Electronic Supplementary Information

Direct Carboxamidation of Cyclic 2-Diazo-1,3-diketones by

Rh₂(OAc)₄-catalyzed Isocyanide Insertion-Hydrolysis

Xinwei He, * Zhiyu Yu, Youpeng Zuo, Cheng Yang, Yongjia Shang*

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China

* Corresponging author: *shyj@mail.ahnu.edu.cn*, *xinweihe@mail.ahnu.edu.cn*

Contents:	pages
Experimental section	S1-S4
¹ H and ¹³ C NMR spectra data of all products	\$5-\$22
Crystal data and structure refinement for 3b	S23

Experimental section

General comments

Unless otherwise specified, all reagents and starting materials were purchased from commercial sources and used as received, and the solvents were purified and dried using standard procedures. The chromatographic solvents were technical grade and distilled prior to use. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. The ¹H and ¹³C NMR data were recorded on 300 MHz and 500 MHz NMR spectrometers, unless otherwise specified. Chemical shifts (δ) in parts per million are reported relative to the residual signals of chloroform (7.26 ppm for ¹H and 77.16 ppm for ¹³C), and all ¹³C NMR spectra were recorded with proton broadband decoupling and are indicated as ¹³C {¹H}NMR. Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet), and the coupling constants (*J*) are reported in Hertz. HRMS analysis on a quadrupole time-of-flight mass spectrometer yielded ion mass/charge (m/z) ratios in atomic mass units. IR spectra were measured as dry films (KBr), and the peaks are reported in terms of wave number (cm⁻¹).

General procedure for the synthesis of *N*-(*tert*-butyl)-2-hydroxy-6oxocyclohexanecarboxamide (3a). To a stirred solution of 2-diazocyclohexane-1,3-dione 1a (0.5 mmol), *tert*-butyl isocyanide 2a (0.5 mmol) and H₂O (1.5 mmol) in acetone (2 mL), Rh₂(OAc)₄ (0.025 mmol) was added. The reaction mixture was heated in an oil bath at 60 °C for 6 h. After the reaction was complete, the mixture was cooled to room temperature, extracted with CH₂Cl₂ (3×10 mL), and washed with water. The organic layers were combined, dried over Na₂SO₄, filtered, and evaporated under vacuum. The residue was further purified by flash column chromatography on silica gel (200-300 mesh) with ethyl acetate and petroleum ether (1:8-1:10, v/v) as the elution solvent to give the desired product 3a in a yield of 71%.

N-(*tert*-butyl)-2-hydroxy-6-oxocyclohexanecarboxamide (**3a**). Yield 71%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.48 (s, 1H), 10.1 (s, 1H), 2.57 (s, 2H), 2.46 (s, 2H), 1.94 (s, 2H),1.42 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 197.7, 197.2, 171.6, 102.7, 52.2, 37.9, 33.4, 29.2, 19.8; IR (KBr) *v* 3462, 2360, 2341, 1637, 1624, 1400, 1095, 462 cm⁻¹; HRMS (ESI) calcd for [C₁₁H₁₇NO₃ + H]⁺ 212.1281, found 212.1284.

N-(*tert*-butyl)-2-hydroxy-4-methyl-6-oxocyclohex-1-enecarboxamide (**3b**). Yield 70%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.43 (s, 1H), 10.02 (s, 1H), 2.44-2.61(m, 2H) , 2.23(m, 1H), 2.11-2.33(m, 3H), 1.41(s, 9H), 1.07(d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.5, 196.6, 171.5, 102.3, 52.2, 46.1, 41.3, 29.2, 27.2, 21.2; IR (KBr) *v* 3471, 2964, 2358, 2341, 2631, 1417, 1384, 1363, 1338, 1219, 592 cm⁻¹; HRMS (ESI) calcd for $[C_{12}H_{20}NO_3 + H]^+$ 226.1438, found 226.1439.

N-(*tert*-butyl)-2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-enecarboxamide (**3c**). Yield 73%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.41 (s, 1H), 9.98 (s, 1H), 2.43 (s, 2H), 2.31 (s, 2H), 1.42 (s, 9H), 1.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 197.2, 196.0, 171.4, 101.7, 52.2, 51.6, 46.9, 31.2, 29.2, 28.6; IR (KBr) ν 3184, 2956, 1627, 1558, 1473, 1411, 1338, 1267, 1215, 1112, 1039, 891 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₂₁NO₃ + H]⁺ 240.1594, found 240.1599.

N-(*tert*-butyl)-2-hydroxy-4-isopropyl-6-oxocyclohex-1-enecarboxamide (**3d**). Yield 74%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.42 (s, 1H), 9.99 (s, 1H), 2.14-2.61 (m, 4H), 1.80-1.89 (m, 1H), 1.60-1.77 (m, 3H),1.41 (s, 9H), 0.93 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 197.9, 197.0, 171.4, 102.3, 52.2, 41.9, 38.4, 37.2, 32.0, 31.2, 29.2, 19.8; IR (KBr) v 3228, 3095, 2958, 2927, 2378, 2349, 2308, 1637, 1566, 1408, 1361, 1330, 1224, 1083, 783 cm⁻¹; HRMS (ESI) calcd for $[C_{14}H_{23}NO_3 + H]^+$ 254.1751, found 254.1756.

N-(*tert*-butyl)-5-hydroxy-3-oxo-1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-carboxamide (**3e**). Yield 69%, Orange-yellow solid; ¹H NMR (CDCl₃, 300MHz) δ 18.52 (s, 1H), 10.08 (s, 1H), 7.36 (d, *J* = 7.5 Hz, 2H), 7.22-7.27 (m, 3H), 3.29-3.40 (m, 1H), 2.68-2.82 (m, 4H), 1.49 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 195.3, 195.1, 170.0, 141.1, 127.8, 126.1, 125.5, 100.7, 51.0, 43.6, 39.3, 36.2, 27.7; IR (KBr) *v* 3219, 3028, 2980, 2943, 1618, 1543, 1413, 1365, 1342, 1215, 1147, 1045, 1012, 921 cm⁻¹; HRMS (ESI) calcd for [C₁₇H₂₁NO₃ + H]⁺ 288.1594, found 288.1599.

N-(*tert*-butyl)-4'-chloro-5-hydroxy-3-oxo-1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-carboxamide (**3f**). Yield 70%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.49 (s, 1H), 10.06 (s, 1H), 7.43 (d, J = 8.7 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 3.27-3.83 (m, 1H), 2.59-2.79 (m, 4H), 1.42 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 196.2, 196.1, 174.3, 141.0, 133.3, 129.4, 128.3, 102.2, 52.5, 44.8, 40.6, 37.1, 29.2; IR (KBr) *v* 3454, 2980, 1624, 1550, 1492, 1413, 1367, 1342, 1261, 1217, 1091, 1049, 1014, 823 cm⁻¹; HRMS (ESI) calcd for [C₁₇H₂₀ClNO₃ + H]⁺ 322.1204, found 322.1200.

N-butyl-2-hydroxy-6-oxocyclohex-1-enecarboxamide (**3g**). Yield 65%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.31 (s, 1H), 9.89 (s, 1H), 3.34 (q, *J* = 7.2 Hz, 2H), 2.58 (t, *J* = 6.3 Hz, 2H), 2.46 (t, *J* = 6.9 Hz, 2H), 1.92-2.00 (m, 3H), 1.96 (d, *J* = 9.0 Hz, 2H), 1.34-1.41 (m, 3H), 1.24 (s, 2H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.7, 196.5, 171.7, 102.7, 39.1, 37.8, 32.9, 31.5, 30.0, 20.4, 19.8, 14.0; IR (KBr) *v* 3460, 2958, 2931, 2360, 2341, 1629, 1566, 1384, 1101, 1049 cm⁻¹; HRMS (ESI) calcd for [C₁₁H₁₇NO₃ + H]⁺ 212.1281, found 212.1282.

N-butyl-2-hydroxy-4-methyl-6-oxocyclohex-1-enecarboxamide (**3h**). Yield 68%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.25 (s, 1H), 9.86 (s, 1H), 3.34 (q, *J* = 6.3 Hz, 2H), 2.48-2.63 (m, 2H), 2.15-2.34 (m, 3H), 1.51-1.60 (m, 2H), 1.34-1.40 (m, 2H), 1.06 (d, *J* = 5.4 Hz, 3H), 0.93 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.2, 195.5, 171.2, 101.8, 45.6, 40.5, 38.6, 31.1, 26.9, 20.8, 20.0, 13.6; IR (KBr) *v* 3462, 3238, 2960, 2929, 2872, 2374, 2345, 1624, 1570, 1261, 1095, 802 cm⁻¹; HRMS (ESI) calcd for [C₁₂H₁₉NO₃ + H]⁺ 226.1438, found 226.1434.

N-butyl-2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-enecarboxamide (**3i**). Yield 70%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.22 (s, 1H), 9.82 (s, 1H), 3.37 (q, *J* = 6.6 Hz, 2H), 2.45 (s, 2H), 2.32 (s, 2H), 1.51-1.61 (m, 3H), 1.34-1.41 (m, 3H), 1.07 (s, 6H), 0.93 (t, *J* = 7.2 Hz, 3H), 0.91 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.3, 195.2, 171.5, 101.6, 51.6, 46.5, 39.1, 31.6, 31.3, 30.0, 28.6, 20.5, 14.0; IR (KBr) ν 3487, 2962, 2360, 2331, 1639, 1384, 1261, 1095, 1022, 802 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₂₁NO₃ + H]⁺ 240.1594, found 240.1598.

N-butyl-2-hydroxy-4-isopropyl-6-oxocyclohex-1-enecarboxamide (**3j**). Yield 69%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.23 (s, 1H), 9.83 (s, 1H), 3.37 (q, *J* = 7.2 Hz, 2H), 2.48-2.62 (m, 2H), 2.15-2.40 (m, 2H), 1.80-1.92 (m, 2H), 1.30-1.41 (m, 2H), 1.25 (m, 2H), 1.24-1.22 (m, 1H), 0.94 (t, *J* = 6.9 Hz, 3H), 0.86 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 198.0, 196.6, 170.6, 102.1, 48.3, 41.9, 38.5, 36.9, 32.9, 32.1, 31.3, 25.8, 24.8, 19.8; IR (KBr) *v* 3238, 2958, 2927, 2872, 2378, 2308, 1624, 1566, 1535, 1261, 1153, 935 cm⁻¹; HRMS (ESI) calcd for [C₁₄H₂₃NO₃ + H]⁺ 254.1751, found 254.1756.

N-butyl-5-hydroxy-3-oxo-1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-carboxamide (**3k**). Yield 64%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.35 (s, 1H), 9.91 (s, 1H), 7.33-7.38 (m, 2H), 7.21-7.29 (m, 3H), 3.37 (q, *J* = 6.3 Hz, 2H), 2.84 (d, *J* = 8.1 Hz, 2H), 2.69-2.72 (m, 2H), 1.54-1.64 (m, 3H), 1.34-1.43 (m, 2H), 1.25-1.20 (m, 2H), 0.94 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.3, 195.4, 171.1, 142.0, 128.8, 127.2, 126.5, 101.8, 44.6, 49.9, 38.8, 37.3, 31.1, 20.0,

13.6; IR (KBr) v 3502, 2960, 2308, 1631, 1573, 1415, 1099, 798 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{21}NO_3 + H]^+$ 288.1594, found 288.1598.

N-butyl-4'-chloro-5-hydroxy-3-oxo-1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-carboxamide (**3**). Yield 62%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.34 (s, 1H), 9.90 (s, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 7.8 Hz, 2H), 3.31-3.39 (m, 3H), 2.76-2.82 (m, 2H), 2.64-2.73 (m, 2H), 1.52-1.62 (m, 2H), 1.35-1.44 (m, 2H), 0.93 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.8, 195.1, 171.1, 140.5, 132.9, 129.0, 127.9, 101.7, 44.4, 39.8, 38.8, 36.7, 31.1, 20.0, 13.6; IR (KBr) v 3454, 2956, 2924, 2852, 2358, 2331, 1639, 1093, 796 cm⁻¹; HRMS (ESI) calcd for [C₁₇H₂₀ClNO₃ + H]⁺ 322.1204, found 322.1209.

N-cyclohexyl-2-hydroxy-6-oxocyclohex-1-enecarboxamide (**3m**). Yield 70%, Faint yellow solid; 1H NMR (CDCl₃, 300 MHz) δ 18.35 (s, 1H), 9.93 (s, 1H), 3.78-3.88 (m, 1H), 2.58 (t, *J* = 6.3 Hz, 2H), 2.46 (t, *J* = 6.3 Hz, 2H), 1.88-1.99 (m, 4H), 1.70-1.75 (m, 2H), 1.21-1.44 (m, 7H), 1.33-1.25 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 197.7, 196.8, 170.7, 102.5, 48.3, 37.9, 33.1, 32.8, 25.8, 24.8, 19.8; IR (KBr) ν 3473, 2933, 2856, 2360, 2331, 2007, 1631, 1564, 1452, 1415, 1093, 785 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₁₉NO₃ + H]⁺ 238.1438, found 238.1439.

N-cyclohexyl-2-hydroxy-4-methyl-6-oxocyclohex-1-enecarboxamide (**3n**). Yield 74%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.29 (s, 1H), 9.88 (s, 1H), 3.82-3.86 (m, 1H), 2.44-2.62 (m, 2H), 2.11-2.33 (m, 4H), 1.87-1.91 (m, 3H), 1.64-1.72 (m, 2H), 1.18-1.43 (m, 4H), 1.07 (d, J = 5.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.7, 196.2, 170.6, 102.1, 48.3, 46.1, 41.0, 32.8, 31.2, 27.3, 25.8, 24.8, 21.2; IR (KBr) v 3471, 2933, 2856, 2360, 2331, 1631, 1564, 1452, 1421, 1382, 1261, 1083 cm⁻¹; HRMS (ESI) calcd for [C₁₄H₂₁NO₃ + H]⁺ 252.1594, found 252.1598.

N-cyclohexyl-2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-enecarboxamide (**30**). Yield 81%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.25 (s, 1H), 9.85 (s, 1H), 3.79-3.87 (m, 1H), 2.44 (s, 2H), 2.32 (s, 2H), 1.89-1.92 (m, 3H), 1.70-1.75 (m, 4H), 1.29-1.41 (s, 4H), 1.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 197.3, 195.5, 170.5, 101.5, 51.6, 48.3, 46.6, 32.9, 31.3, 30.0, 28.6, 25.8, 24.8; IR (KBr) *v* 3452, 2939, 2854, 2358, 2341, 1637, 1566, 1452, 1423, 1384, 1340, 1093 cm⁻¹; HRMS (ESI) calcd for [C₁₅H₂₃NO₃ + H]⁺ 266.1751, found 166.1755.

N-cyclohexyl-2-hydroxy-4-isopropyl-6-oxocyclohex-1-enecarboxamide (**3p**). Yield 76%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.27 (s, 1H), 9.86 (s, 1H), 3.78-3.87 (m, 1H), 2.47-2.60 (m, 2H), 2.14-2.39 (m, 2H), 1.87-1.91 (m, 3H), 1.70-1.73 (m, 2H), 1.29-1.44 (m, 7H), 0.93 (d, J = 6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 198.0, 196.6, 170.5, 102.1, 48.3, 41.9, 38.5, 36.9, 32.9, 32.0, 31.3, 25.8, 24.8, 19.8, 19.7; IR (KBr) v 3481, 2939, 2854, 2358, 2341, 1629, 1566, 1423, 1340, 1093, 592 cm⁻¹; HRMS (ESI) calcd for [C₁₆H₂₅NO₃ + H]⁺ 280.1907, found 280.1909.

N-cyclohexyl-5-hydroxy-3-oxo-1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-carboxamide (**3q**). Yield 72%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.38 (s, 1H), 9.95 (s, 1H), 7.21-7.38 (m, 5H), 3.83-3.91 (m, 1H), 3.30-3.41 (m, 1H), 2.83 (d, *J* =8.1 Hz, 2H), 2.68-2.72 (m, 2H), 1.90-1.92 (m, 2H), 1.72-1.76 (m, 2H), 1.31-1.42 (m, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 196.7, 196.0, 170.6, 142.5, 129.3, 129.0, 127.6, 127.1 126.9, 102.0, 48.4, 45.0, 40.4, 37.7, 32.8, 31.3, 25.8, 24.8; IR (KBr) *v* 3215, 3030, 2929, 2854, 1633, 1562, 1446, 1332, 1257, 1145, 1083, 1010, 912, 763 cm⁻¹; HRMS (ESI) calcd for [C₁₉H₂₃NO₃ + H]⁺ 314.1751, found 314.1756.

4'-Chloro-*N*-cyclohexyl-5-hydroxy-3-oxo-1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-carboxamide (**3r**). Yield 71%, Faint yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ 18.38 (s, 1H), 9.92 (s, 1H), 7.14-7.33 (m, 4H), 3.82-3.89 (m, 1H), 3.28-3.39 (m, 1H), 2.76-2.79 (m, 2H), 2.64-2.69 (m, 2H), 1.90-1.93 (m, 2H), 1.72-1.78 (m, 2H), 1.24-1.41 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 196.2,

195.8, 170.5, 140.9, 133.3, 129.4, 129.1, 128.4 128.3, 101.9, 48.5, 46.0, 44.8, 40.4, 37.2, 32.8, 31.5, 30.0, 25.7, 24.7; IR (KBr) ν 3446, 2924, 2852, 2360, 2341, 1629, 1384, 1338, 1259, 1093, 1014, 829 cm⁻¹; HRMS (ESI) calcd for [C₁₉H₂₂ClNO₃ + H]⁺ 348.1361, found 348.1366.

¹H NMR and ¹³C NMR Spectra of Compound 3b

¹H NMR and ¹³C NMR Spectra of Compound 3h

¹H NMR and ¹³C NMR Spectra of Compound 3i

¹H NMR and ¹³C NMR Spectra of Compound 3j

¹H NMR and ¹³C NMR Spectra of Compound 3k

¹H NMR and ¹³C NMR Spectra of Compound 3n

100

50

PPM

0

150

200

хы.

S21

¹H NMR and ¹³C NMR Spectra of Compound 3r

Crystal data and structure refinement for compound 3b.

The diffraction data for **3b** were collected on a Bruker SMART APEX diffractometer using Mo K α ($\lambda = 0.71073$ Å). The crystallographic data are listed in Table S1. The CIF deposition number: **CCDC-1448592**.

Figure S1. X-ray crystal structure of compound **3b** (The ellipsoid contour probability level in the caption is 30%).

Identification code	131225c_0m	
Empirical formula	C13 H21 N O3	
Formula weight	239.31	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, P2(1)/c	
Unit cell dimensions	a = 11.0499 (14) A alpha = 90 deg.	
	b = 11.3287 (14) A beta = 113.0720(10) deg.	
	c = 11.7946 (14) A gamma = 90 deg.	
Volume	1351.9(3) A^3	
Z, Calculated density	4, 1.176 Mg/m^3	
Absorption coefficient	0.083 mm^-1	
F(000)	520	
Crystal size	0.13 x 0.12 x 0.10 mm	
Theta range for data collection	2.13 to 27.66 deg.	
Limiting indices	-14<=h<=14, -14<=k<=13, -15<=l<=15	
Reflections collected / unique	11446 / 3137 [R(int) = 0.0281]	
Completeness to theta $= 27.76$	99.4 %	
Absorption correction	None	
Max. and min. transmission	0.9918 and 0.9893	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3137 / 0 / 161	
Goodness-of-fit on F ²	1.052	
Final R indices [I>2sigma(I)]	R1 = 0.0422, $wR2 = 0.1160$	
R indices (all data)	R1 = 0.0558, $wR2 = 0.1253$	
Extinction coefficient	0.045(4)	
Largest diff. peak and hole	0.222 and -0.127 e.A^-3	

Table S1. Crystal data and structure refinement for **3b**.