Supporting Information

Synthesis of the fungus metabolite cladosin C

David Linder, Rainer Schobert *

Department of Chemistry, University Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth, Germany.

Fax: +49(0)921 552671

E-mail: Rainer.Schobert@uni-bayreuth.de

TOC

¹H NMR and ¹³C NMR spectra

	S2–14
Gas chromatograms, ¹ H and ¹³ C NMR spectra of the <i>R</i> -MTPA esters of	
<i>R</i> -10 and <i>S</i> -10	S15-17

Figure S1 (*R*)-Ethyl-3-hydroxy butyrate (*R*-10) ¹H NMR (300 MHz, CDCl₃).

Figure S2 (*R*)-Ethyl-3-hydroxy butyrate (*R*-10) ¹³C NMR (75 MHz, CDCl₃).

Figure S3 (*R*)-Ethyl-3-mesyloxy butyrate (11) ¹H NMR (300 MHz, CDCl₃).

Figure S4 (*R*)-Ethyl-3-mesyloxy butyrate (11) ¹³C NMR (75 MHz, CDCl₃).

Figure S5 (S)-Ethyl-3-hydroxy butyrate (S-10) ¹H NMR (500 MHz, CDCl₃).

Figure S6 (S)-Ethyl-3-hydroxy butyrate (S-10) 13 C NMR (75 MHz, CDCl₃).

Figure S7 (S)-Ethyl-3-(*tert*-butyldimethylsilyloxy)-butyrate (12) ¹H NMR (300 MHz, CDCl₃).

Figure S8 (S)-Ethyl-3-(*tert*-butyldimethylsilyloxy)-butyrate (12) ¹³C NMR (75 MHz, CDCl₃).

Figure S9 (*S*)-3-(*tert*-Butyldimethylsilyloxy)-butanale (**13**) ¹H NMR (300 MHz, CDCl₃).

Figure S10 (S)-3-(*tert*-Butyldimethylsilyloxy)-butanale (13) ¹³C NMR (75 MHz, CDCl₃).

Figure S11 L-*N*-(*tert*-Butyloxocarbonyl)-valine methyl ester (16) ¹H NMR (300 MHz, CDCl₃).

Figure S12 L-*N*-(*tert*-Butyloxocarbonyl)-valine methyl ester (16) ¹³C NMR (75 MHz, CDCl₃).

Figure S13 L-*N*-Chloro-*N*-(*tert*-butyloxocarbnoyl)-valine methyl ester (**17**) ¹H NMR (300 MHz, CDCl₃).

Figure S14 L-*N*-Chloro-*N*-(*tert*-butyloxocarbnoyl)-valine methyl ester (17) ¹³C NMR (75 MHz, CDCl₃).

Figure S15 *N*-(*tert*-Butyloxocarbonyl)-dehydrovaline methyl ester (18) ¹H NMR (300 MHz, CDCl₃).

Figure S16 *N*-(*tert*-Butyloxocarbonyl)-dehydrovaline methyl ester (18) ¹³C NMR (75 MHz, CDCl₃).

Figure S17 Dehydrovaline methyl ester hydrochloride (8×HCl) ¹H NMR (300 MHz, D₂O).

Figure S18 Dehydrovaline methyl ester hydrochloride ($8 \times$ HCl) ¹³C NMR (75 MHz, D₂O).

Figure S19 (*S*,*E*)-*S*-*tert*-Butyl-7-(*tert*-butyldimethylsilyloxy)-3-oxo-oct-4-enthioate (**7**) ¹H NMR (300 MHz, $CDCl_3$).

Figure S20 (*S*,*E*)-*S*-*tert*-Butyl-7-(*tert*-butyldimethylsilyloxy)-3-oxo-oct-4-enthioate (**7**) ¹³C NMR (75 MHz, CDCl₃).

Figure S21 (*S*,*E*)-*N*-[7-(*tert*-Butyldimethylsilyloxy)-1,3-dioxo-oct-4-en]-dehydrovaline methyl ester (**6**) ¹H NMR (300 MHz, CDCl₃).

Figure S22 (*S*,*E*)-*N*-[7-(*tert*-Butyldimethylsilyloxy)-1,3-dioxo-oct-4-en]-dehydrovaline methyl ester (**6**) ¹³C NMR (75 MHz, CDCl₃).

Figure S23 3-[(*S*,*E*)-5-(*tert*-Butyldimethylsilyloxy)-1-hydroxyhex-2-enoyl]-5-(propan-2-yliden)-pyrrolidin-2,4-dione (**5**) 1 H NMR (500 MHz, MeOD).

Figure S24 3-[(*S*,*E*)-5-(*tert*-Butyldimethylsilyloxy)-1-hydroxyhex-2-enoyl]-5-(propan-2-yliden)-pyrrolidin-2,4-dione (**5**) 13 C NMR (75 MHz, DMSO-d₆).

Figure S25 Cladosin C (3) 1 H NMR (500 MHz, DMSO-d₆).

Figure S26 Cladosin C (3) ^{13}C NMR (75 $\,$ MHz, DMSO-d_6).

Gas chromatography of *R*-Mosher esters of alcohols 10:

Shimadzu GC 2010 with autosampler AOC 20i and FID, column: Macherey-Nagel Lipodex A 25 m × 0.25 mm, df = 0.25 μ m T injector: 250 °C, split 1:100, carrier gas H₂, constant flow, velocity = 40 cm/s T-gradient: begin 60 °C, hold time 0.5 min, rate 10 °C / min to 200 °C, hold time 10 min

Figure S27 GC of the R-MTPA ester of R-10

Figure S28 Gas chromatogram of the *R*-MTPA ester of S-10.

Figure S29 *R*-MTPA ester of *R*-**10** ((*R*)-Ethyl 3-((*R*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyloxy)butanoate) 1 H NMR (500 MHz, CDCl₃).

Figure S30 *R*-MTPA ester of *R*-**10** ((*R*)-Ethyl 3-((*R*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyloxy)butanoate) 13 C NMR (75 MHz, CDCl₃).

Figure S31 *R*-MTPA ester of *S*-**10** ((*S*)-Ethyl 3-((*R*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyloxy)butanoate) 1 H NMR (500 MHz, CDCl₃).

Figure S32 *R*-MTPA ester of *S*-**10** ((*S*)-Ethyl 3-((*R*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyloxy)butanoate) 13 C NMR (75 MHz, CDCl₃).