Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

SUPPLEMENTARY INFORMATION

Synthesis of oligonucleotides containing 2-N-heteroarylguanine residues and their effect on duplex/triplex stability

Takeshi Inde, Yoshiaki Masaki, Atsuya Maruyama, Yu Ito, Naoaki Makio, Yuya Miyatake, Takahito Tomori, Mitsuo Sekine and Kohji Seio*

Department of Life Science and Technology, Tokyo Institute of Technology, J2-12, 4259 Nagatsuta-cho, Midoriku,

Yokohama, Japan.

E-mail: kseio@bio.titech.ac.jp

contents

¹ H and ¹³ C NMR of Compound 2a	2
¹ H and ¹³ C NMR of Compound 2b	4
¹ H and ¹³ C NMR of Compound 2c	6
¹ H and ¹³ C NMR of Compound 2d	8
¹ H and ¹³ C NMR of Compound 3a	
¹ H and ¹³ C NMR of Compound 3b	
¹ H and ¹³ C NMR of Compound 3c	14
¹ H and ¹³ C NMR of Compound 3d	
¹ H and ¹³ C NMR of Compound 4a	
¹ H and ¹³ C NMR of Compound 4b	20
¹ H and ¹³ C NMR of Compound 4c	
¹ H and ¹³ C NMR of Compound 4d	24
¹ H, ¹³ C and ³¹ P NMR of Compound 5a	
¹ H, ¹³ C and ³¹ P NMR of Compound 5b	

¹ H, ¹³ C and ³¹ P NMR of Compound 5c	
¹ H and ¹³ C NMR of Compound 6	35
¹ H and ¹³ C NMR of Compound 7	
¹ H and ¹³ C NMR of Compound 8	
¹ H, ¹³ C and ³¹ P NMR of Compound 9	41
HPLC analysis of ODN1-4	44
MALDI-TOF Mass spectrometry of ODN1-4	47
pKa Curve fitting of PIP nucleoside (compound 3d)	49
T _m experiments	50
Protocol for $T_{\rm m}$ experiments	50
Representative melting curves of the duplexes (pH 7.0)	50
Representative melting curves of the triplexes (pH 7.0)	54
Representative melting curves of the triplexes (pH 5.5)	57

¹H NMR of Compound 2a

 $\mathbf{2}$

¹³C NMR of Compound 2a

¹H NMR of Compound 2b

¹³C NMR of Compound 2b

¹H NMR of Compound 2c

¹³C NMR of Compound 2c

¹H NMR of Compound 2d

¹³C NMR of Compound 2d

¹H NMR of Compound 3a

¹³C NMR of Compound 3a

¹H NMR of Compound 3b

¹³C NMR of Compound 3b

¹H NMR of Compound 3c

¹³C NMR of Compound 3c

¹H NMR of Compound 3d

¹³C NMR of Compound 3d

¹H NMR of Compound 4a

¹³C NMR of Compound 4a

¹H NMR of Compound 4b

¹³C NMR of Compound 4b

¹H NMR of Compound 4c

¹³C NMR of Compound 4c

¹H NMR of Compound 4d

¹³C NMR of Compound 4d

¹H NMR of Compound 5a

¹³C NMR of Compound 5a

³¹P NMR of Compound 5a

¹H NMR of Compound 5b

¹³C NMR of Compound 5b

³¹P NMR of Compound 5b

¹H NMR of Compound 5c

¹³C NMR of Compound 5c

³¹P NMR of Compound 5c

¹H NMR of Compound 6

¹³C NMR of Compound 6

¹H NMR of Compound 7

¹³C NMR of Compound 7

¹H NMR of Compound 8

¹³C NMR of Compound 8

¹H NMR of Compound 9

¹³C NMR of Compound 9

³¹P NMR of Compound 9

HPLC analysis of ODN1-4

Reversed phase HPLC was performed on a Waters Alliance system with a Waters 3D UV detector and a Waters XBridgeTM C₁₈ column (4.6 × 150 mm). A linear gradient (0-20%, 0.5 %/min) of solvent I (MeCN) in solvent II (0.03 M ammonium acetate buffer) was used at 30 °C at a flow rate of 1.0 mL/min for 40 min.

Anion exchange HPLC was performed on a Waters Alliance system with a Waters 3D UV detector and a DNA-Pac PA100 column (4×250 mm). A linear gradient (0-60%, 1.3 %/min) of solvent I (25 mM sodium phosphate buffer, pH 6.0, 1 M NaCl, 10% MeCN (v/v)) in solvent II (25 mM sodium phosphate buffer, pH 6.0, 10% MeCN (v/v)) was used at 50 °C at a flow rate of 1.0 mL/min for 45 min.

ODN2: 5'-TTTTTCTTCTCTTT G^{Pym} TTCTT-3'

ODN3: 5'-TTTTCTTCTTCTT G^{Pyra} TTCTT-3'

ODN4: 5'-TTTTCTTCTTCTT PIP TTCTT-3'

MALDI-TOF Mass spectrometry of ODN1-4

ODN1: 5'-TTTTCTTCTCTCTT G^{Py} TTCTT-3'

calculated for [M + H]⁺: 5456.6, found 5456.5.

ODN2: 5'-TTTTCTTCTTCTTT G^{Pym} TTCTT-3'

calculated for [M + H]⁺: 5457.6 found 5457.6.

ODN3: 5'-TTTTCTTCTTCTT **G**^{Pyra} TTCTT-3'

calculated for [M + H]⁺: 5457.6, found 5457.2.

ODN4: 5'-TTTTCTTCTCTCTT PIP TTCTT-3'

calculated for $[M + H]^+$: 5455.6, found 5456.0.

pKa Curve fitting of PIP nucleoside (3d)

We assumed that 3d and the deprotonated form of 3d were in the equilibrium,

$$[PIP - H] \leftrightarrows [PIP^{-}] + [H^{+}] \tag{1}$$

where [PIP-H] and [PIP⁻] represent the concentration of **3d** and deprotonated form of **3d**, respectively. Here, acid dissociation constant K_a and the total concentration of **3d** can be written as Equation (2) and (3).

$$K_a = \frac{[PIP^-][H^+]}{[PIP - H]}$$
(2)

$$[PIP_{total}] = [PIP - H] + [PIP^{-}]$$
(3)

Combining Equation (2) and (3) leads to (4) and (5).

$$[PIP - H] = \frac{[PIP_{total}][H^+]}{K_a + [H^+]}$$
(4)

$$[PIP^{-}] = \frac{[PIP_{total}]K_a}{K_a + [H^+]}$$
(5)

From the Beer-Lambert law, the UV absorbance of **3d** and deprotonated form of **3d** at 268 nm and 272 nm can be written as Equation (6) and (7),

$$Abs_{268} = \varepsilon_{268} [PIP - H]\ell + \varepsilon'_{268} [PIP^{-}]\ell$$
(6)
$$Abs_{272} = \varepsilon_{272} [PIP - H]\ell + \varepsilon'_{272} [PIP^{-}]\ell$$
(7)

where ε_{268} and ε_{272} represent the molar attenuation coefficient of compound **3d** at 268 nm and 272 nm, and ε'_{268} and ε'_{272} represent that of deprotonated form of **3d** at 268 nm and 272 nm, respectively, and ℓ represents the path length of UV/Vis absorption measurement. By combining the equation (4), (5), (6) and (7), relative absorbance (Abs_{268}/Abs_{272}) can be written as Equation (8).

$$\frac{Abs_{268}}{Abs_{272}} = \frac{\varepsilon_{268} [H^+] + \varepsilon'_{268} K_a}{\varepsilon_{272} [H^+] + \varepsilon'_{272} K_a}$$
$$= \frac{10^{-pH} + \frac{\varepsilon'_{268}}{\varepsilon_{268}} 10^{-pKa}}{\frac{\varepsilon_{272}}{\varepsilon_{268}} 10^{-pH} + \frac{\varepsilon'_{272}}{\varepsilon_{268}} 10^{-pKa}}$$
(8)

The Equation (8) was fitted to the experimental data of Abs_{268}/Abs_{272} (Figure3a) as a function of pH, using KaleidaGraph 4.1.4 (Figure 3b). pK_a , $\varepsilon'_{268}/\varepsilon_{268}$, $\varepsilon_{272}/\varepsilon_{268}$, $\varepsilon'_{272}/\varepsilon_{268}$ were obtained as following; $pK_a = 5.0$, $\varepsilon'_{268}/\varepsilon_{268} = 0.68$, $\varepsilon_{272}/\varepsilon_{268} = 0.87$, $\varepsilon'_{272}/\varepsilon_{268} = 0.89$. By using the Equation (8), the concentration error of [PIP_{total}] did not affect the result of curve fitting.

$T_{\rm m}$ experiments

Protocol for $T_{\rm m}$ **experiments**

Oligodeoxynucleotides (ODNs) were dissolved in deionized distilled water and their concentration was determined from absorbance measurements at 260 nm. The absorption coefficients of ODNs were calculated according to the nearest-neighbor method using the Oligo Analyzer 3.1 (http://sg.idtdna.com/calc/analyzer) by assuming that **ODN1-4** were identical to **ODN0** by replacing G^{Py} , G^{Pym} , G^{Pym} , G^{Pym} , G^{Pym} and PIP to G.

The oligonucleotides (300 pmol each) were dissolved in 200 μ L of 10 mM sodium cacodylate buffer (pH 7.0 or 5.5, 100 mM NaCl, 10 mM MgCl₂, 0.5 mM spermine). The final concentration of the duplex was 1.5 μ M. The solution was placed in a quartz cells (10 mm) and incubated at 90 °C. After 10 min, the solution was cooled to 5 °C then heated to 90 °C at a rate of 0.5 °C/min. The absorption at 260 nm was recorded and used to draw UV-melting curves. The measurement was carried out three times independently. The UV-melting curve was smoothed by the Savitzky-Golay method. Melting temperatures were calculated as the temperature that gave the maximum of the first derivation of the UV-melting curves. The average of three T_m values was used to determine the final T_m value.

Representative melting curves of the duplexes (pH 7.0)

ODN0-4	5 ⁻ TTTTCTTCTCTT	Х	TTCTT-3
DNA(C, A, G or T)	3´-AAAAGAAGAGAA	N	AAGAA-5 ´

Representative melting curves of the triplexes (pH 7.0)

Representative melting curves of the triplexes (pH 5.5)

We were unable to calculate the exact T_m of the triplex made of **ODN0** and **HP(T)** (represented as X-YZ = G-TA, shown in orange), because the melting curves of triplex and that of **HP(T)** as a single-strand DNA duplex merged. We assumed that the apparent inflection point of the melting curve is approximately 60 °C or higher.