Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Recognition of mixed-sequence DNA using double-stranded probes with interstrand zipper arrangements of O2'-triphenylene- and coronene-functionalized RNA monomers

Saswata Karmakar,^a Dale C. Guenther,^a Bradley C. Gibbons,^{a,b} and Patrick J. Hrdlicka^{*a}

^aDepartment of Chemistry, University of Idaho, Moscow, ID-83844, USA

^bDepartment of Chemistry, Brigham Young University-Idaho, ID-83440, USA

*Corresponding author: Ph: (+1) 208 885 0108. Fax: (+1) 208 885 6173. Email: hrdlicka@uidaho.edu

ELECTRONIC SUPPLEMENTARY INFORMATION

General experimental section	S2
MALDI-MS of modified oligonucleotides (Table S1)	S 3
Representative thermal denaturation curves of X-modified duplexes (Fig. S1)	S4
DNA-selectivity of B1-B6 (Table S2)	S4
RNA mismatch discrimination of X-modified ONs (Table S3)	S5
Steady-state fluorescence emission spectra of X-modified ONs and duplexes (Fig. S2)	S 6
Enthalpy/Entropy trends of double-stranded probes with interstrand	
zippers of X/Y/Z-monomers (Tables S4 and S5)	S 7
References	S 10
¹ H, COSY, ¹³ C, DEPT, and HSQC spectra of 2X , 3X and 4X	S 11

General experimental section.

Reagents and solvents were of analytical grade and used as received from vendors unless otherwise specified. Petroleum ether of the distillation range 60-80 °C was used. Solvents were dried over activated molecular sieves: acetonitrile and THF (3Å); CH₂Cl₂, 1,2-dichloroethane, N,N'-diisopropylethylamine and anhydrous DMSO (4Å). The water content of anhydrous solvents was verified on Karl-Fisher apparatus. Reactions were monitored by TLC using silica gel coated plates with a fluorescence indicator (SiO₂-60, F-254) which were visualized a) under UV light and b) by dipping in 5% conc. H₂SO₄ in absolute ethanol (v/v) followed by heating. Silica gel column chromatography was performed with Silica gel 60 (particle size 0.040–0.063) mm) using moderate pressure (pressure ball). Evaporation of solvents was carried out under reduced pressure at temperatures below 45 °C. Following column chromatography, appropriate fractions were pooled, evaporated and dried at high vacuum for at least 12 h to give the obtained products in high purity (>95%) as ascertained by 1D NMR techniques. Chemical shifts of ¹H NMR (500 MHz), ¹³C NMR (125.6 MHz), and ³¹P NMR (121.5 MHz) are reported relative to deuterated solvent or other internal standards (80% phosphoric acid for ³¹P NMR). Exchangeable (ex) protons were detected by the disappearance of signals upon D₂O addition. Assignments of NMR spectra are based on 2D spectra (COSY, HSQC) and DEPT-spectra. Quaternary carbons are not assigned in ¹³C NMR, but their presence is verified from HSQC and DEPT spectra (absence of signals). MALDI-HRMS spectra of compounds were recorded on a Waters Q-TOF Premiere mass spectrometer using 2,5-dihydroxybenzoic acid as a matrix and polyethylene glycol (PEG 600) as an internal calibration standard.

ONs	Sequence	Calc. <i>m</i> / <i>z</i> [M+H]	Found <i>m</i> / <i>z</i> [M+H]
X1	5'-GXG ATA TGC	2996	2996
X2	5'-GTG A <u>X</u> A TGC	2996	2996
X3	5'-GTG ATA <u>X</u> GC	2996	2996
X4	3'-CAC <u>X</u> AT ACG	2924	2925
X5	3'-CAC TA $\underline{\mathbf{X}}$ ACG	2925	2925
X6	3'-CAC $\underline{\mathbf{X}}$ A $\underline{\mathbf{X}}$ ACG	3167	3167

Table S1. MALDI-MS of ONs modified with monomer X.^a

^a For the structure of monomer \mathbf{X} , see Figure 1 in the main manuscript.

Figure S1. Representative thermal denaturation curves of **X**-modified duplexes and reference duplex **D1:D2**. For experimental conditions, see Table 1.

			$\Delta\Delta T_{\rm m}/{\rm mod} \ ({\rm DNA-RNA}) \ [^{\circ}{\rm C}]$			
ON	Sequence	<u>B</u> =	X	Y ^b	$\mathbf{Z}^{\mathbf{b}}$	
B 1	5'-G <u>B</u> G ATA TGC		+5.0	+7.0	+9.5	
B2	5'-GTG A <u>B</u> A TGC		+7.5	+9.0	+9.0	
B3	5'-GTG ATA <u>B</u> GC		+8.0	+8.0	+7.0	
B4	3'-CAC <u>B</u> AT ACG		+7.0	+8.0	+8.5	
B5	3'-CAC TA <u>B</u> ACG		+6.0	+10.5	+10.0	
B6	3'-CAC <u>B</u> A <u>B</u> ACG		+7.0	+7.3	+15.6	

Table S2. DNA-selectivity of B1-B6.^a

^a DNA selectivity defined as $\Delta\Delta T_{\rm m}/{\rm mod}$ (DNA-RNA) = $\Delta T_{\rm m}/{\rm mod}$ (vs DNA) - $\Delta T_{\rm m}/{\rm mod}$ (vs RNA). ^b Data from reference S1 are included to facilitate comparison.

RNA mismatch discrimination of X-modified ONs.

Triphenylene-functionalized **X2** displays relatively efficient discrimination of mismatched RNA targets, regardless of the nature of the mismatched nucleotide opposite of monomer **X** (Table S3). The RNA mismatch discrimination characteristics of **X2** resemble those of the coronene-functionalized **Z2**, in particularly the ability to efficiently discriminate the wobble base pair with G. The pyrene-functionalized **Y2**, conversely, displays inefficient discrimination of the wobble pair.

			RNA: 3'-CAC T <u>B</u> T ACG			
			$T_{\rm m} [^{\circ}{\rm C}]$		$\Delta T_{\rm m} [^{\circ} \rm C]$	
ON	Sequence	<u>B</u> =	А	С	G	U
D1	5'-GTG ATA TGC		26.5	<-16.5	-4.5	<-16.5
X2	5'-GTG A <u>X</u> A TGC		32.0	-13.0	-10.0	-11.0
Y2 ^b	5'-GTG A <u>Y</u> A TGC		31.0	-17.5	-3.5	-9.5
Z2 ^b	5'-GTG A <u>Z</u> A TGC		37.0	-12.0	-9.0	-13.0

Table S3. Discrimination of mismatched RNA targets by X2/Y2/Z2 and reference strands.^a

^a For conditions of thermal denaturation experiments, see Table 1. $T_{\rm m}$'s of fully matched duplexes are shown in bold. $\Delta T_{\rm m}$ = change in $T_{\rm m}$ relative to fully matched DNA:RNA duplex. ^b Data from reference S1 are included to facilitate comparison.

Figure S2. Steady-state fluorescence emission spectra of X-modified ONs and their corresponding duplexes with DNA/RNA targets. Spectra were recorded at T = 5 °C using $\lambda_{ex} = 260$ nm and each strand at 1.0 μ M concentration in T_m buffer. SSP = single-stranded probe.

Enthalpy/Entropy trends of double-stranded probes with interstrand zippers of X/Y/Z-monomers. As is expected for the formation of nucleic acid duplexes, highly favorable enthalpy and highly unfavorable entropy contributions are observed for unmodified and modified duplexes. The *relative* stabilization brought about upon incorporation of triphenylene-functionalized monomer X into ONs is generally enthalpic in nature, although being entropic in nature for X3 (note the negative values in the first two $\Delta\Delta H$ columns, Table S4, and the positive values in the first two $\Delta(T_{293}\Delta S)$ columns, Table S5). In contrast, the relative stabilization provided by pyrenefunctionalized monomer Y is entropic in nature, whereas the stabilization conferred by coronenefunctionalized monomer Z is either enthalpic or entropic in nature, depending on the sequence context. The X/Y/Z-monomers confer an unfavorable enthalpic contribution in essentially all of the probe duplexes (note the positive values in the third $\Delta\Delta H$ column, Table S4). As a consequence, the thermodynamic driving force for dsDNA-recognition by B2:B5 probes is due to a major decrease in enthalpy (compare ΔH_{rec} and $-T^{293}\Delta S_{rec}$ values for B2:B5 probes, Tables S4 and S5).

			$\Delta H [\Delta \Delta H] (kJ/mol)$			
ON	ZP	Sequence	upper ON vs cDNA	lower ON vs cDNA	probe duplex	ΔH_{rec} (kJ/mol)
X1 X5	+4	5'-G <u>X</u> G ATA TGC 3'-CAC TA <u>X</u> ACG	-305±2 [+1]	-359±3 [-53]	-274±2 [+32]	-84
X1 X4	+2	5'-G <u>X</u> G ATA TGC 3'-CAC <u>X</u> AT ACG	-305±2 [+1]	-319±3 [-13]	-262±1 [+44]	-56
X2 X5	+1	5'-GTG A <u>X</u> A TGC 3'-CAC TA <u>X</u> ACG	-360±2 [-54]	-359±3 [-53]	-266±2 [+40]	-147
X2 X4	-1	5'-GTG A <u>X</u> A TGC 3'-CAC <u>X</u> AT ACG	-360±2 [-54]	-319±3 [-13]	-284±4 [+22]	-89
X3 X5	-1	5'-GTG ATA <u>X</u> GC 3'-CAC TA <u>X</u> ACG	-278±3 [+28]	-359±3 [-53]	-225±7 [+81]	-106
X3 X4	-3	5'-GTG ATA <u>X</u> GC 3'-CAC <u>X</u> AT ACG	-278±3 [+28]	-319±3 [-13]	-306±5 [±0]	+15
^b Y1 Y5	+4	5'-G Y G ATA TGC 3'-CAC TA <u>Y</u> ACG	-281±4 [+25]	-299±2 [+7]	-279±1 [+27]	+5
^b Y1 Y4	+2	5'-G <u>¥</u> G ATA TGC 3'-CAC <u>¥</u> AT ACG	-281±4 [+25]	-300±7 [+6]	-248±8 [+58]	-27
^b Y2 Y5	+1	5'-GTG A <u>¥</u> A TGC 3'-CAC TA <u>¥</u> ACG	-305±1 [+1]	-299±2 [+7]	-244±3 [+62]	-54
^b Y2 Y4	-1	5'-GTG A <u>¥</u> A TGC 3'-CAC <u>¥</u> AT ACG	-305±1 [+1]	-300±7 [+6]	-296±6 [+10]	-3
^b Y3 Y5	-1	5'-GTG ATA <u>Y</u> GC 3'-CAC TA <u>Y</u> ACG	-270±7 [+36]	-299±2 [+7]	-280±5 [+26]	+17
^b Y3 Y4	-3	5'-GTG ATA <u>¥</u> GC 3'-CAC <u>¥</u> AT ACG	-270±7 [+36]	-300±7 [+6]	-309±4 [-3]	+45
Z1 Z5	+4	5'-G Z G ATA TGC 3'-CAC TA <u>Z</u> ACG	-288±6 [+18]	-317±7 [-11]	-198±5 [+108]	-101
Z1 Z4	+2	5'-G <u>Z</u> G ATA TGC 3'-CAC <u>Z</u> AT ACG	-288±6 [+18]	-326±16 [-20]	-218±5 [+88]	-90
Z2 Z5	+1	5'-GTG A <u>Z</u> A TGC 3'-CAC TA <u>Z</u> ACG	-332±2 [-26]	-317±7 [-11]	-252±7 [+54]	-91
Z2 Z4	-1	5'-GTG A <u>Z</u> A TGC 3'-CAC <u>Z</u> AT ACG	-332±2 [-26]	-326±16 [-20]	-235±8 [+71]	-117
Z3 Z5	-1	5'-GTG ATA <u>Z</u> GC 3'-CAC TA <u>Z</u> ACG	-297±4 [+9]	-317±7 [-11]	-166±8 [+140]	-142
Z3 Z4	-3	5'-GTG ATA <u>Z</u> GC 3'-CAC <u>Z</u> AT ACG	-297±4 [+9]	-326±16 [-20]	-250±6 [+56]	-67

Table S4. Enthalpy change upon duplex formation (ΔH) and probe recognition of isosequential dsDNA target **D1:D2** (ΔH_{rec}).^a

^a $\Delta \Delta H$ is measured relative to ΔH for **D1:D2 =** -306 kJ/mol. $\Delta H_{rec} = \Delta H$ (upper ON vs cDNA) + ΔH (lower ON vs cDNA) - ΔH (probe duplex) - ΔH (dsDNA target). "±" denotes standard deviation. ^b Data from reference S2 shown to facilitate comparison.

			- <i>T</i> ²⁹³ Δ			
ON	ZP	Sequence	upper ON	lower ON	probe	$-T^{293}\Delta S_{rec}$
			VS CDINA	vs cDNA	uupiex	(KJ/11101)
X1 X5	+4	5'-G <u>X</u> G ATA TGC 3'-CAC TA <u>X</u> ACG	259±2 [-6]	301±3 [+36]	220±2 [-45]	+75
X1 X4	+2	5'-G <u>X</u> G ATA TGC 3'-CAC <u>X</u> AT ACG	259±2 [-6]	274±3 [+9]	217±1 [-48]	+51
X2 X5	+1	5'-GTG A <u>X</u> A TGC 3'-CAC TA <u>X</u> ACG	301±2 [+36]	301±3 [+36]	225±2 [-40]	+112
X2 X4	-1	5'-GTG A <u>X</u> A TGC 3'-CAC <u>X</u> AT ACG	301±2 [+36]	274±3 [+9]	232±3 [-33]	+78
X3 X5	-1	5'-GTG ATA <u>X</u> GC 3'-CAC TA <u>X</u> ACG	230±3 [-35]	301±3 [+36]	174±6 [-91]	+92
X3 X4	-3	5'-GTG ATA <u>X</u> GC 3'-CAC <u>X</u> AT ACG	230±3 [-35]	274±3 [+9]	254±5 [-11]	-15
^b Y1 Y5	+4	5'-G <u>Y</u> G ATA TGC 3'-CAC TA <u>Y</u> ACG	235±3 [-30]	247±6 [-18]	224±1 [-41]	-7
^b Y1 Y4	+2	5'-G <u>Y</u> G ATA TGC 3'-CAC <u>Y</u> AT ACG	235±3 [-30]	254±6 [-11]	203±8 [-62]	+21
^b Y2 Y5	+1	5'-GTG A <u>¥</u> A TGC 3'-CAC TA <u>¥</u> ACG	251±1 [-14]	247±6 [-18]	204±3 [-61]	+29
^b Y2 Y4	-1	5'-GTG A <u>¥</u> A TGC 3'-CAC <u>¥</u> AT ACG	251±1 [-14]	254±6 [-11]	245±5 [-20]	-5
^b Y3 Y5	-1	5'-GTG ATA <u>¥</u> GC 3'-CAC TA <u>¥</u> ACG	220±7 [-45]	247±6 [-18]	225±5 [-40]	-23
^b Y3 Y4	-3	5'-GTG ATA <u>Y</u> GC 3'-CAC <u>Y</u> AT ACG	220±7 [-45]	254±6 [-11]	256±3 [-9]	-47
Z1 Z5	+4	5'-G <u>Z</u> G ATA TGC 3'-CAC TA <u>Z</u> ACG	243±5 [-22]	258±6 [-7]	146±4 [-119]	+90
Z1 Z4	+2	5'-G <u>Z</u> G ATA TGC 3'-CAC <u>Z</u> AT ACG	243±5 [-22]	275±15 [+10]	167±4 [-98]	+86
Z2 Z5	+1	5'-GTG A <u>Z</u> A TGC 3'-CAC TA <u>Z</u> ACG	271±2 [+6]	258±6 [-7]	201±7 [-64]	+63
Z2 Z4	-1	5'-GTG A <u>Z</u> A TGC 3'-CAC <u>Z</u> AT ACG	271±2 [+6]	275±15 [+10]	178±7 [-87]	+103
Z3 Z5	-1	5'-GTG ATA <u>Z</u> GC 3'-CAC TA <u>Z</u> ACG	244±4 [-21]	258±6 [-7]	116±8 [-149]	+121
Z3 Z4	-3	5'-GTG ATA <u>Z</u> GC 3'-CAC <u>Z</u> AT ACG	244±4 [-21]	275±15 [+10]	196±6 [-69]	+58

Table S5. Entropy change at 293K upon duplex formation $(-T^{293}\Delta S)$ and probe recognition of isosequential dsDNA target **D1:D2** $(-T^{293}\Delta S_{rec})$.^a

^a $\Delta(T^{293}\Delta S)$ is measured relative to $-T^{293}\Delta S$ for **D1:D2** = 265 kJ/mol. $-T^{293}\Delta S_{rec} = T^{293}\Delta S$ (upper strand vs cDNA) + $T^{293}\Delta S$ (lower strand vs cDNA) - $T^{293}\Delta S$ (probe duplex) - $T^{293}\Delta S$ (dsDNA target). "±" denotes standard deviation. ^b Data from reference S2 shown to facilitate comparison.

References

- S1) S. Karmakar, B. A. Anderson, R. L. Rathje, S. Andersen, T. B. Jensen, P. E. Nielsen and P. J. Hrdlicka, *J. Org. Chem.*, 2011, **76**, 7119-7131.
- S2) S. Karmakar, A. S. Madsen, D. C. Guenther, B. C. Gibbons and P. J. Hrdlicka, *Org. Biomol. Chem.*, 2014, **12**, 7758-7773.

S15

S22

