Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Enantioselective Electrophilic Cyanation of β -keto Amides Catalyzed by Cinchona Organocatalyst

Pran Gopal Karmaker, JiashenQiu, Di Wu, Mengmeng Ren, Zhuo Yang, Hongquan Yin and Fu-Xue Chen*

School of Chemistry & Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing 100081, China

Fax: (+86)10-68918296. E-mail: fuxue.chen@bit.edu.cn

Contents

I. General informationS3	3
2. Preparation of reactants	4
2.1 Synthesis of cyano reagents	4
2.2 Synthesis of substrates	5
3. Asymmetric reactions of β -keto amides	
3.1 General procedure S	6
3.2 The observation of enantioselectivity with reaction time S	6
4. Characterization S	58
5. X-ray structure: Product 3c	523
5. References	S 28
7. Copies of ¹ H and ¹³ C NMR spectra	S29

1. General information

All reactions were carried out with oven dried glassware under argon atmosphere, unless otherwise stated. All chemicals were purchased from Acros, Alfa, Aladdin, or InnoChem and used as it comes unless otherwise stated. TLC was performed on silica gel F254 TLC glass plates and visualized with UV light. Solvent of petroleum ether (PE) and ethyl acetate (EA) were used directly in column chromatography. Toluene, THF were dried over sodium (diphenyl ketone) and distilled; CH₂Cl₂, CH₃CN, CHCl₃ were distilled over CaH₂ before use. ¹H NMR spectra were recorded on a Brucker Avance400 (400 MHz) spectrometer in chloroform-d, all signals are reported in ppm with the internal chloroform signal at 7.26 ppm as the standard. The data is reported as (s = singlet, d =doublet, t = triplet, m = multiplet or unresolved, coupling constant(s) in Hz, integration, assignment). ¹³C NMR spectra were recorded with ¹H-decoupling on a Brucker Avance400 (100 MHz) spectrometer in chloroform-d, all signals are reported in ppm with the internal chloroform signal at 77.0 ppm as the standard. Cinchona alkaloids (A6-A10) were prepared according to known literature procedure ^{[1][2][3]}. Other analyses were carried out on the following instruments.

Infrared spectrometer: Bruker ALPHA FT-IR-Spectrometer.

High resolution mass spectrum: Bruker Apex IV FTMS.

Rotation polarity: Krüss P8000.

High Performance Liquid Chromatography: Shimadzu LC-20A.

Melting point detector: Binocular microscope XT4A melting point apparatus (without correct).

2. Preparation of reactants

2.1 Synthesis of cyano reagents

Caution! All operations must be carried out in a well-ventilated fume food because cyanogen bromide is highly toxic and can generate hydrogen cyanide upon hydrolysis.

Following the reported procedure,^[4] to a solution of cyanogen bromide (1.2 equiv) in THF (20 mL) was added slowly a solution of phenol (1.0 equiv) with triethylamine (3.0 equiv) in THF (20 mL) at 0 °C. The reaction mixture was stirred for 2 h at 0 °C and then at rt for 4 h. Filtered on a Celite pad and concentrated in vacuum, the residue was dissolved in ethyl acetate and petroleum ether (1:5) for recrystallization to get the colorless solid.

1-(4-cyanato-3,5-dimethylphenyl)ethan-1-one (2a)

White solid, ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (s, 2H, Ar-H), 2.58 (s, 3H, CH₃CO), 2.48 (s, 6H, CH₃-Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 196.6, 154.0, 136.2, 130.0, 129.5, 109.6 (CN), 26.7, 16.0 ppm. IR (KBr) 3347, 2964, 2265, 1685, 1317, 1150, 1067, 886, 758 cm⁻¹. HRMS: calc. for C₁₁H₁₂NO₂ [*M*+H]⁺: 190.0863, found: 190.0862

1-(4-cyanatophenyl)ethan-1-one (2b)

Colorless solid, 55% yield (after recrystallization), m.p. 60-62 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.07$ (dd, J = 6.8, 2.0 Hz, 2H, Ar-H), 7.40 (dd, J = 7.2, 2.0 Hz, 2H, Ar-H), 2.62 (s, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.2$, 155.9, 136.1, 131.4, 115.9, 108.2 (CN), 27.0 ppm. IR (KBr) 3349, 3071, 2964, 2266, 1919, 1692, 1592, 1495, 1317, 1267, 1150, 1195, 1167, 962, 829 cm⁻¹. HRMS: calc. for C₉H₈NO₂ [*M*+H]⁺: 161.0477, found: 161.0475.

1-(3-(tert-butyl)-4-cyanatophenyl)ethan-1-one (2c)

Colorless solid, 75% yield, m.p. 69-72 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.04 (d, *J* = 2 Hz, ¹H, Ar-H), 7.91(dd, *J* = 8.8, 2.4 Hz, 1H, Ar-H), 7.57(d, *J* = 8.4 Hz, 1H, Ar-H), 2.61(s, 3H, CH₃), 1.42(s, 9H, *t*Bu-H) ppm; ¹³CNMR (100 MHz, CDCl₃): δ = 196.3, 154.8, 138.6, 135.5, 128.6, 128.5,115.7, 107.9 (CN), 34.5, 29.7, 26.6 ppm. IR (KBr) 3347, 2969, 2256, 1462, 1349, 1184, 961,836, 728 cm⁻¹. HRMS: calc. for C1₃H₁₆NO₂ [*M*+H]⁺: 218.1176, found: 218.1173.

N-cyano-4-methyl-N-phenylbenzenesulfonamide (2d)^[5]

Colorless solid, 71% yield. ¹H NMR (400 MHz, CDCl₃): δ = 7.63 (d, J = 8.4, 2H), 7.46 – 7.32 (m, 5H), 7.21 – 7.17 (m, 2H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 146.7, 134.5, 132.3, 130.2, 129.9, 129.8, 128.4, 126.5, 108.6.

2.2 Synthesis of substrates

General procedure for preparation of β-keto amides (1a-1r)

 β -Keto esters were synthesized according to a slightly modified literature procedure.^[6] To a dried three-necked flask equipped with a magnetic stirrer was added dimethyl carbonate (3.0 equiv)

andketone (1.0 equiv) at 0 °C, then sodium hydride (2.2 equiv) was added slowly. The reaction was stopped until the evolution of hydrogen ceased (15-20 min). Then chlorine hydride (1.0 M) was added dropwise, and a heavy, pasty solid appeared (about pH 4). Ice-water and ethyl acetate was added to dissolve the solid completely. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated *in vacuo* to get the crude product without further purification.

To a dried flask equipped with a reflux condenser was added β -keto methyl esters (1.0 mmol), amine (2.0 mmol) in toluene (10 mL). The mixture was heated to reflux. After completion, monitored by TLC, the mixture was concentrated under reduced pressure directly. The residue was purified by flash column chromatography to give the title compounds **1a-1r**.

3. Asymmetric cyanation reactions of β -keto carbonyls

3.1 General procedure for asymmetric cyanation reaction of β -keto amides

4-Acetylphenyl cyanate **2b** (5 equiv.) was added to a stirred solution of the corresponding β -ketoamides **1** and cinchonine (**A**₄, 5mol %) with 4Å MS in dichloromethane (1 mL) at -40 °C temperature. The reaction mixture was stirred at this temperature for 36 h. The crude product was directly transferred to a silica-gel column and eluted with a gradient of PE and EtOAc to give the products **3** in the reported yields and enantiopurities.

3.2 The observed enantioselectivity with reaction time

We noticed the ee value increasing as the reaction proceeds which also observed in other catalytic process. After careful monitoring the ee vs reaction time, a plot was obtained as the following. We interpret this as some unknown reaction path ways with inferior enantioselectivity in competition with the desired asymmetric catalysis. As the reaction proceeding, either the product itself or any other byproduct could suppress the competition reactions and/or accelerate desired asymmetric catalysis. Similar phenomena were also recorded with higher equivalent of cyano reagent. It's interesting but looks a much complicate situation. To take advantages of these observations further optimization of the catalyst efficiency and the mechanism elucidation are underway. It would be presented in full length in near future.

		2	
Entry	Time (h)	Yields (%) ^b	Ee (%) ^c
1	2	12	29
2	6	18	62
3	12	31	71
4	24	62	69
5	36	68	75

Table S1 The observed enantioselectivity with reaction time.^a

^{*a*} Reaction Conditions: **1a** (0.1 mmol), **2b** (0.12 mmol, 1.2 equiv), catalyst (5 mol%), 4Å MS (5 mg), CH₂Cl₂ (1.0 mL) at -40 °C, argon atmosphere, unless otherwise indicated; ^{*b*} isolated yield; ^{*c*} Enantiomeric excess (ee) was determined by chiral HPLC analysis on Chiralpak AD-H.

Figure S1 Plot of enantioselectivity and reaction time

4. Characterization for cyanation products

N-(4-(tert-butyl) phenyl)-2-cyano-1-oxo-2,3-dihydro-*1H*-indene-2-carboxamide (3a)^[7] Colorless oil, 90% yield, 88% *ee*. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}_{D}$ = +45.71 (*c* 0.35, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (s, 1H), 7.84 (d, *J* = 7.7, 1H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.50-7.45 (m, 3H), 7.37 (d, *J* = 8.5 Hz, 2H), 4.36 (d, *J* = 17.5 Hz, 1H), 3.64 (d, *J* = 17.5 Hz, 1H), 1.30 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 193.8, 158.1, 152.6, 148.7, 137.4, 134.1, 131.9, 128.8, 126.6, 126.1, 126.0, 120.0, 117.0, 54.1, 35.3, 34.5, 31.3 ppm. IR (neat): $\tilde{\nu}$ = 3341, 2962, 2252, 1725, 1598, 1523, 1271, 1202, 905, 832, 727 cm⁻¹. HRMS: calc. for C₂₁H₂₀N₂NaO₂ [*M*+Na]⁺: 355.1414, found: 355.1417. HPLC on Chiralpak AD-H (*n*-hexane /*iso*-propanol 80:20, 1.0 mL min⁻¹, 254 nm).

4-Bromo-N-(4-(tert-butyl)phenyl)-2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3b)

White solid, 69% yield, 71% *ee*, m.p. 293-295 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}_{D}$ = +13.0 (*c* 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.33 (s, 1H), 7.93 (t, *J* = 4.0 Hz, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.68 – 7.61 (m, 3H), 7.41 (dd, *J* = 12.6, 8.8 Hz, 2H), 4.29 (d, *J* = 9.2 Hz, 1H), 3.57 (d, *J* = 8.8 Hz, 1H), 1.31(s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.2, 157.7, 141.9, 133.8, 130.9, 130.5, 128.8, 126.0, 124.8, 116.5, 65.5, 54.2, 36.5, 34.4, 31.3 ppm. IR (neat): $\tilde{\nu}$ = 3336, 2957, 2242, 1734, 1598, 1533, 1261, 1199, 904, 834, 749 cm⁻¹. HRMS: calc. for C₂₁H₂₀BrN₂O₂[*M*+H]⁺: 411.0703, found: 411.0710. HPLC on Chiralpak OD-H (*n*-hexane /*iso*-propanol 90:10, 1.0 mL min⁻¹, 254 nm).

5-bromo-*N*-(4-(tert-butyl)phenyl)-2-cyano-1-oxo-2,3-dihydro-*1H*-indene-2-carboxamide (3c)

White solid, 88% yield, 71% *ee*, m.p. 171-173 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}{}_{\rm D}$ = +12.2 (*c* 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.33 (s, 1H), 7.77 (s, 1H), 7.66 (dd, *J* = 9.6, 7.2 Hz, 3H), 7.40 (dd, *J* = 12.0, 7.6 Hz, 5H), 4.33 (ab, *J* = 17.7 Hz, 1H), 3.61 (ab, *J* = 17.6 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.6, 157.7, 153.9, 148.8, 133.9, 133.4, 132.7, 130.7, 130.0, 127.0, 126.0, 120.0, 116.6, 54.2, 34.9, 34.5, 31.3 ppm. IR (neat): \tilde{v} = 3336, 2959, 2239, 1730, 1595, 1521, 1315, 1263, 1204, 905, 834, 749 cm⁻¹. HRMS: calc. for C₂₁H₂₀BrN₂O₂[*M*+H]⁺: 411.0703, found 411.0712. HPLC on Chiralpak OD-H (*n*-hexane/*iso*-propanol 90:10, 1.0 mL min⁻¹, 254 nm).

6-bromo-N-(4-tert-butylphenyl)-2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3d)

White solid, 78% yield, 79% *ee*, m.p. 79-83 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}_{D}$ = +8.6 (*c* 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.32 (s, 1H), 7.96 (s, 1H), 7.85 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.45 (t, *J* = 8.5 Hz, 3H), 7.37 (d, *J* = 8.4 Hz, 2H), 4.29 (ab, *J* = 16.9 Hz, 1H), 3.57 (ab, *J* = 17.6 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.5, 157.6, 151.1,148.8, 140.1, 133.8, 133.6, 128.7, 128.0, 125.9, 123.0, 120.1, 116.5, 54.5, 35.1, 34.4, 31.2 ppm. IR (neat): \tilde{v} = 3336, 2958, 2243, 1739, 1597, 1525, 1318, 1248, 1196, 913, 831, 748 cm⁻¹. HRMS: calc. for C₂₁H₂₀BrN₂O₂[*M*+H]⁺: 411.0703, found 411.0712. HPLC on Chiralpak OD-H (*n*-hexane/*iso*-propanol 90:10, 1.0 mL min⁻¹, 254 nm).

峰#	保留时间	面积	高度	面积 %	高度 %
1	12.759	142220	3955	49.638	52.941
2	15.626	144295	3516	50.362	47.059
急计	A LOUGH AND A REAL	286515	7471	100.000	100.000

N-(4-(tert-butyl)phenyl)-6-chloro-2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3e)

White solid, 84% yield, 71% *ee*, m.p. 155-158 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}$ _D = +30.48 (*c* 0.25, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.31 (s, 1H), 7.80 (s, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 3H), 7.38 (d, *J* = 8.0 Hz, 2H), 4.32 (ab, *J* = 17.6 Hz, 1H), 3.60 (ab, *J* = 17.6 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.6, 157.7, 150.7, 148.8, 137.3, 135.4, 133.8, 133.3, 127.7, 126.0,125.6, 120.1, 116.5, 54.7, 35.0, 34.4, 31.2 ppm. IR (neat): \tilde{v} = 3351, 2959, 2241, 1735, 1600, 1533, 1317, 1249, 1197, 907, 833, 720 cm⁻¹. HRMS: calc. for C₂₁H₂₀ClN₂O₂ [*M*+H]⁺: 367.1208, found 367.1214. HPLC on Chiralpak AD-H (*n*-hexane/*iso*-propanol 80:20, 1.0 mL min⁻¹, 254 nm).

N-(4-(tert-butyl)phenyl)-5-chloro-2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3f)

White solid, 92% yield, 79% *ee*, m.p. 114-118 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}_{D}$ = +84.5 (*c* 0.4, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.33 (s, 1H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.59 (s, 1H), 7.45 (t, *J* = 11.2 Hz, 3H), 7.37 (dd, *J* = 8.6, 1.4 Hz, 2H), 4.33 (ab, *J* = 17.6 Hz, 1H), 3.60 (ab, *J* = 17.6 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.3, 157.8, 153.9, 148.8, 144.4, 133.9, 120.3, 129.8, 127.1, 126.9, 126.0, 120.1, 116.6, 54.4, 35.0, 34.5, 31.3 ppm. IR (neat): \tilde{v} = 3340, 2959, 2241, 1730, 1598, 1528, 1316, 1265, 1204, 907, 834, 749 cm⁻¹. HRMS: calc. for C₂₁H₂₀ClN₂O₂ [*M*+H]⁺: 367.1208, found 367.1217. HPLC on Chiralpak OD-H (*n*-hexane/*iso*-propanol 90:10, 1.0 mL min⁻¹, 254 nm).

N-(4-(tert-butyl)phenyl)-2-cyano-5-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3g)

White solid, 92% yield, 70% *ee*, m.p. 268-271 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}_{D} = +70.4$ (*c* 0.25, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.37$ (s, 1H), 7.86 (dd, J = 8.6, 5.1 Hz, 1H), 7.67 – 7.54 (m, 1H), 7.44 (t, J = 9.1 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 4.35 (ab, J = 17.7 Hz, 1H), 3.61 (ab, J = 17.7 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.8$, 169.9, 167.3, 157.8, 155.7, 148.8, 133.9, 128.7, 128.6, 126.0, 120.0, 117.7, 117.4, 116.7, 113.7, 113.5, 54.4, 35.1, 34.5, 31.3 ppm. IR (neat): $\tilde{v} = 3336, 2962, 2239, 1726, 1595, 1527, 1318, 1258, 1202, 913, 833, 743$ cm⁻¹. HRMS: calc. for C₂₁H₂₀FN₂O₂[*M*+H]⁺: 351.1503, found 351.1509. HPLC on Chiralpak OD-H (*n*-hexane/*iso*-propanol 90:10, 1.0 mL min⁻¹, 254 nm).

N-(4-(tert-butyl)phenyl)-2-cyano-6-methyl-1-oxo-2,3-dihydro-*1H*-indene-2-carboxamide (3h)

White solid, 83% yield, 86% *ee*, m.p. 133-135 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}_{D}$ = +56.93 (*c* 0.3, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.44 (s, 1H), 7.63 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.51 – 7.41 (m, 3H), 7.36 (dd, *J* = 8.6, 1.5 Hz, 2H), 4.30 (ab, *J* = 17.4 Hz, 1H), 3.58 (ab, *J* = 17.4 Hz, 1H), 2.43 (s, 3H), 1.30 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.9, 158.2, 150.1, 148.6, 139.2, 138.8, 134.1, 132.0, 126.3, 125.9, 125.8, 120.0, 117.1, 54.4, 35.0, 34.5, 31.3, 21.0 ppm. IR (neat): \tilde{v} = 3324, 2957, 2239, 1721, 1599, 1521, 1318, 1277, 1196, 904, 831, 750 cm⁻¹. HRMS: calc. for C₂₂H₂₃N₂O₂[*M*+H]⁺: 347.1754, found 347.1758. HPLC on Chiralpak AD-H (*n*-hexane/*iso*-propanol 80:20, 1.0 mL min⁻¹, 254 nm).

N-(4-(*t*-butyl)phenyl)-2-cyano-6-methoxy-1-oxo-2,3-dihydro-*1H*-indene-2-carboxamide (3i)

White solid, 70% yield, 75% *ee*, m.p. 83-85 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20} D = +44.93$ (*c* 0.15, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.39$ (s, 1H), 7.45 (d, J = 8.0 Hz, 3H), 7.38–7.32 (m, 3H), 7.21 (s, 1H), 4.25 (ab, J = 17.2 Hz, 1H), 3.85 (s, 3H), 3.56 (ab, J = 17.2 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.7$, 160.3, 158.1, 148.6, 145.7, 134.0, 133.0, 127.2, 125.9, 120.0, 117.0, 106.6, 55.7, 54.8, 34.7, 34.4, 31.2 ppm. IR (neat): $\tilde{v} = 3348$, 2957, 2924, 2239, 1718, 1600, 1521, 1278, 1197, 913, 834, 749 cm⁻¹. HRMS: calc. for C₂₂H₂₃N₂O₃ [*M*+H]⁺: 363.1703, found 363.1708. HPLC on Chiralpak OD-H (*n*-hexane/*iso*-propanol 90:10, 1.0 mL min⁻¹, 254 nm).

N-(4-(tert-butyl)phenyl)-2-cyano-1-oxo-6-phenyl-2,3-dihydro-1H-indene-2-carboxamide (3j)

White solid, 80% yield, 74% *ee*, m.p. 182-185 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}$ $_{\rm D}$ = +13.72 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.44 (s, 1H), 8.03 (s, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.65 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.58 (d, *J* = 7.3 Hz, 2H), 7.54 – 7.45 (m, 4H), 7.44 – 7.35 (m, 3H), 4.39 (ab, *J* = 17.5 Hz, 1H), 3.67 (ab, *J* = 17.5 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.8, 158.1, 151.4, 148.7, 142.5, 138.9, 136.6, 134.0, 132.5, 129.1, 128.3, 127.1, 126.9, 126.0, 124.0, 120.0, 117.0, 54.6, 35.2, 34.5, 31.3 ppm. IR (neat): \tilde{v} = 3343, 2958, 2241, 1734, 1600, 1527, 1376, 1246, 1184, 1051, 835, 761cm⁻¹. HRMS: calc. for C₂₇H₂₅N₂O₂ [*M*+H]⁺: 409.1911, found: 409.1907. HPLC on Chiralpak AD-H (*n*-hexane/*iso*propanol 80:20, 1.0 mL min⁻¹, 254 nm).

2-Cyano-N-Phenyl-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3m)^[7]

White solid, 74% yield, 73% *ee*, m.p. 136-139 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}_{D} = +41.13$ (*c* 0.3, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.49$ (s, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.80-7.70 (m, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.54 (d, J = 7.7 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 8.0 Hz, 2H), 7.18 (t, J = 7.43 Hz, 1H), 4.36 (ab, J = 17.5 Hz, 1H), 3.64 (ab, J = 17.7 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.8$, 158.1, 152.6, 137.4, 136.6, 131.8, 129.1, 128.9, 126.6, 126.1, 125.5, 120.3, 116.9, 54.1, 35.3 ppm. IR (neat): $\tilde{v} = 3331$, 2250, 1718, 1598, 1535, 1272, 905, 753, 690 cm⁻¹. HRMS: calc. for C₁₇H₁₂N₂O₂ [*M*+H]⁺: 277.0972, found: 277.0970. HPLC on Chiralpak OD-H (*n*-hexane/*iso*-propanol 90:10, 1.0 mL min⁻¹, 254 nm).

2-Cyano-N-(4-fluorophenyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3n)^[7]

White solid, 83% yield, 70% *ee*, m.p. 138-141 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}_{\rm D}$ = +20.67 (*c* 0.3, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.47 (s, 1H), 7.85 (d, *J* = 7.7 Hz, 1H), 7.76 (t, *J* = 7.12, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.52-7.47(m, 3H), 7.05 (t, *J* = 8.6 Hz, 2H), 4,35 (ab, *J* = 17.6 Hz, 1H), 3.65 (ab, *J* = 17.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 188.6, 154.6 (d, ¹*J*_{C-F} = 290.2 Hz), 147.4, 132.3, 127.4 (d, ⁴*J*_{C-F} = 2.8 Hz), 126.6, 123.7, 121.5, 121.0, 117.1 (d, ³*J*_{C-F} = 8.0 Hz),111.7, 110.7 (d, ²*J*_{C-F} = 22.6 Hz), 104.5, 48.8, 30.1 ppm. IR (neat): $\tilde{\nu}$ = 3341, 2923, 2239, 1723, 1606, 1508, 1272, 1213, 906, 832 cm⁻¹. HRMS: calc. for C₁₇H₁₂FN₂O₂ [*M*+H]⁺: 295.0877, found: 295.0877. HPLC on Chiralpak AD-H (*n*-hexane/*iso*-propanol 80:20, 1.0 mL min⁻¹, 254 nm).

检测器 A	Ch1 254nm		峰:	表	10001000100000000000000000000000000000
峰#	保留时间	面积	高度	面积 %	高度 %
1	17.600	2320376	56244	49.825	51.048
2	19.107	2336710	53934	50.175	48.952
总计		4657086	110178	100.000	100.000

N-(4-Bromophenyl)-2-cyano-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (30)^[7]

White solid, 60% yield, 77% *ee*, m.p. 135-140 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}_{D} = +15.4$ (*c* 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.50$ (s, 1H), 7.85 (d, *J* = 7.1 Hz, 1H), 7.76 (t, *J* = 7.2 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.51-7.43 (m, 5H), 4.35 (ab, *J* = 17.6 Hz, 1H), 3.65 (ab, *J* = 17.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.7$, 158.3, 152.6, 137.6, 135.7,132.1, 131.7, 129.0, 126.7, 126.2, 121.9, 118.4, 116.7, 54.1, 35.2 ppm. IR (neat): $\tilde{\nu} = 3336$, 2926, 2239, 1726, 1595, 1527, 1488, 1395, 1727, 1073, 906, 824 cm⁻¹. HRMS: calc. for C₁₇H₁₁BrN₂NaO₂ [*M*+Na]⁺: 376.9896, found: 376.9894. HPLC on Chiralpak AD-H (*n*-hexane/*iso*-propanol 80:20, 1.0 mL min⁻¹, 254 nm).

2-Cyano-N-(4-methoxyphenyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3p)^[7]

White solid, 84% yield, 61% *ee*, m.p. 109-113 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}_{\rm D}$ = +52.2 (*c* 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.40 (s, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.74 (t, *J* = 7.1 Hz, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.50-7.42 (m, 3H), 6.87 (d, *J* = 9.0 Hz, 2H), 4.35 (ab, *J* = 17.5 Hz, 1H), 3.79 (s, 3H), 3.63 (ab, *J* = 17.53 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ =193.9, 157.2, 152.7, 141.8, 137.4, 131.9, 129.7, 128.8, 126.6, 126.1, 122.2, 117.0, 114.2, 55.4, 54.0, 35.4 ppm. IR (neat): $\tilde{\nu}$ = 3350, 2923, 2237, 1711, 1531, 1230, 1176, 994, 826, 739 cm⁻¹. HRMS: calc.for C₁₈H₁₅N₂O₃ [*M*+H]⁺: 307.1077, found: 307.1075. HPLC on Chiralpak OD-H (*n*-hexane/*iso*-propanol 80:20, 1.0 mL min⁻¹, 254 nm).

2-cyano-1-oxo-N-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1H-indene-2-carboxamide (3q)

White solid, 73% yield, 73% *ee*, m.p. 107-109 °C. Developing solvent PE/EA (10/1, V/V), $[\alpha]^{20}$ _D = +69.6 (*c* 0.25, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.65 (s, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 3H), 7.61 (t, *J* = 8.0 Hz 4H), 7.51 (t, *J* = 7.5 Hz, 1H), 4.37 (ab, *J* = 17.6 Hz, 1H), 3.67 (ab, *J* = 17.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.6, 158.5, 152.6, 139.6, 137.7, 131.6, 129.0, 126.7, 126.5, 126.4, 126.4, 126.4, 126.3, 120.0, 116.6, 54.1, 35.1 ppm. IR (neat): $\tilde{\nu}$ = 3336, 2926, 2241, 1734, 1605, 1533, 1325, 1272, 1166, 1068, 906, 841, 745, 692 cm⁻¹. HRMS: calc. for C₁₈H₁₁F₃N₂O₂ [M+H]⁺: 345.0845, found: 345.0841. HPLC on Chiralpak AD-H (*n*-hexane/*iso*-propanol 80:20, 1.0 mL min⁻¹, 254 nm).

念测器 A	Ch1 254nm		峰	表	
峰#	保留时间	面积	高度	面积 %	高度 %
1	16.489	2210652	59671	50.367	57.028
2	22.385	2178465	44964	49.633	42.972
总计	0.001-0.00700-9100	4389118	104634	100.000	100.000

5. X-ray Structure

Product **3c** (CCDC 1563576)

Table S2. Crystal data and structure refi	nement for 3c .
Empirical Formula	C21H19BrN2O2
Formula weight	410.28 g/mol
Crystal system	Monoclinic
Space-group	C 2
Unit cell dimensions	a=20.509(7) Å $b=7.053(2)$ Å $c=15.828(6)$ Å
Cell ratio	$\alpha = 90.00^{\circ}, \beta = 120.784(15)^{\circ}, \gamma = 90.00^{\circ}$
Cell volume	1966.9(12) <i>Å3</i>
Ζ	4
Density	2.491g/cm3
Temperature	296(2) К
Wavelength	0.71073Å
F_000	836
Absorption coefficient	12.280
Data completeness	1.81/0.99
Theta range for data collection	1.50 to 22.970
Refinement method	Full-matrix least-squares on F2
Data/ restraints/ parameters	2708/1/228
Goodness of fit ref	0.897
R factor all	0.1175
R factor gt	0.0704
wR factor ref	0.2111
wR factor gt	0.1811
Absolute structure parameter	0.91(3)

Table S3. Atomic coordinates and equivalent isotropic

displacement parameters (Å2) for **3c**.

	Х	у	Z	U (eq)
C13 C	0.8094(5)	0.928(3)	0.0173(7)	0.070(3)
C18 C	1.0821(6)	0.908(2)	0.1463(7)	0.068(3)
H18 H	1.0956	0.7814	0.1509	0.081
C15 C	0.9112(7)	1.1807(16)	0.0942(8)	0.062(3)
H15A H	0.8799	1.2337	0.0289	0.074
H15B H	0.9091	1.2638	0.1416	0.074
C4 C	0.8813(6)	0.435(3)	0.5546(7)	0.079(3)
C16 C	1.0096(5)	0.9576(19)	0.1234(7)	0.063(3)
C17 C	0.9904(6)	1.1555(14)	0.1176(7)	0.050(3)
N2 N	0.8716(6)	0.7698(13)	0.2154(7)	0.064(3)
H2 H	0.8613	0.6898	0.1692	0.076
C11 C	0.8838(5)	0.947(2)	0.1988(6)	0.060(3)
C14 C	0.9461(6)	0.8437(17)	0.1028(7)	0.064(3)
01 0	0.8937(8)	1.0804(14)	0.2500(7)	0.114(5)
C7 C	0.8597(6)	0.430(2)	0.3805(7)	0.072(3)
H7 H	0.8486	0.3018	0.3790	0.087
O2 O	0.9381(6)	0.6750(13)	0.0917(7)	0.089(3)
C12 C	0.8841(5)	0.9770(13)	0.0998(7)	0.055(3)
C21 C	1.1146(5)	1.2393(16)	0.1558(7)	0.060(3)
C5 C	0.8792(6)	0.5332(17)	0.4650(7)	0.065(3)
N1 N	0.7512(6)	0.899(2)	0.0468(7)	0.096(4)
C20 C	1.1348(6)	1.0491(17)	0.1626(8)	0.067(3)
H20 H	1.1836	1.0160	0.1781	0.080
C10 C	0.8735(6)	0.6959(15)	0.3003(7)	0.060(3)
C9 C	0.8563(7)	0.5099(15)	0.2987(8)	0.068(3)
H9 H	0.8422	0.4369	0.2430	0.082
C6 C	0.8937(7)	0.7217(16)	0.4620(7)	0.077(4)
H6 H	0.9053	0.7967	0.5162	0.092
C8 C	0.8920(7)	0.8053(17)	0.3821(8)	0.086(4)
H8 H	0.9030	0.9335	0.3832	0.103
C19 C	1.0423(6)	1.2931(14)	0.1317(7)	0.056(3)
H19 H	1.0290	1.4206	0.1251	0.067
Br1 Br	1.18664(6)	1.4261(3)	0.17477(10)	0.0940(6)
C2 C	0.9312(13)	0.276(3)	0.5833(15)	0.212(13)
H2A H	0.9546	0.2569	0.6529	0.319
H2B H	0.9698	0.2998	0.5673	0.319
H2C H	0.9030	0.1651	0.5491	0.319
C1 C	0.8035(8)	0.382(3)	0.5287(10)	0.125(6)
H1A H	0.7834	0.2906	0.4763	0.188
H1B H	0.7719	0.4927	0.5079	0.188
H1C H	0.8047	0.3279	0.5851	0.188
C3 C	0.9078(10)	0.584(3)	0.6389(12)	0.133(6)
H3A H	0.9184	0.5215	0.6984	0.200
H3B H	0.8685	0.6763	0.6210	0.200
H3C H	0.9529	0.6462	0.6489	0.200

U (eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C13 N1	1.121(11)
C13 C12	1.458(14)
C18 C16	1.382(14)
C18 C20	1.390(17)
C15 C17	1.481(15)
C15 C12	1.558(14)
C4 C2	1.42(2)
C4 C1	1.479(17)
C4 C5	1.559(15)
C4 C3	1.56(2)
C16 C14	1.418(15)
C16 C17	1.440(16)
C17 C19	1.371(14)
N2 C11	1.324(16)
N2 C10	1.423(13)
C11 O1	1.192(15)
C11 C12	1.585(13)
C14 O2	1.202(13)
C14 C12	1.563(14)
C7 C5	1.389(16)
C7 C9	1.380(15)
C21 C19	1.383(13)
C21 C20	1.392(15)
C21 Br1	1.885(10)
C5 C6	1.368(16)
C10 C9	1.356(15)
C10 C8	1.383(14)
C6 C8	1.380(15)
N1 C13 C12	177.0(19)
C16 C18 C20	120.0(13)
C17 C15 C12	104.6(8)
C2 C4 C1	112.8(18)
C2 C4 C5	108.8(12)
C1 C4 C5	109.7(10)
C2 C4 C3	112.2(13)
C1 C4 C3	105.1(12)
C5 C4 C3	108.2(14)
C18 C16 C14	131.0(13)
C18 C16 C17	118.8(12)
C14 C16 C17	110.2(9)
C19 C17 C16	120.8(9)
C19 C17 C15	128.1(9)

Table S4 Bond lengths [Å] and angles $[^{\circ}]$ for **3c**.

C16 C17 C15	111.1(9)
C11 N2 C10	128.0(9)
O1 C11 N2	126.5(9)
O1 C11 C12	118.6(12)
N2 C11 C12	114.9(10)
O2 C14 C16	129.5(12)
O2 C14 C12	122.9(11)
C16 C14 C12	107.7(10)
C5 C7 C9	122.7(14)
C13 C12 C15	114.1(10)
C13 C12 C11	108.6(8)
C15 C12 C11	111.3(9)
C13 C12 C14	110.6(9)
C15 C12 C14	104.4(8)
C11 C12 C14	107.7(8)
C19 C21 C20	121.3(10)
C19 C21 Br1	119.7(9)
C20 C21 Br1	118.9(8)
C6 C5 C7	115.9(10)
C6 C5 C4	124.0(11)
C7 C5 C4	120.1(12)
C21 C20 C18	120.1(10)
C9 C10 C8	120.0(10)
C9 C10 N2	117.2(9)
C8 C10 N2	122.8(10)
C10 C9 C7	119.4(11)
C5 C6 C8	122.9(10)
C10 C8 C6	119.1(11)
C17 C19 C21	119.0(9)

Symmetry transformations used to generate equivalent atoms:

Table S5. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **3c**. The anisotropic displacement factor exponent takes the form: $-2\pi 2$ [h2 a*2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C13	0.043(5)	0.101(8)	0.052(6)	0.012(8)	0.014(5)	0.023(10)
C18	0.072(6)	0.054(6)	0.088(7)	-0.005(7)	0.048(6)	0.003(8)
C15	0.070(8)	0.056(7)	0.058(6)	0.010(5)	0.032(6)	0.008(6)
C4	0.073(6)	0.099(8)	0.064(6)	0.016(9)	0.034(5)	-0.009(11)
C16	0.056(6)	0.083(10)	0.056(5)	0.002(6)	0.035(5)	0.013(7)
C17	0.058(7)	0.037(6)	0.054(6)	0.005(4)	0.029(5)	0.008(6)
N2	0.097(7)	0.037(5)	0.067(6)	0.001(4)	0.049(6)	-0.007(5)
C11	0.066(6)	0.068(8)	0.044(5)	-0.002(7)	0.028(4)	0.002(8)
C14	0.070(8)	0.062(8)	0.058(7)	0.001(5)	0.032(6)	0.002(6)
O1	0.215(14)	0.065(6)	0.085(7)	-0.014(5)	0.093(8)	-0.039(7)
C7	0.087(7)	0.061(6)	0.072(7)	0.002(8)	0.043(6)) 0.003(9)
O2	0.114(8)	0.048(6)	0.118(7)	-0.005(5)	0.070(7) 0.007(5)
C12	0.047(5)	0.060(8)	0.065(6)	0.000(5)	0.034(5)) 0.008(5)
C21	0.042(6)	0.067(7)	0.063(6)	-0.017(5)	0.022(5)	-0.008(5)
C5	0.057(6)	0.077(8)	0.058(7)	0.016(6)	0.028(5)	0.015(6)
N1	0.081(7)	0.126(11)	0.076(6)	0.020(8)	0.036(6)	-0.016(9)
C20	0.049(6)	0.079(8)	0.078(8)	0.003(6)	0.037(6)	0.007(6)
C10	0.066(7)	0.060(7)	0.045(6)	0.004(5)	0.023(5)	0.009(6)
C9	0.093(9)	0.057(7)	0.054(7)	-0.003(5)	0.037(6)	0.005(6)
C6	0.121(11)	0.061(7)	0.051(7)	-0.002(6)	0.046(7)	-0.006(7)
C8	0.128(12)	0.068(8)	0.069(8)	-0.009(6)	0.055(8)	-0.011(8)
C19	0.063(7)	0.046(6)	0.062(6)	-0.005(5)	0.034(5)	0.009(6)
Br1	0.0679(7)	0.0924(9)	0.1343(11)	-0.0254(10)	0.0609(7)	-0.0133(10)
C2	0.26(3)	0.24(3)	0.19(2)	0.17(2)	0.15(2)	0.16(2)

Table S6. Hydrogen bonds for **3c** [Å and °]

D-HA	d (D-H)	d (HA)	d (DA)	<(DHA)	

6, References

[1] Amberg, W.; Bennani, Y.; Chadha, R. K.; Crispino, G. A.; Davis, W. D.; Hartung, J.; Jeong, K.; Ogino, Y.; Shibata, T.; Sharpless, K. B. J. Org. Chem. **1993**, *58*, 844-849.

[2] Smith, A. B.; Schow, S. R.; Bloom, J. D.; Thompson, A. S.; Winzenberg, K. N. J. Am. Chem. Soc. **1982**, *104*, 4015-4018.

[3] Matoba, K.; Kawai, H.; Furukawa, T.; Kusuda, A.; Tokunaga, E.; Nakamura, S.; Shiro, M.; Shibata, N. Angew. Chem. **2010**, *122*, 5898-5902; Angew, Chem. Int. Ed. **2010**, *49*, 5762-5766.

[4] R. E. Murray, G. Zweifel. Synthesis, 1980, 150-151.

[5] Kurzer F. 221. Cyanamides. Part I. The Synthesis of Substituted Aryl sulphonyl cyanamides. *J. Chem. Soc.* (Resumed), **1949**, (0): 1034-1038.

[6]. Wang, X. Q.; Yang, T.; Shen, Q. L. Angew. Chem. Int. Ed. 2013, 52, 12860-12864.

[7] Wang, Y.; Qiu, J.; Gao, Y.; Lu, F.; Karmaker, P. G.; Chen, F.-X. Org. Biochem. Lett. 2015, 13, 365-368.

7, Copies of ¹H NMR and ¹³C NMR Spectra

S32

S40

