, 1997.

III. Characterization data for the products of Table 2 and 3

5-methyl-2-phenyl-4-(phenylthio)-1,2-dihydro-3H-pyrazol-3-one 2a^{6b}

Off-white solid (254 mg, 90%); Mp: 188-190 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.04 (s, 3H), 6.98-7.19 (m, 6H), 7.38 (t, J=7.4 Hz, 2H), 7.66 (d, J=7.5 Hz, 2H); ${}^{13}C{}^{1}H{}NMR$ (75 MHz; DMSO d₆; Me₄Si): $\delta{}12.6$, 87.9, 114.1, 121.0, 125.3, 126.1, 127.5, 129.3, 129.4, 129.44, 129.8, 138.4, 138.7, 152.4, 157.3; IR (KBr): 3340, 2869, 1578, 1489, 1326, 1311, 1208, 1172, 1122, 1018, 822, 740, 690, 591, 540 cm⁻¹: HRMS (ESI-TOF) m/z Calcd for $[C_{16}H_{14}N_2OS +H]^+$: 283.0900, found: 283.0911.

5-methyl-2-(4-nitrophenyl)-4-(phenylthio)-1,2-dihydro-3H-pyrazol-3-one 2b

Yellow solid (301 mg, 92%); Mp: 210-212 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.04 (s, 3H), 7.16 (s, 3H), 7.32 (d, J=6.3 Hz, 2H), 8.16 (d, J=8.1 Hz, 2H), 8.41 (d, J=8.7 Hz, 2H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 11.9, 88.3, 118.5, 118.9, 124.4, 124.6, 124.8, 128.2, 128.6, 128.7,

128.9, 129.4, 137.3, 142.6, 142.8, 143.2, 153.9, 158.0; IR (KBr): 3342, 2612, 1623, 1519, 1328, 1185, 1071, 855, 820, 737, 689, 597, 535cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₆H₁₃N₃O₃S +H]⁺: 328.0750, found: 328.0752.

4-(3-methyl-5-oxo-4-(phenylthio)-2,5-dihydro-1H-pyrazol-1-yl)benzonitrile 2c

Off-white solid (280 mg, 91%); Mp: 202-204 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.12 (s, 3H), 7.05-7.12 (m, 3H), 7.25 (t, J=7.2 Hz, 2H), 7.91 (d, J=7.5 Hz, 2H), 7.99 (d, J=8.7 Hz, 2H); ${}^{13}C{}^{1}H{}NMR$ (75 MHz; DMSO d₆;

Me₄Si): δ 12.4, 88.9, 107.4, 118.7, 119.9, 125.1, 129.2, 133.5, 137.9, 141.6, 154.0, 158.2; IR

(KBr): 3330, 2595, 2227, 1628, 1545, 1506, 1398, 1334, 1305, 1181, 1072, 838, 736, 690, 546cm⁻¹; HRMS (ESI-TOF) m/z Calcd for $[C_{17}H_{13}N_3OS +H]^+$: 308.0852, found: 308.0861.

2-(3-chlorophenyl)-5-methyl-4-(phenylthio)-1,2-dihydro-3H-pyrazol-3-one 2d

Off-white solid (285 mg, 90%); Mp: 188-190 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.50 (s, 3H), 7.44-7.51 (m, 3H), 7.62-7.71 (m, 3H), 7.87 (t, J=8.1 Hz, 1H), 8.14 (d, J=8.1 Hz, 1H), 8.22 (s, 1H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 17.6, 87.3, 123.7, 123.9, 125.1, 130.3, 130.6, 134.4, 136.1,

138.7, 143.4, 144.6, 154.5, 158.2; IR (KBr):3346, 2579, 1620,1540,1493, 1393, 1335, 1194, 1140, 1043, 827, 738, 538, 500 cm⁻¹; HRMS (ESI-TOF) m/z Calcd for $[C_{16}H_{13}ClN_2OS +H]^+$: 317.0510, found: 317.0516.

4-((4-methoxyphenyl)thio)-5-methyl-2-(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one 2e^{6b}

Light yellow solid (313 mg, 96%); Mp: 180-182 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.47 (s, 3H), 2.67 (s, 3H), 4.05 (s, 3H), 7.22 (d, J=8.7 Hz, 2H), 7.44 (d, J=8.7 Hz, 2H), 7.61 (d, J=8.4 Hz, 2H), 7.95 (d, J=8.4 Hz, 75 MHz, DMSO d + Mz Si): δ 12.0, 21.1, 55.7, 85.6, 115.4, 121.2, 128.2

2H); ${}^{13}C{}^{1}H{NMR}$ (75 MHz; DMSO d₆; Me₄Si): δ 12.9, 21.1, 55.7, 85.6, 115.4, 121.3, 128.3, 129.3, 129.9, 132.9, 135.5, 138.1, 148.7, 158.1, 160.2; IR (KBr): 3348, 2698, 1510, 1450, 1396, 1328, 1244, 1135, 1089, 1038, 838, 781, 689, 587, 520cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₈H₁₈N₂O₂S +H]⁺: 327.1162, found: 327.1158.

4-((4-methoxyphenyl)thio)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 2f^{6b}

Off-white solid (294 mg, 94%); Mp: 200-202 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.49 (s, 3H), 4.05 (s, 3H), 7.23 (d, J=8.7 Hz, 2H),

7.44 (d, J=8.4 Hz, 2H), 7.61 (t, J=7.4 Hz, 1H), 7.81 (t, J=7.8 Hz, 2H), 8.08 (d, J=7.8 Hz, 2H); $^{13}C\{^{1}H\}NMR$ (75 MHz; DMSO d₆; Me₄Si): δ 12.9, 55.8, 87.6, 115.4, 121.3, 126.2, 128.3, 129.2, 129.5, 137.2, 137.4, 146.4, 151.5, 158.2; IR (KBr): 3352, 2398, 1519, 1449, 1401, 1331, 1254, 1137, 1090, 1045, 833, 788, 691, 591, 521, 448cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [$C_{17}H_{18}N_2O_2S +H$]⁺: 313.1005, found: 313.1002.

5-methyl-2-phenyl-4-(p-tolylthio)-2,4-dihydro-3H-pyrazol-3-one 2g^{6b}

Off-white solid (273 mg, 92%); Mp: 202-204 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.12 (s, 3H), 2.28 (s, 3H), 6.99 (d, J=7.5 Hz, 2H), 7.09 (d, J=7.2 Hz, 2H), 7.28 (d, J=6.9 Hz, 1H), 7.47 (t, J=7.1 Hz, 2H), 7.75 (d,

J=7.8 Hz, 2H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.7, 20.7, 88.0, 121.1, 125.7, 126.0, 129.2, 129.3, 130.0, 134.7, 135.1, 138.5, 152.5, 157.1; IR (KBr): 3347, 2622, 1611, 1396, 1198, 837, 734, 680cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₇H₁₆N₂OS +H]⁺: 297.1056, found: 297.1052.

5-methyl-4-((4-nitrophenyl)thio)-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 2h

Yellow solid (321 mg, 98%); Mp: 208-210 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 1.99 (s, 3H), 7.21 (d, J=8.7 Hz, 3H), 7.40 (t, J=7.5 Hz, 2H), 7.68 (d, J=7.8 Hz, 2H), 8.05 (d, J=8.7 Hz, 2H); ¹³C{¹H}NMR (75 MHz;

DMSO d₆; Me₄Si): δ 7.5, 80.5, 116.1, 118.8, 119.4, 120.1, 121.2, 124.2, 133.2, 139.9, 144.1, 147.1, 152.3, 158.4; IR (KBr): 3348, 2568, 1618, 1531, 1396, 1340, 1202, 835, 732, 685cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₆H₁₃N₃O₃S +H]⁺: 328.0750, found: 328.0748.

4-((4-bromophenyl)thio)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 2i^{6b}

Off-white solid (325 mg, 90%); Mp: 188-190 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.10 (s, 3H), 7.00 (d, J=7.2 Hz, 2H), 7.26 (t, J=6.9 Hz, 1H), 7.45 (t, J=6.9 Hz, 4H), 7.72 (d, J=7.5 Hz, 2H); ¹³C{¹H}NMR (75)

MHz; DMSO d₆; Me₄Si): δ 12.6, 88.2, 118.0, 121.1, 126.2, 127.2, 129.2, 129.3, 132.1, 138.5, 140.3, 152.3, 158.01; IR (KBr): 3335, 2622, 1621, 1600, 1201, 1066, 810, 735, 593, 480cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₆H₁₃BrN₂OS +H]⁺: 361.0005, found: 361.0011.

4-((4-bromophenyl)thio)-5-methyl-2-(4-nitrophenyl)-2,4-dihydro-3H-pyrazol-3-one 2j

Yellow solid (374 mg, 92%); Mp: 220-222 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.06 (s, 3H), 6.96 (d, J=7.2 Hz, 2H), 7.36 (d, J=6.9 Hz, 2H), 8.00 (d, J=7.8 Hz, 2H), 8.25 (d, J=7.8 Hz, 2H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.7, 88.6, 118.2, 119.8, 125.3, 127.4, 132.2,

137.9, 143.4, 144.1, 154.6, 158.9; IR (KBr): 3336, 2603,1629,1596,1512,1324,1183,1074,807,736,593,479 cm⁻¹; HRMS (ESI-TOF) m/z Calcd for $[C_{16}H_{12}BrN_{3}O_{3}S +H]^{+}$: 405.9856, found: 405.9851.

4-((2-bromophenyl)thio)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 2k

Yellow solid (340 mg, 94%); Mp: 180-182 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.11 (s, 3H), 6.75 (d, J=8.1 Hz, 1H), 7.07 (t, J=7.5 Hz, 1H), 7.29 (t, J=7.4 Hz, 2H), 7.48 (t, J=7.4 Hz, 2H), 7.59 (d, J=7.8 Hz, 1H), 7.76 (d, J=7.8 Hz, 2H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.4, 87.2,

118.8, 120.9, 125.3, 125.9, 126.4, 128.3, 128.9, 129.0, 132.8, 138.2, 139.2, 152.0, 156.8; IR (KBr): 3341, 2638, 1589, 1482, 1328, 1312, 1220, 1152, 1115, 1011, 802, 686, 493cm⁻¹; HRMS (ESI-TOF) m/z Calcd for $[C_{16}H_{13}BrN_2OS +H]^+$: 361.0005, found: 361.0025.

5-methyl-2-phenyl-4-(thiophen-2-ylthio)-1,2-dihydro-3H-pyrazol-3-one 2l

Yellow solid (254 mg, 88%); Mp: 178-180 °C ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.17 (s, 3H), 6.90 (s, 1H), 7.06 (s, 1H), 7.20 (d, J=6.6 Hz, 1H), 7.39 (s, 3H), 7.64 (d, J=8.1 Hz, 2H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.7, 84.7, 121.0, 126.0, 128.1, 128.3, 129.3, 129.4, 131.2, 133.7,

137.7, 138.3, 151.5, 156.6; IR (KBr): 3342, 2923, 2854, 1620, 1545, 1493, 1366, 1294, 1074, 814, 751, 686, 493cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₄H₁₂N₂OS₂ +H]⁺: 289.0464, found: 289.0461.

4-((2-iodophenyl)thio)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 2m

Off-white solid (367 mg, 90%); Mp: 180-182 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.02 (s, 3H), 6.62 (d, J=7.5 Hz, 1H), 6.81 (t, J=7.2 Hz, 1H), 7.18-7.25 (m, 2H), 7.40 (t, J=7.8 Hz, 2H), 7.66-7.73 (m, 3H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.6, 88.4, 94.7, 121.2,

124.9, 126.2, 126.7, 129.2, 129.3, 132.1, 138.5, 139.5, 142.8, 152.3, 158.5; IR (KBr): 3335, 2622, 1621, 1478, 1202, 1088, 737, 598cm⁻¹; HRMS (ESI-TOF) m/z Calcd for $[C_{16}H_{13}IN_2OS+H]^+$: 408.9866, found: 408.9862.

4-((2-iodophenyl)thio)-5-methyl-2-(4-nitrophenyl)-2,4-dihydro-3H-pyrazol-3-one 2n

Yellow solid (417 mg, 92%); Mp: 204-206 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.03 (s, 3H), 6.65 (d, J=8.1 Hz, 1H), 6.79 (t, J=7.4 Hz, 1H), 7.20 (t, J=7.4 Hz, 1H), 7.70 (d, J=7.5 Hz, 1H), 8.01 (d, J=9.0 Hz, 2H), 8.25 (d, J=9.0 Hz, 2H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.7, 89.5,

94.8, 119.8, 125.0, 125.3, 126.8, 129.2, 139.5, 142.3, 143.4, 144.1, 154.6, 158.9; IR (KBr): 3332,

2590, 1622, 1535, 1490, 1350, 1196, 1091, 731, 600cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₆H₁₂IN₃O₃S+H]⁺: 453.9717, found: 453.9720.

4-((2-iodophenyl)thio)-5-methyl-2-(3-nitrophenyl)-2,4-dihydro-3H-pyrazol-3-one 2o

Yellow solid (408 mg, 90%); Mp: 190-192 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.01 (s, 3H), 6.64 (d, J=7.2 Hz, 1H), 6.77 (s, 1H), 7.18 (s, 1H), 7.66 (d, J=7.5 Hz, 2H), 7.99 (d, J=6.6 Hz, 1H), 8.17 (d, J=7.2 Hz, 1H), 8.54 (s, 1H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.7, 88.9, 94.7,

114.5, 120.1, 125.0, 126.1, 126.8, 129.2, 130.9, 139.3, 139.5, 142.5, 148.4, 153.7, 158.2; IR (KBr): 3330, 2595, 1624, 1530, 1482, 1348, 1198, 1081, 737, 597cm⁻¹; HRMS (ESI-TOF) m/z Calcd for $[C_{16}H_{12}IN_3O_3S+H]^+$: 453.9717, found: 453.9712.

2-(4-fluorophenyl)-4-((2-iodophenyl)thio)-5-methyl-2,4-dihydro-3H-pyrazol-3-one 2p

Off-white solid (401 mg, 94%); Mp: 178-180 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.03 (S, 3H), 6.65 (d, J=8.1 Hz, 1H), 6.82 (t, J=7.5 Hz, 1H), 7.22-7.29 (m, 3H), 7.70-7.75 (m, 3H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.6, 88.7, 94.7, 115.9, 116.2, 123.3, 124.9, 126.7, 129.2,

129.9, 134.8, 139.5, 139.6, 142.7, 152.2, 158.6; IR (KBr): 3400, 2482, 1588, 1503, 1400, 1240, 1182, 1030, 822, 738, 600, 520cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₆H₁₂FIN₂OS+H]⁺: 426.9772, found: 426.9768.

4-((2-iodophenyl)thio)-5-methyl-2-(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one 2q

Off-white solid (397 mg, 94%); Mp: 176-178 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.09 (s, 3H), 2.33 (s, 3H), 6.70 (d, J=7.8 Hz, 1H),

6.88 (t, J=7.5 Hz, 1H), 7.28 (d, J=6.9 Hz, 3H), 7.63 (d, J=8.1 Hz, 2H), 7.79 (d, J=7.8 Hz, 1H); $^{13}C\{^{1}H\}NMR$ (75 MHz; DMSO d₆; Me₄Si): δ 12.4, 20.6, 87.8, 94.4, 121.0, 124.7, 126.4, 128.9, 129.4, 135.3, 135.8, 139.2, 142.6, 151.6, 157.5; IR (KBr): 3345, 2620, 1620, 1486, 1200, 1090, 732, 600cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₇H₁₅IN₂OS+H]⁺: 423.0023, found: 423.0018.

4-((2-iodophenyl)thio)-2-(4-methoxyphenyl)-5-methyl-2,4-dihydro-3H-pyrazol-3-one 2r

Off-white solid (416 mg, 95%); Mp: 184-186 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 1.99 (s, 3H), 3.70 (s, 3H), 6.60 (d, J=7.5 Hz, 1H), 6.80 (t, J=7.5 Hz, 1H), 6.95 (d, J=8.1 Hz, 2H), 7.22 (t, J=7.4 Hz, 1H), 7.53 (d, J=7.8 Hz, 2H), 7.71 (d, J=7.8 Hz, 1H); ¹³C{¹H}NMR (75 MHz;

DMSO d₆; Me₄Si): δ 12.6, 55.7, 87.6, 94.7, 114.4, 123.3, 124.9, 126.7, 129.1, 131.6, 139.4, 142.9, 151.5, 157.7; IR (KBr): 3340, 2486, 1602, 1509, 1399, 1248, 1174, 1028, 828, 741, 593, 517cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₇H₁₅IN₂O₂S+H]⁺: 438.9972, found: 438.9968.

4-((3-chlorophenyl)thio)-5-methyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one 2s^{6e}

Off-white solid (301 mg, 95%); Mp: 184-186 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.07 (s, 3H); 6.98 (d, J=9.6 Hz, 2H), 7.10 (d, J=7.5 Hz, 1H), 7.23 (t, J=6.9 Hz, 2H), 7.41 (t, J=7.2 Hz, 2H), 7.69 (d, J=8.1 Hz, 2H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.3, 86.8, 120.9,

123.6, 124.2, 125.0, 125.9, 129.0, 129.1, 130.8, 134.0, 138.1, 141.4, 152.1, 157.2; IR (KBr): 3332, 2587, 1621, 1548, 1499, 1398, 1355, 1299, 1074, 826, 733, 684, 589cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₆H₁₃ClN₂OS+H]⁺: 317.0510, found: 317.0521.

4-((3-chloropyrazin-2-yl)thio)-5-methyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one 3a

Off-white solid (287 mg, 90%); Mp: 190-192 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.09 (s, 3H), 7.26 (t, J=6.8 Hz, 1H), 7.46 (t, J=6.8 Hz, 2H), 7.73 (d, J=7.2 Hz, 2H), 8.21 (d, J=2.4 Hz, 1H), 8.43 (d, J=2.4 Hz, 1H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.7, 85.1, 120.9, 126.1,

129.3, 129.32, 129.5, 138.4, 139.4, 139.8, 143.5, 144.7, 152.8, 155.5, 159.2, 161.5; IR (KBr): 3330, 2794, 1619, 1544, 1495, 1397, 1335, 1299, 1139, 1045, 830, 729, 683cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₄H₁₁ClN₄OS +H]⁺: 319.0415, found: 319.0414.

4-((3-chloropyrazin-2-yl)thio)-5-methyl-2-(p-tolyl)-1,2-dihydro-3H-pyrazol-3-one 3b

Off-white solid (306 mg, 92%); Mp: 182-184 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.08 (s, 3H), 2.32 (s, 3H), 7.26 (d, J=8.1 Hz, 2H), 7.60 (d, J=8.1 Hz, 2H), 8.21 (s, 1H), 8.44 (s, 1H);

¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.7, 20.8, 83.9, 120.9, 129.7, 135.3, 136.1, 139.8, 143.5, 144.7, 152.3, 155.6, 159.2, 162.2; IR (KBr): 3350, 2577, 1615, 1509, 1397, 1338, 1196, 1140, 1044, 817, 730, 504cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₅H₁₃ClN₄OS +H]⁺: 333.0571,

found: 333.0560.

$\label{eq:charge} 4-((3-chloropyrazin-2-yl)thio)-2-(4-fluorophenyl)-5-methyl-1, 2-dihydro-3H-pyrazol-3-one fluorophenyl)-5-methyl-1, 2-dihydro-3H-pyrazol-3-one fluorophenyl (1-1)-1, 2-dihydro$

3c

Off-white solid (310 mg, 92%); Mp: 168-170 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.08 (s, 3H), 7.31 (t, J=8.7 Hz, 2H), 7.72-7.76 (m, 2H), 8.21 (s, 1H), 8.44 (s, 1H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.7, 84.1, 115.9, 116.2, 123.0, 123.1, 134.8, 139.8, 143.5, 144.7, 152.8, 155.4,

158.5, 161.7; IR (KBr): 3346, 2602, 1571, 1507, 1409, 1334, 1223, 1139, 1047, 838, 592, 512cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₄H₁₀ClFN₄OS+H]⁺: 337.0321, found: 337.0350.

2-(4-chlorophenyl)-4-((3-chloropyrazin-2-yl)thio)-5-methyl-1,2-dihydro-3H-pyrazol-3-one 3d

Off-white solid (318 mg, 90%); Mp: 198-200 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.01 (s, 3H), 7.44 (d, J=9.0 Hz, 2H), 7.70 (d, J=6.9 Hz, 2H), 8.13 (s, 1H), 8.35 (s, 1H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.8, 84.5, 122.2, 129.3, 130.0, 137.3, 139.8, 143.5, 144.7, 153.3, 155.4,

157.5, 161.6; IR (KBr): 3336, 2650, 1566, 1512, 1395, 1332, 1219, 1135, 1051, 840, 734, 588, 510cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₄H₁₀Cl₂N₄OS+H]⁺: 353.0025, found: 353.0042.

4-(4-((3-chloropyrazin-2-yl)thio)-3-methyl-5-oxo-2,5-dihydro-1H-pyrazol-1-yl)benzonitrile 3e

Yellow solid (309 mg, 90%); Mp: 230-232 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 2.07 (s, 3H),7.93 (dd, J=18.5 and 7.7 Hz, 4H), 8.19 (s, 1H), 8.40 (s, 1H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 12.9, 84.0, 107.7, 119.1, 120.1, 133.9, 140.1, 141.9, 143.6, 144.8, 153.4, 155.2, 160.0, 162.4; IR

(KBr): 3330, 2583, 2223, 1721, 1627, 1594, 1504, 1422, 1377, 1327, 1121, 1007, 837, 573, 604, 546cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₅H₁₀ClN₅OS+H]⁺: 344.0367, found: 344.0359.

4-((3-chloropyrazin-2-yl)thio)-2-(4-methoxyphenyl)-5-methyl-1,2-dihydro-3H-pyrazol-3one 3f

Off-white solid (328 mg, 94%); Mp: 180-182 °C; ¹H NMR (300 MHz; DMSO d₆; Me₄Si): δ 1.99 (s, 3H), 3.70 (s, 3H), 6.95 (d, J=9.0 Hz, 2H), 7.52 (d, J=8.7 Hz, 2H), 8.14 (s, 1H), 8.37 (d, J=2.1 Hz, 1H); ¹³C{¹H}NMR (75 MHz; DMSO d₆; Me₄Si): δ 7.6, 50.6, 84.3, 109.3, 117.9, 126.7, 134.7,

138.4, 139.6, 147.0, 150.5, 152.5, 156.5, 161.0; IR (KBr): 3340, 2690, 1720, 1622, 1588, 1502, 1418, 1350, 1320, 1126, 1012, 835, 570, 596, 550 cm⁻¹; HRMS (ESI-TOF) m/z Calcd for [C₁₅H₁₃ClN₄O₂S+H]⁺: 349.0521, found: 349.0544.

IV. ¹H and ¹³C NMR spectra for the products of Table 2 and 3

S31

S39

10 ppm

