Supplemental Material for:

¹⁸O₂ labeling experiments illuminate the oxidation of *ent*-kaurene in bacterial gibberellin biosynthesis

Nagel, Raimund and Peters, Reuben J.*

Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA. *E-mail: rjpeters@iastate.edu

Contents

- **Supplemental Table S1.** Primers for cloning of synthetic *Et*CYP117 into pET100/pET101.
- **S2 Supplemental Table S2.** Theoretical labeling patterns from *ent*-kaurene.
- **S3 Supplemental Table S3.** Theoretical labeling patterns from *ent*-kaurenol.
- **S4 Supplemental Table S4.** Theoretical labeling patterns from *ent*-kaurenal.
- **S5 Supplemental Figure S1.** Expression and spectroscopic properties of *Et*CYP117.
- **S5** Supplemental Figure S2. Theoretical position of ¹⁸O.

Supplemental Table S1: Primers for cloning of synthetic *Et*CYP117 into pET100/pET101.

Primer name	Primer Sequence			
forward	CACCATGGCGTTGCTGAACCCCTTTAAACG			
reverse	TCATATGGACAGTGATCTACCTGCATCTTTTGAAAAAGC			
reverse -stop	TATGGACAGTGATCTACCTGCATCTTTTGAAAAAGC			
reverse + <u>6xHistidine</u>	TCA <u>ATGATGATGATGATGATG</u> TATGGACAGTGATCTACCTGCATCTTTTGAAAAAGC			

Underlined sequence in forward primer incorporated for dTOPO-based cloning method.

$[M^{+}]$	(1) →	(2) →	(3) →	(6) →	(5)
+0	100	0	0	0	0
+2	0	100	0	0	0
+4	0	0	100	0	100
+6	0	0	0	100	0
	(1) →	(2) →	(3) →	(4) →	(5)
+0	100	0	0	0	0
+2	0	100	0	100	0
+4	0	0	100	0	100
+6	0	0	0	0	0
	(1) →	(2) →	(4) →	(3) →	(5)
+0	100	0	0	0	0
+2	0	100	100	100	100
+4	0	0	0	0	0
+6	0	0	0	0	0
	(1) →	(2) →	(4) →	(5)	
+0	100	0	0	0	-
+2	0	100	100	0	
+4	0	0	0	100	
+6	0	0	0	0	_
	(1) →	(2) →	(3) →	(5)	
+0	100	0	0	0	-
+2	0	100	0	0	
+4	0	0	100	100	
+6	0	0	0	0	

Supplemental Table S2: Potential labeling patterns from *ent*-kaurene, 1 (% isotopomer).

$[M^+]$	(2) →	(3) →	(6) →	(5)
+0	100	0	0	0
+2	0	100	0	66
+4	0	0	100	33
	(2) →	(3) →	(4) →	(5)
+0	100	0	50	0
+2	0	100	50	50
+4	0	0	0	50
	(2) →	(4) →	(5)	
+0	100	100	0	
+2	0	0	100	
+4	0	0	0	
	(2) →	(3) →	(5)	
+0	100	0	0	-
+2	0	100	100	
+4	0	0	0	

Supplemental Table S3: Potential labeling patterns from *ent*-kaurenol, 2 (% isotopomer).

Supplemental Table S4: Potential labeling patterns from *ent*-kaurenal, 4 (% isotopomer).

[M ⁺]	(4) →	(5)		
+0	100	0		
+2	0	100		
+4	0	0		
	(4) →	(3) →	(5)	
+0	100	100	100	
+2	0	0	0	
+4	0	0	0	
	(4) →	(3) →	(6) →	(5)
+0	100	100	0	33
+2	0	0	100	66
+4	0	0	0	0

Supplemental Figure S1

Supplemental Figure S1: Expression and spectroscopic properties of *EtCYP117.* (a) Cell pellets from *E. coli* cultures expressing *Et*CYP117 with the C-terminal His-Tag encoded by pET101, or only 6 histidines directly incorporated at the C-terminus (i.e., without any linker sequence). (b) UV-VIS absorbance measurement of E. coli cell lysate expressing *Et*CYP117 with the short 6xHis-tag, before and after reduction by dithionite, as well as subsequent addition of carbon monoxide (CO).

Supplemental Figure S2. Theoretical position of ¹⁸O labels. Schemes depicting the position of the ¹⁸O label, marked by an asterisk (*), for all pathways from *ent*-kaurene (a), *ent*-kaurenol (b) or *ent*-kaurenal (c). For (a) and (b) reverse reactions were omitted.