Supporting Information

One-pot facile synthesis of 4-amino-1,8-naphthalimide derived Tröger's base

supramolecular scaffolds via a nucleophilic displacement approach

Sankarasekaran Shanmugaraju,^a Deirdre McAdams,^a Francesca Pancotti,^a Chris S. Hawes,^a Emma B. Veale,^a Jonathan A. Kitchen,^b and Thorfinnur Gunnlaugsson^{*a}

^aSchool of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. E-mail: <u>gunnlaut@tcd.ie</u>

^bChemistry, Faculty of Natural and Environmental Sciences, University of Southampton-Highfield, Southampton, SO17 1BJ, UK.

Table of contents	
1. ¹ H NMR spectrum of precursor TB-1	1
2. ¹ H, ¹³ C and HRMS spectra of products TB-(2a-2k)	1-18
3. ¹ H, ¹³ C NMR and HRMS spectra of compound 2 and TB-3	18-20
4. Solid-state packing view of TB-2k	20
5. Solid-state packing view of TB-3	21
6. Crystallographic data and refinement parameters for TB-2k and TB-3	22

Fig. S1. ¹H NMR spectrum of TB-1 (400 MHz, CDCl₃).

Fig. S2. ¹H NMR spectrum of TB-2a (400 MHz, CDCl₃).

Fig. S3. ¹³C NMR spectrum of TB-2a (100 MHz, CDCl₃).

Fig. S4. HRMS spectrum of TB-2a.

Fig. S5. ¹H NMR spectrum of TB-2b (600 MHz, CDCl₃).

Fig. S6. ¹³C NMR spectrum of TB-2b (150 MHz, CDCl₃).

Fig. S7. HRMS spectrum of TB-2b.

Fig. S8. ¹H NMR spectrum of TB-2c (600 MHz, CDCl₃).

Fig. S9. ¹³C NMR spectrum of TB-2c (150 MHz, CDCl₃).

Fig. S10. HRMS spectrum of TB-2c.

Fig. S11. ¹H NMR spectrum of TB-2d (400 MHz, CDCl₃).

Fig. S12. ¹³C NMR spectrum of **TB-2d** (100 MHz, CDCl₃).

Fig. S13. HRMS spectrum of TB-2d.

Fig. S14. ¹H NMR spectrum of TB-2e (400 MHz, CDCl₃).

Fig. S15. ¹³C NMR spectrum of TB-2e (100 MHz, CDCl₃).

Fig. S16. HRMS spectrum of TB-2e.

Fig. S17. ¹H NMR spectrum of TB-2f (400 MHz, CDCl₃).

Fig. S18. ¹³C NMR spectrum of TB-2f (100 MHz, CDCl₃).

Fig. S19. HRMS spectrum of TB-2f.

Fig. S20. ¹H NMR spectrum of TB-2g (400 MHz, CDCl₃).

Fig. S21. ¹³C NMR spectrum of **TB-2g** (100 MHz, CDCl₃).

Fig. S22. HRMS spectrum of TB-2g.

Fig. S23. ¹H NMR spectrum of TB-2h (400 MHz, CDCl₃).

Fig. S24. ¹³C NMR spectrum of TB-2h (100 MHz, CDCl₃).

Fig. S25. HRMS spectrum of TB-2h.

Fig. S26. ¹H NMR spectrum of TB-2i (600 MHz, DMSO-d₆).

Fig. S27. ¹³C NMR spectrum of TB-2i (150 MHz, DMSO-d₆).

Fig. S28. HRMS spectrum of TB-2i.

Fig. S29. ¹H NMR spectrum of TB-2j (600 MHz, DMSO-d₆).

Fig. S30. ¹³C NMR spectrum of **TB-2j** (150 MHz, DMSO-d₆).

Fig. S31. HRMS spectrum of TB-2j.

Fig. S32. ¹H NMR spectrum of TB-2k (600 MHz, DMSO-d₆).

Fig. S33. ¹³C NMR spectrum of **TB-2k** (150 MHz, DMSO-d₆).

Fig. S34. HRMS spectrum of TB-2k.

Fig. S35. ¹H NMR spectrum of **TB-3** (600 MHz, DMSO-d₆).

Fig. S36. ¹³C NMR spectrum of TB-3 (150 MHz, DMSO-d₆).

Fig. S37. HRMS spectrum of TB-3.

Fig. S38. Extended structure of **TB-2k** viewed parallel to the crystallographic *a*-axis. Hydrogen atoms and lattice solvent disorder are omitted for clarity.

Fig. S39. Extended structure of **TB-3** viewed parallel to the crystallographic *c*-axis. Hydrogen atoms and lattice solvent disorder are omitted for clarity.

Identification code	TB-2k.2(CH ₃) ₂ SO	TB-3.CH ₂ Cl ₂
Empirical formula	$C_{31}H_{26}N_2O_8S_2$	$C_{40}H_{26}Cl_2N_4O_4$
Formula weight	618.66	697.55
Temperature/K	100(2)	100.15
Crystal system	monoclinic	triclinic
Space group	C2/c	<i>P</i> -1
a/Å	17.102(7)	10.406(2)
b/Å	8.688(3)	11.383(3)
c/Å	18.461(8)	13.621(3)
α/°	90	83.448(9)
β/°	98.011(7)	87.082(1)
γ/°	90	78.674(10)
Volume/Å ³	2716.3(19)	1571.0(6)
Z	4	2
$\rho_{\rm calc}{ m g/cm^3}$	1.513	1.475
μ/mm ⁻¹	2.286	0.260
F(000)	1288	720.0
Crystal size/mm ³	$0.32 \times 0.07 \times 0.03$	$0.39 \times 0.32 \times 0.21$
Radiation/ λ	Cu Ka (λ = 1.54178)	Mo K α (λ = 0.71075)
2Θ range for data collection/°	4.84 to 68.28	4.878 to 50.994
Reflections collected	2481	12875
Data/restraints/parameters	2481/18/249	5827/0/451
Data completeness	0.994	0.995
S on F ² (all data)	1.031	1.048
Final R indexes [I>= 2σ (I)]	R1 = 0.0543, WR2 = 0.1450	$R_1 = 0.0577, wR_2 = 0.1644$
Final R indexes [all data]	R1 = 0.0660, wR2 = 0.1584	$R_1 = 0.0644, wR_2 = 0.1702$
CCDC	1563998	1564000

 Table S1. Crystallographic data and refinement parameters of TB-2k and TB-3.