Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

BODIPY dyads from a,c-biladiene salts

Andrea Savoldelli, Roberto Paolesse, Frank R. Fronczek, Kevin M. Smith, and M. Graça H. Vicente*

Table of Contents

General information
Synthesis and NMR spectra
Fluorescence excitation spectra

1. General information

Silica gel 60 (70–230 mesh, Sigma Aldrich) or basic alumina (Type T, Merck) were used for column chromatography. Reagents and solvents (Sigma-Aldrich) were of the highest grade available and were used without further purification. UV-vis spectra were recorded in THF on a Cary 50 spectrophotometer. The reactions were monitored by TLC using silica gel plates with 254 indicator (0.2 mm, polyester backed, 60Å, precoated).

NMR spectroscopy, including ¹H-, ¹¹B-, ¹³C- and ¹⁹F-NMR were recorded using either a Bruker AV400 (400 MHz) or a Bruker AV500 (500 MHz) spectrometers. Experiments were performed in CDCl₃ at 300 K. Chemical shifts are given in ppm relative to TMS. High-resolution mass spectra were obtained using the ESI-TOF mode.

2. Synthesis

Starting pyrroles and dipyrromethane were prepeared following literature procedures [1,2]. The a,c-biladienes **1** and **2** were prepared as shown below, following literature procedures [3].

a,c-Biladiene 1

Yield = 88 %. ¹H NMR (400 MHz, CDCl₃): δ, ppm 13.55 (s, 1 H, N-*H*), 13.46 (s, 1 H, N-*H*), 13.20 (s, 1 H, N-*H*), 13.12 (s, 1 H, N-*H*), 7.66 (s, 1 H, *Hα*), 7.63 (s, 1 H, *Hα*), 7.16 (s, 1 H, *Hmeso*), 5.22 (s, 2 H, *CH*₂), 2.72 (m, 2 H, cyclohexyl-*CH*₂), 2.52 (q, 2 H, *J* = 7.48 Hz, *CH*₂CH₃), 2.33 (s, 3 H, *CH*₃), 2.32 (s, 3 H, *CH*₃), 2.30 (s, 3 H, *CH*₃), 2.11 (s, 3 H, *CH*₃), 2.10 (s, 3 H, *CH*₃), 1.73 (m, 6 H, cyclohexyl-*CH*₂), 0.78 (t, 3 H, *J* = 7.48 Hz, *CH*₂*CH*₃). ESI-HRMS: *m/z* calcd for C₃₀H₃₈Br₂N₄ [M]²⁺: 227.1543; found: 227.1557.

a,c-Biladiene 2

Yield = 76 %. ¹H NMR (400 MHz, CDCl₃): δ, ppm 13.98 (s, 1 H, N-*H*), 13.90 (s, 1 H, N-*H*), 13.71 (s, 1 H, N-*H*), 13.64 (s, 1 H, N-*H*), 7.14 (s, 1 H, *Hmeso*), 7.02 (s, 1 H, *Hmeso*), 5.21 (s, 2 H, *CH*₂), 2.67 (m, 2 H, cyclohexyl-*CH*₂), 2.51 (q, 2 H, *J* = 7.52 Hz, *CH*₂CH₃), 2.34 (s, 3 H, *CH*₃), 2.31 (s, 3 H, *CH*₃), 2.29 (s, 3 H, *CH*₃), 2.06 (s, 3 H, *CH*₃), 2.05 (s, 3 H, *CH*₃), 1.70 (m, 6 H, cyclohexyl-*CH*₂), 0.73 (t, 3 H, *J* = 7.52 Hz, CH₂CH₃). ESI-HRMS: *m/z* calcd for C₃₀H₃₆Br₂N₄ [M]²⁺: 305.0648; found: 305.0659.

BODIPY dyad 3

329 μL TEA (2,81 mmol) were added to a stirring solution of 86 mg a,c-biladiene **1** (0,140 mmol) in 23 mL DCE at 0°C under N₂. After 15 min stirring, 520 μL BF₃•Et₂O (4,2 mmol) was slowly added and the solution was stirred at 0°C for another 15 min. Then, the solution was warmed up to room temperature and stirred for 6 h until disappearance of the starting material by TLC. The solvent was removed under reduced pressure and the residue was chromatographed on a silica gel column using CH₂Cl₂/hexane 7/3 as eluent. The title product was recrystallized from CH₂Cl₂/hexane, obtaining 29 mg of pure compound. Yield = 38%. m.p.: decomposition over 250°C.

UV-vis (THF): λ_{max} , nm (log ϵ) 495 (4,40), 530 (sh, 4.61), 556 (5.20). ¹H NMR (400 MHz, CDCl₃): δ , ppm 7.48 (s, 1 H, *H*-5), 7.45 (s, 1 H, *H*-5), 7.14 (s, 1 H, *H*-8), 7.05 (s, 1 H, *H*-8), 4.70 (s, 2 H, *CH*₂), 2.61 (m, 2 H, *CH*₂CH₃), 2.20 (s, 6 H, 2*CH*₃), 2.18 (s, 3 H, *CH*₃), 2.02 (s, 6 H, 2*CH*₃), 1.54 (m, 8 H, cyclohexyl-*CH*₂), 0.81 (t, 3 H, *J* = 7.52 Hz, CH₂CH₃). ¹³C NMR (500 MHz, CDCl₃): δ , ppm 201.80, 199.72, 190.08, 175.18, 165.18, 155.94, 154.17, 144.40, 142.77, 141.61, 140.69, 137.51, 135.47, 135.09, 134.28, 125.96, 121.56, 120.95, 119.35, 114.84, 114.07, 112.54, 77.41, 77.16, 76.91, 29.86, 27.58, 23.03, 22.20, 21.80, 20.42, 16.87, 13.51, 9.97, 9.74, 9.71, 9.68. ¹⁹F NMR (400 MHz, CDCl₃): δ , ppm -140.33 (dq, 1 F, *J*' = 33.82 Hz, *J*'' = 112.12 Hz), -142.21 (dq, 1 F, *J*' = 35.88 Hz, *J*'' = 114.68 Hz), -143.10 (dq, 1 F, *J*' = 33.82 Hz, *J*'' = 112.12 Hz), -145.11 (dq, 1 F, *J*' = 35.88 Hz, *J*'' = 114.68 Hz). ¹¹B NMR (400 MHz, CDCl₃): δ , ppm 0.47 (t, 1 B, *J* = 97.44 Hz), 0.41 (t, 1 B, *J* = 98.62 Hz). ESI-HRMS: *m/z* calcd for C₃₀H₃₄B₂F₄N₄ [M-HF]⁺: 527.2989; found: 527.2961.

Figure S1: ¹H NMR spectrum of BODIPY dyad 3

Figure S2: ¹³C NMR spectrum of BODIPY dyad 3

BODIPY dyad 4

91 μ L TEA (0,653 mmol) was added to a stirring solution of 25 mg a,c-biladiene **2** (0,033 mmol) in 6 mL DCE at 0°C under N₂. After 15 min stirring, 121 μ L BF₃•Et₂O (0,979 mmol) was slowly added and the solution was stirred at 0°C for another 15 min. Then, the solution was warmed up to room temperature and stirred for 6 h until complete disappearance of the starting material by TLC. The solvent was removed under reduced pressure and the residue was chromatographed on a silica gel column using CH₂Cl₂/hexane 7/3 as eluent. The title product was recrystallized from CH₂Cl₂/hexane, obtaining 13 mg of pure compound. Yield = 54%. m.p.: decomposition over 210°C.

UV-vis (THF): λ_{max} , nm (log ϵ) 499 (4,38), 538 (sh, 4.44), 566 (5.03). ¹H NMR (400 MHz, CDCl₃): δ , ppm 7.07 (s, 1 H, *H*-8), 6.97 (s, 1 H, *H*-8), 4.76 (s, 2 H, *CH*₂), 2.62 (m, 2 H, *CH*₂CH₃), 2.25 (s, 3 H, *CH*₃), 2.22 (s, 3 H, *CH*₃), 2.21 (s, 3 H, *CH*₃), 2.02 (s, 3 H, *CH*₃), 2.01 (s, 3 H, *CH*₃), 1.57 (m, 8 H, cyclohexyl-*CH*₂), 0.83 (t, 3 H, *J* = 7.56 Hz, CH₂CH₃). ¹³C NMR (500 MHz, CDCl₃): δ , ppm 188.09, 169.38, 159.73, 156.03, 155.89, 145.59, 142.66, 139.71, 134.86, 133.72, 132.82, 128.80, 126.73, 126.38, 124.34, 119.65, 119.62, 119.06, 118.08, 111.79, 38.74, 31.93, 23.75, 22.83, 21.96, 21.62, 16.72, 13.29, 10.07, 10.03, 9.92, 9.60. ¹⁹F NMR (400 MHz, CDCl₃): δ , ppm -141.51 (dq, 1 F, *J*' = 33.84 Hz, *J*'' = 107.44 Hz), -142.80 (dq, 1 F, *J*' = 34.36 Hz, *J*'' = 105.92 Hz), -142.82 (dq, 1 F, *J*' = 33.84 Hz, *J*'' = 107.44 Hz), -145.11 (dq, 1 F, *J*' = 34.36 Hz, *J*'' = 105.92 Hz), -142.82 (dq, 1 F, *J*' = 33.84 Hz, *J*'' = 107.44 Hz), -145.11 (dq, 1 F, *J*' = 34.36 Hz, *J*'' = 105.92 Hz). ¹¹B NMR (400 MHz, CDCl₃): δ , ppm 0.66 (t, 1 B, *J* = 100.04 Hz), 0.58 (t, 1 B, *J* = 99.40 Hz). ESI-HRMS: *m/z* calcd for C₃₀H₃₂B₂Br₂F₄N₄ [M]⁻: 704.1121; found: 704.1144.

Figure S5: ¹H NMR spectrum of BODIPY dyad 4

Figure S6: ¹³C NMR spectrum of BODIPY dyad 4

Figure S8: ¹¹B NMR spectrum of BODIPY dyad 4

BODIPY dyad 5

17 mg of bis-BODIPY **4** (0,024 mmol) were added to a stirring solution of 29,5 mg PhB(OH)₂ (0,242 mmol) and 3,4 mg Pd(PPh₃)₂Cl₂ (0,005 mmol) in 3 mL of dry toluene under N₂. 484 μ L aq. K₂CO₃ 1M were added and the reaction was stirred at 75°C for 2 h, until complete disappearance of the starting material by TLC. The solvent was removed under reduced pressure and the residue was chromatographed on a silica gel column using CH₂Cl₂/hexane 7/3 as eluent. The title product was recrystallized from CH₂Cl₂/hexane, obtaining 12 mg of pure compound. Yield = 74%. m.p.: > 300°C. UV-vis (THF): λ_{max} , nm (log ε) 507 (4,59), 544 (sh, 4.52), 577 (5.14). ¹H NMR (400 MHz, CDCl₃): δ , ppm 7.60-7.56 (m, 4 H, *Ph*), 7.46-7.37 (m, 6 H, *Ph*), 7.14 (s, 1 H, *H*-8), 7.03 (s, 1 H, *H*-8), 4.56 (s, 2 H, *CH*₂), 2.63-2.57 (m, 2 H, *CH*₂CH₃), 2.25 (s, 3 H, *CH*₃), 2.22 (s, 3 H, *CH*₃), 2.18 (s, 3 H, *CH*₃), 1.92 (s, 3 H, *CH*₃), 1.91 (s, 3 H, *CH*₃), 1.53 (m, 8 H, cyclohexyl-*CH*₂), 0.75 (t, 3 H, *J* = 7.52 Hz, CH₂CH₃). ¹³C NMR (500 MHz, CDCl₃): δ , ppm 155.48, 155.41, 154.56, 154.26, 141.24, 138.69, 138.25, 137.60, 136.92, 133.87, 133.16, 133.06, 132.97, 132.51, 132.42, 132.25, 132.19, 130.15, 129.91, 129.84, 128.78, 128.73, 128.62, 127.72, 127.68, 125.90, 125.44, 120.20, 120.08, 119.65, 27.46, 22.94, 22.12, 21.61, 20.34, 16.83, 13.43, 13.22, 9.89, 9.85, 9.56, 9.46. ¹⁹F NMR (400 MHz, CDCl₃): δ , ppm -131.87 (dq, 1 F, *J*' = 36.32 Hz, *J*''' = 110.08 Hz), -134.28 (dq, 1 F, *J*' = 35.52 Hz, *J*''' = 108.84 Hz), -139.92 (dq, 1 F, *J*' = 36.32 Hz, *J*''' = 110.08 Hz), -134.28 (dq, 1 F, *J*' = 35.52 Hz, *J*''' = 108.84 Hz), -139.92 (dq, 1 F, *J*' = 36.32 Hz, *J*''' = 110.08 Hz). ¹¹B NMR (400 MHz, CDCl₃): δ , ppm 0.82 (t, 1 B, *J* = 103.80 Hz), 0.76 (t, 1 B, *J* = 102.80 Hz). ESI-HRMS: *m/z* calcd for C_{42H42B2E4N4} [M-F]⁺: 681.3548; found: 681.3549.

Figure S9: ¹H NMR spectrum of BODIPY dyad 5

Figure S10: ¹³C NMR spectrum of BODIPY dyad 5

Figure S11: ¹⁹F NMR spectrum of BODIPY dyad 5

Figure S12: ¹¹B NMR spectrum of BODIPY dyad 5

3. Fluorescence excitation spectra

Figure S13. Normalized fluorescence excitation spectra of BODIPY dyads 3 (green), 4 (red), 5 (blue)

in THF at 25°C.

Figure S14. Overlaid spectra of normalized UV-vis spectra (dotted line) and normalized excited spectra (solid line) of bis-BODIPY **3** (green), **4** (red), **5** (blue) in THF at 25°C.

REFERENCES

1. P. Kancharla, K.A. Reynolds, *Tetrahedron*, 2013, **69**, 8375.

2. D.A. May, T.D. Lash, J. Org. Chem., 1992, 57, 4820.

3. (*a*) A.W. Johnson, I.T. Kay, *J. Chem. Soc. (C)*, 1965, 1620. (*b*) R. Paolesse, L. Jaquinod, M.O. Senge, K.M. Smith, *J. Org. Chem.*, 1997, **62**, 6193.