ELECTRONIC SUPPLEMENTARY INFORMATION

Templation effect as a driving force for self-assembly of hydrogenbonded peptidic capsules in competitive media

M. Grajda, M. J. Lewińska and A. Szumna

Table of contents

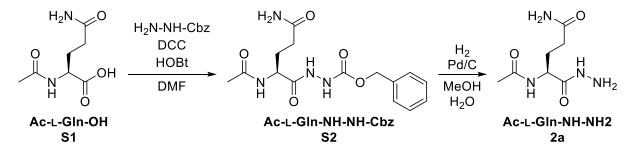
1.	Gen	eral information	2
2.	Synt	thetic procedures for hydrazides	2
2.	1.	Hydrazide 2a	2
2.	2.	Hydrazide 2b	3
3.	Exp	erimental procedures for cavitands	4
3.	1.	Cavitand 3a	4
3.	2.	Cavitand 3b	5
4. C ₆₀ complexation experiments			6
4.	1.	(3a) ₂ ⊃C ₆₀ complex	6
4.	2.	(3b) ₂ ⊃C ₆₀ complex	7
5. Spectra			9
5.	1.	NMR Spectra	9
5.	2.	CD and UV-Vis spectra	4
5.	3.	MS spectra 4	0

1. General information

All solvents and chemicals used were purchased from Sigma Aldrich, TCI Europe N. V., Roth, Chem Impex Inc. and Euriso-top, were of reagent grade and were used without further purification. All reactions were carried out under atmosphere of air.

¹H and ¹³C NMR spectra were recorded at 303 K on Bruker 400 MHz and at 298 K on Varian VNMRS 600 MHz instruments with a residual solvent signal as an internal standard. All 2D NMR spectra were recorded at 298 K on a Varian 600 MHz instrument with a residual solvent signal as an internal standard. The use of deuterated solvent had no influence on the properties of the investigated capsules.

High-resolution ESI mass spectra were recorded on a SYNAPT spectrometer.


Optical rotations were recorded on Jasco P-2000 polarymeter.

ECD spectra were recorded on ECD Jasco J-715 spectropolarimeter.

Mechanochemical experiments were carried out using Retsch Planetary Ball Mill PM 100.

2. Synthetic procedures for hydrazides

2.1. Hydrazide 2a

Ac-L-Gin-NH-NH-Cbz (S2): To solution of Ac-L-Gin-OH **S1** (1.0 equiv., 7.528 g, 40.0 mmol) and carbobenzoxyhydrazide (H₂N-NH-Cbz) (1.0 equiv., 6.648 g, 40.0 mmol) in DMF (150 ml), HOBt hydrate (1.0 equiv., 6.126 g, 40.0 mmol) was added and the soloution was stirred at 0 °C for 30 min. Next, DCC (2.0 equiv., 16.504 g, 80.0 mmol) was added and the reaction mixture was stirred at 0 °C for 4 h and for additional 20 h at room temperature. The white precipitate of DCU was filtered off and the solvent was removed under reduced pressure. The residue was suspended in water (ca. 500 ml), heated to reflux and the insoluble residue was filtered off. The solvent was removed under reduced pressure and the off-white solid residue was washed with iPrOH and dried under reduced pressure, affording a white solid of Ac-L-Gln-NH-NH-Cbz **S2** (8.537 g, 64%).

Optical rotation: $[\alpha]_D$ -20.6 (c 1.01 in MeOH)

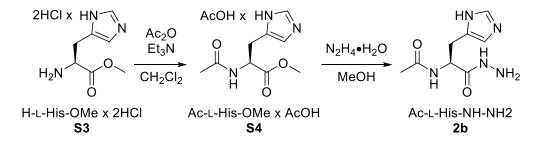
¹H NMR (400 MHz, DMSO-d₆) δ 9.81 (s, 1H), 9.18 (s, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.41 – 7.28 (m, 5H), 7.22 (s, 1H), 6.72 (s, 1H), 5.08 (s, 2H), 4.27 (td, *J* = 8.4, 5.7 Hz, 1H), 2.12 (t, *J* = 7.3 Hz, 2H), 1.94 – 1.85 (m, 1H), 1.84 (s, 3H), 1.76 – 1.65 (m, 1H).

 ^{13}C NMR (100 MHz, DMSO-d_6) δ 174.05, 171.75, 169.62, 156.42, 137.08, 128.83, 128.41, 128.27, 66.32, 51.08, 31.82, 28.58, 22.95.

HRMS (ESI-TOF): calcd m/z for C₁₅H₂₀N₄O₅Na⁺ [M + Na]⁺: 359.1331; found: 359.1330.

Ac-L-Gln-NH-NH₂ (2a): To a suspension of Ac-L-Gln-NH-NH-Cbz S2 (8.412, 25.01 mmol) in MeOH:H₂O (150 ml, 1:1, v:v) at room temperature kept under argon atmosphere, palladium 10% on activated carbon was added. Hydrogen gas was purged through the solution. The reaction was monitored by TLC (MeOH:CH₂Cl₂, 1:4, v:v) with ninhydrine staining. After consumption of the substrate, the catalyst was filtered off through the Celite[®] and washed with water (ca. 50 ml). The solvent was evaporated under reduced pressure and the residue was washed with MeOH and dried under reduced pressure, giving Ac-L-Gln-NH-NH₂ 2a (2.482 g, 97%) as a white solid.

Optical rotation: $[\alpha]_D$ -23.5 (c 1.02 in H₂O)


¹H NMR (400 MHz, DMSO-d₆) δ 9.08 (s, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.24 (s, 1H), 6.71 (s, 1H), 4.20 (bs, 2H), 4.16 (td, *J* = 8.4, 5.9 Hz, 1H), 2.11 – 1.96 (m, 2H), 1.83 (s, 3H), 1.88 – 1.76 (m, 1H), 1.73 – 1.60 (m, 1H).

¹³C NMR (100 MHz, DMSO-d₆) δ 173.61, 170.67, 169.15, 50.97, 31.51, 28.09, 22.53.

Combustion elemental analysis: Calculated for $C_7H_{14}N_4O_3 \cdot (CH_3OH)_n$ (n=0.2, MeOH also observed in ¹H NMR spectrum): C, 41.45; H, 7.15; N, 26.86. Found: C, 41.63; H, 7.02; N, 26.53.

HRMS (ESI-TOF): calcd m/z for C₇H₁₄N₄O₃Na⁺ [M + Na]⁺: 225.0963; found: 225.0964.

2.2. Hydrazide 2b

Ac-L-His-OMe·AcOH (**S4**): To a suspension of H-L-His-OMe x 2 HCl **S3** (1.2 g, 4.96 mmol) in DCM (200 ml) Et₃N (2 equiv., 1.4 ml, 10.0 mmol) was added. Then Ac₂O (4.6, 2.17 ml, 23 mmol) was added dropwise and the reaction was stirred at room temperature for 20 h. The mixture was washed with saturated aqueous solution of Na₂CO₃ (2 x 50 ml). The organic layer was collected and the solvent was evaporated under reduced pressure. The residue was dried under reduced pressure, giving of Ac-L-His-OMe·AcOH **S4** (0.902 g, 67%) as a white solid.

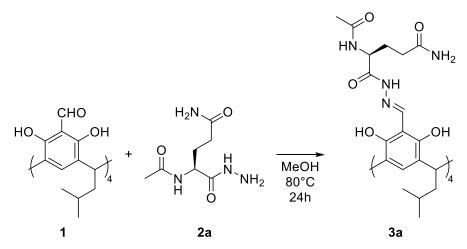
¹H NMR (400 MHz, DMSO-d₆) δ 8.31 (d, J = 1.2 Hz, 1H), 8.22 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 1.1 Hz, 1H), 4.51 (td, J = 8.4, 5.5 Hz, 1H), 3.61 (s, 3H), 2.91 (dd, J = 15.0, 5.3 Hz, 1H), 2.82 (dd, J = 14.8, 8.6 Hz, 1H), 2.58 (s, 3H), 1.81 (s, 3H).

 ^{13}C NMR (100 MHz, DMSO-d_6) δ 172.03, 169.36, 167.52, 139.15, 137.28, 113.36, 51.81, 51.68, 29.65, 22.57, 22.26.

Ac-L-His-NH-NH₂ (2b): To a solution of Ac-L-His-OMe x AcOH **S4** (1.27 g, 4.68 mmol) in MeOH (50 ml) hydrazine monohydrate(3 equiv., 0.68 ml, 14.0 mmol) was added and the reaction was stirred for 24 h at room temperature. During the reaction a white precipitate was formed. The precipitate, being the first fraction of product **2b**, was filtered off. The filtrate was evaporated under reduced pressure to dryness. The off-white solid residue was washed with CHCl₃ (10 ml), resulting in the second fraction of **2a** as a white solid. Both solids were dried under reduced pressure. The collective yield of Ac-L-His-NH-NH₂ **2b** is 97% (0.959 g). It is important to note that the purity of the second fraction was worse than the first fraction.

Optical rotation: $[\alpha]_D$ -10.0 (c 1.00 in H₂O)

¹H NMR (400 MHz, DMSO-d₆) δ 11.72 (bs, 1H), 9.09 (s, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.49 (d, *J* = 1.0 Hz, 1H), 6.74 (s, 1H), 4.42 (ddd, *J* = 8.3, 5.8 Hz, 1H), 4.18 (bs, 2H), 2.87 (dd, *J* = 14.7, 5.7 Hz, 1H), 2.72 (dd, *J* = 14.8, 8.4 Hz, 1H), 1.80 (s, 3H).


¹³C NMR (100 MHz, DMSO-d₆) δ 170.45, 169.02, 134.54, 133.31, 117.00, 51.44, 29.86, 22.62.

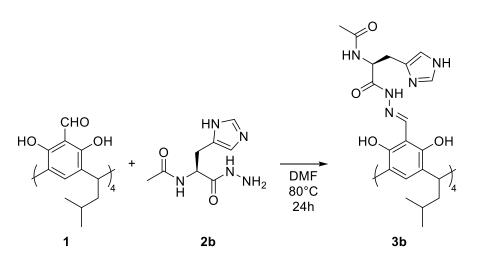
Combustion elemental analysis: Calculated for $C_8H_{13}N_5O_2$: C, 45.49; H, 6.20; N, 33.16. Found: C, 45.43; H, 6.25; N, 32.84.

HRMS (ESI-TOF): calcd m/z for C₈H₁₃N₅O₂Na⁺ [M + Na]⁺: 234.0967; found: 234.0957.

3. Experimental procedures for cavitands

3.1. Cavitand 3a

Cavitand **3a**: Tetraformylresorcin[4]arene **1** (1.0 equiv., 176 mg, 0.187 mmol) and Ac-L-GIn-NH-NH₂ **2a** (4.5 equiv., 170 mg, 0.841 mmol) were suspended in MeOH (15 ml) in a screw-capped vial and stirred at 80 °C for 24 h. The solvent was evaporated under reduced pressure and the crude residue was washed with water (ca. 15 ml) and dried under reduced pressure giving cavitand **3a** (254 mg, 87%) as an orange solid.


Optical rotation: $[\alpha]_D$ -14.3 (c 1.03 in DMSO)

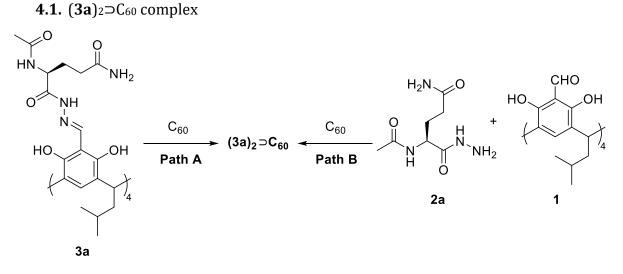
¹H NMR (600 MHz, DMSO-d₆) δ 11.75 (s, 1H), 10.84 (s, 1H), 8.72 (s, 1H), 8.20 (d, *J* = 7.2 Hz, 1H), 7.48 (s, 1H), 7.28 (s, 1H), 6.75 (s, 1H), 4.56 (t, *J* = 6.5 Hz, 1H), 4.20 (dd, *J* = 14.1, 7.3 Hz, 1H), 2.13 - 2.08 (m, 1H), 2.09 - 2.05 (m, 1H), 1.94 - 1.87 (m, 1H), 1.86 (s, 3H), 1.82 - 1.73 (m, 1H), 1.42 - 1.34 (m, 1H), 0.94 (dd, *J* = 9.0, 3.0 Hz, 6H).

¹³C NMR (150 MHz, DMSO-d₆) δ 173.33, 169.52, 167.75, 151.94, 146.61, 128.10, 123.67, 106.40, 51.53, 42.28, 31.25, 30.63, 27.40, 25.97, 22.77, 22.69, 22.46.

HRMS (ESI-TOF): calcd m/z for C₇₆H₁₀₃N₁₆O_{20⁻} [M - H]⁻: 1559.7535; found: 1559.7538.

3.2. Cavitand 3b

Cavitand **3b**: Tetraformylresorcin[4]arene **1** (1.0 equiv., 141.3 mg, 0.150 mmol) and Ac-L-His-NH-NH₂ **2b** (4.5 equiv., 142.5 mg, 0.675 mmol) were dissolved in DMF (15 ml) in a screwcapped vial and stirred at 80 °C for 24 h. The solvent was evaporated under reduced pressure and the crude residue was washed with water (3 x 20 ml). The precipitate was dried under reduced pressure, giving **3b** (0.148 mg, 62%) as an orange solid.


Optical rotation: $[\alpha]_D$ -34.7 (c 0.25 in DMF)

¹H NMR (600 MHz, DMSO-d₆) δ 11.62 (s, *J* = 63.6 Hz, 1H), 8.71 (s, 1H), 8.22 (d, *J* = 7.7 Hz, 1H), 7.76 (s, 1H), 7.38 (s, 1H), 6.89 (s, 1H), 4.55 (t, 1H), 4.49 (dd, *J* = 14.5, 7.5 Hz, 1H), 2.97 (dd, *J* = 14.7, 6.2 Hz, 1H), 2.83 (dd, *J* = 14.7, 7.9 Hz, 1H), 2.03 (s, 2H), 1.84 (s, 1H), 1.42 – 1.33 (m, 1H), 0.93 (dd, *J* = 6.2, 2.0 Hz, 6H).

 ^{13}C NMR (150 MHz, DMSO-d_6) δ 169.35, 167.02, 153.56, 147.72, 134.55, 132.60, 127.63, 123.08, 116.65, 106.07, 51.89, 42.16, 29.19, 25.93, 22.82, 22.76, 22.55.

HRMS (ESI-TOF): calcd m/z for $C_{80}H_{99}N_{20}O_{16}^{-}$ [M - H]⁻: 1595.7548; found: 1595.7521.

4. C₆₀ complexation experiments

General procedures for optimization of $(3a)_2 \supset C_{60}$ formation:

Path A: Cavitand **3a** (15.6 mg, 0.01 mmol) and C_{60} (3.6 mg, 0.005 mmol) were suspended in DMSO-d₆ (0.8 ml) in a screw capped vial and stirred at 80 °C for 24 h. The residue (uncomplexed fullerene) was removed by centrifugation. The mixtures contained only two types of species: (**3a**)₂ \supset C₆₀ and **3a**. Yields of complexation were determined by NMR.

Path A*: Cavitand **3a** (15.6 mg, 0.01 mmol) and C₆₀ (3.6 mg, 0.005 mmol) were milled in a planetary ball-mill for 2h (500 rpm) without solvent. The resulting solid was suspended in DMSO-d₆ (0.8 ml) and the undissolved residue (uncomplexed fullerene) was removed by centrifugation. The residue (uncomplexed fullerene) was removed by centrifugation. The mixtures contained only two types of species: $(3a)_2 \supset C_{60}$ and **3a**. Yields of complexation were determined by NMR.

Path B: Tetraformylresorcin[4]arene **1** (9.4 mg, 0.01 mmol), hydrazide **2a** (8.1 mg, 0.04 mmol) and C₆₀ (3.6 mg, 0.005 mmol) were suspended in DMSO-d₆ (0.8 ml) in a screw capped vial and stirred at 80 °C for 24 h. The residue (uncomplexed fullerene) was removed by centrifugation. The mixtures contained only two types of species: $(3a)_2 \supset C_{60}$ and 3a. Yields of complexation were determined by NMR.

Path B*: Tetraformylresorcin[4]arene **1** (9.4 mg, 0.01 mmol), hydrazide **2a** (8.1 mg, 0.04 mmol) and C₆₀ (3.6 mg, 0.005 mmol) were milled in a planetary ball-mill for 2h (500 rpm) without solvent. The resulting solid was suspended in DMSO-d₆ (0.8 ml) and the undissolved residue (uncomplexed fullerene) was removed by centrifugation. The residue (uncomplexed fullerene) was removed by centrifugation. The mixtures contained only two types of species: $(3a)_2 \supset C_{60}$ and 3a. Yields of complexation were determined by NMR.

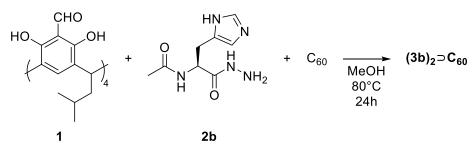
The highest-yielding procedure for synthesis of $(3a)_2 \supset C_{60}$: Tetraformylresorcin[4]arene 1 (94.2 mg, 0.1 mmol), hydrazide 2a (80.8 mg, 0.4 mmol) and C_{60} (72.1 mg, 0.1 mmol) were milled in a planetary ball-mill for 2h (500 rpm) without solvent. The resulting brown solid was suspended in MeOH (2ml) and the undissolved residue was removed by centrifugation. The supernatant was placed into vial and left over for two days. During that time dark brown/red regular shaped crystals were formed. The solvent was decanted and crystals

were dried under reduced pressure. The crystals obtained this way contain $(3a)_2 \supset C_{60}$ (60%) and cavitand 3a (40%).

¹H NMR (600 MHz, DMSO-d₆)

3a δ 11.77 (s, 1H), 10.84 (s, 2H), 8.70 (s, 1H), 8.19 (d, *J* = 7.0 Hz, 1H), 7.52 (bs, 1H), 7.27 (s, 1H), 6.74 (s, 1H), 4.55 (t, *J* = 6.3 Hz, 1H), 4.20 (dd, *J* = 14.4, 7.2 Hz, 1H), 2.09 (dd, *J* = 15.1, 7.3 Hz, 2H), 2.11 – 2.06 (m, 2H), 1.91 – 1.87 (m, 1H), 1.86 (s, 3H), 1.81 – 1.73 (m, 1H), 1.42 – 1.34 (m, 1H), 0.94 (dd, *J* = 6.6, 2.8 Hz, 6H).

 $(3a)_2 \supset C_{60} \delta$ 13.75 (s, 1H), 11.79 (s, 1H), 8.95 (s, 1H), 8.91 (s, 1H), 8.51 (d, J = 8.5 Hz, 1H), 7.65 (s, 1H), 7.39 (s, 1H), 6.81 (s, 1H), 4.66 (dd, J = 15.3, 7.7 Hz, 1H), 4.39 (t, J = 7.5 Hz, 1H), 2.31 – 2.24 (m, 1H), 2.19 (dd, J = 14.7, 6.7 Hz, 2H), 2.14 (s, 3H), 2.16 – 2.11 (m, 1H), 2.01 – 1.94 (m, 1H), 1.95 – 1.91 (m, 1H), 1.45 – 1.37 (m, 1H), 0.95 (dd, J = 6.6, 2.7 Hz, 6H).


¹³C NMR (150 MHz, DMSO-d₆)

3a δ 173.31, 169.48, 167.73, 151.98, 146.55, 128.13, 123.72, 106.42, 51.52, 42.26, 31.27, 30.58, 27.44, 25.97, 22.75, 22.69, 22.45.

 $(3a)_2$ ⊃C₆₀ δ 173.45, 171.38, 165.82, 151.36, 151.20, 147.36, 141.01, 127.64, 124.43, 123.96, 106.10, 50.66, 40.77, 31.24, 30.45, 29.71, 26.09, 23.06, 22.65, 22.48.

HRMS (ESI-TOF): calcd m/z for $C_{212}H_{208}N_{32}O_{40}Na_2^{2+}$ [M + 2Na]²⁺: 1943.7510; found: 1943.7505. **NOTE**: Low resolution mass spectrum indicates absence of ions for fullerene-free dimeric species (**3a**)₂, what proves that fullerene template is essential for diameric capsule formation (see Fig. S53).

4.2. (**3b**)₂⊃C₆₀ complex

 $(\mathbf{3b})_2 \supset C_{60}$ complex: A mixture of tetraformylresorcin[4]arene **1** (1.0 equiv., 70.65 mg, 0.075 mmol), Ac-L-His-NH-NH₂ **2b** (4.5 equiv., 71.24 mg, 0.337 mmol) and fullerene C_{60} (1.0 equiv., 54 mg, 0.075 mmol) was suspended in MeOH (10 ml) in screw capped vial and stirred at 80 °C for 24 h. The precipitate was filtered off and the filtrate was evaporated. The residue was washed with water (3x20 ml). The precipitate was dried under reduced pressure, resulting in brown solid of $(\mathbf{3b})_2 \supset C_{60}$ (0.144 mg, 87%).

Optical rotation: $[\alpha]_D$ -212.0 (c 0.1 in MeOH)

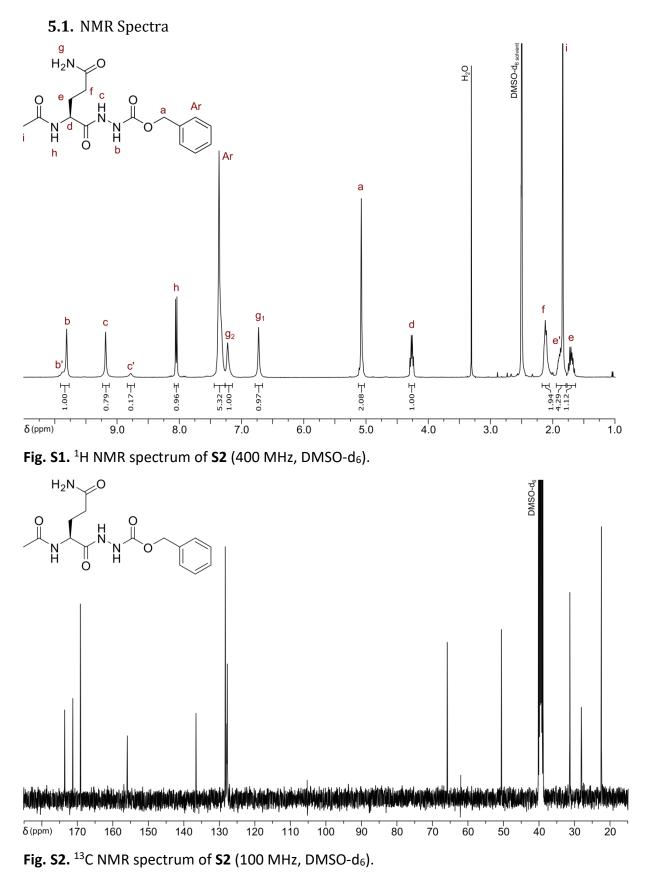
¹H NMR (600 MHz, CD₃OD-MeOH (1:9)) δ 8.84 (s, 1H), 8.23 (d, *J* = 9.6 Hz, 1H), 7.70 (s, 1H), 7.31 (s, 1H), 6.86 (s, 1H), 5.01 (dd, *J* = 16.4, 7.3 Hz, 1H), 4.44 (t, *J* = 7.8 Hz, 1H), 3.14 (dd, *J* = 14.0, 7.1 Hz, 1H), 3.00 (dd, *J* = 14.1, 7.9 Hz, 1H), 2.12 (s, 3H), 2.10 – 2.08 (m, 1H), 2.05 – 1.98 (m, 1H), 1.42 (tt, *J* = 13.4, 6.6 Hz, 1H), 0.93 (d, *J* = 6.6 Hz, 6H).

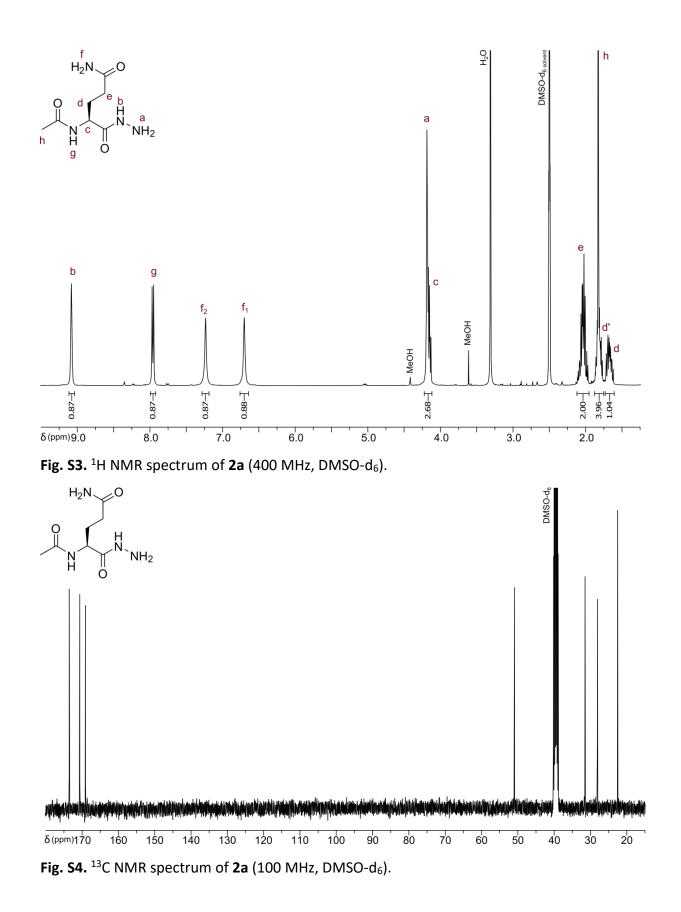
¹³C NMR (150 MHz, CD₃OD-MeOH (1:9)) δ 171.75, 166.99, 152.51, 152.43, 149.39, 141.96, 135.73, 131.75, 126.91, 124.66, 124.22, 119.30, 106.94, 52.38, 41.76, 31.73, 30.65, 26.33, 23.08, 22.09, 21.93.

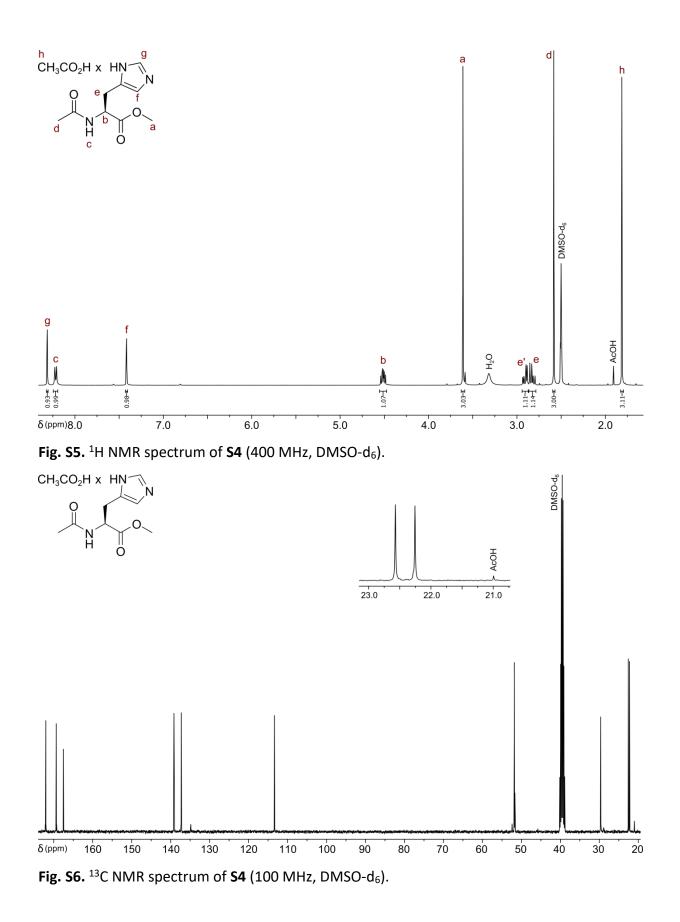
¹H NMR (600 MHz, DMSO-d₆)

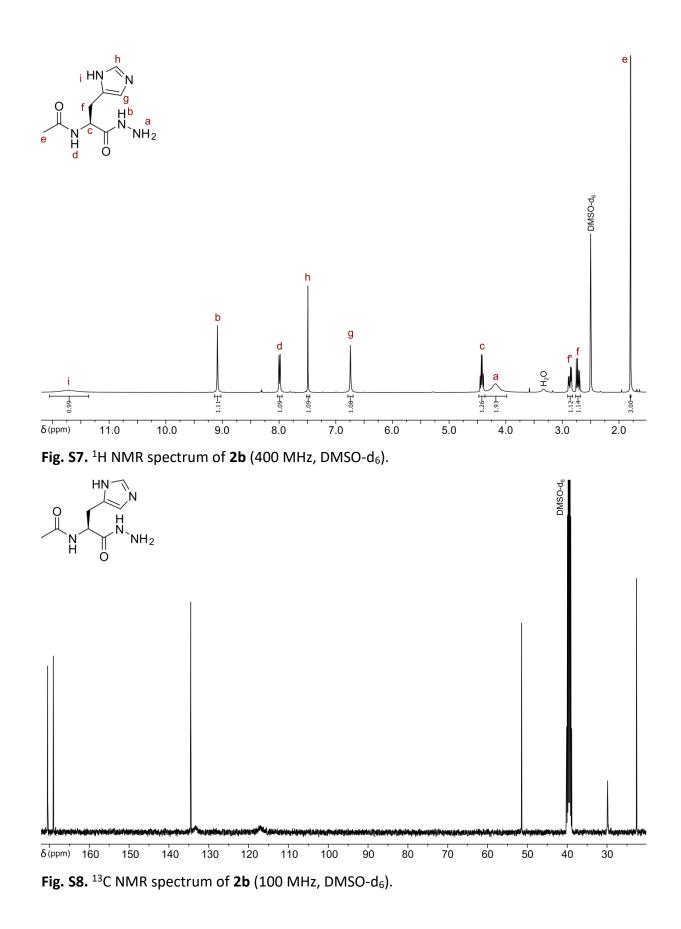
3b δ 11.51 (bs, 1H), 8.71 (s, 1H), 8.19 (d, J = 7.8 Hz, 1H), 7.60 (s, 1H), 7.34 (s, 1H), 6.81 (s, 1H), 4.55 (t, J = 7.6 Hz, 1H), 4.48 (dd, J = 14.4, 7.5 Hz, 1H), 22.95 (dd, J = 14.3, 5.8 Hz, 1H), 2.85 – 2.77 (m, 1H), 2.06 – 1.99 (m, 1H), 1.83 (s, 3H), 1.42 – 1.34 (m, 1H), 0.93 (d, J = 6.3 Hz, 6H).

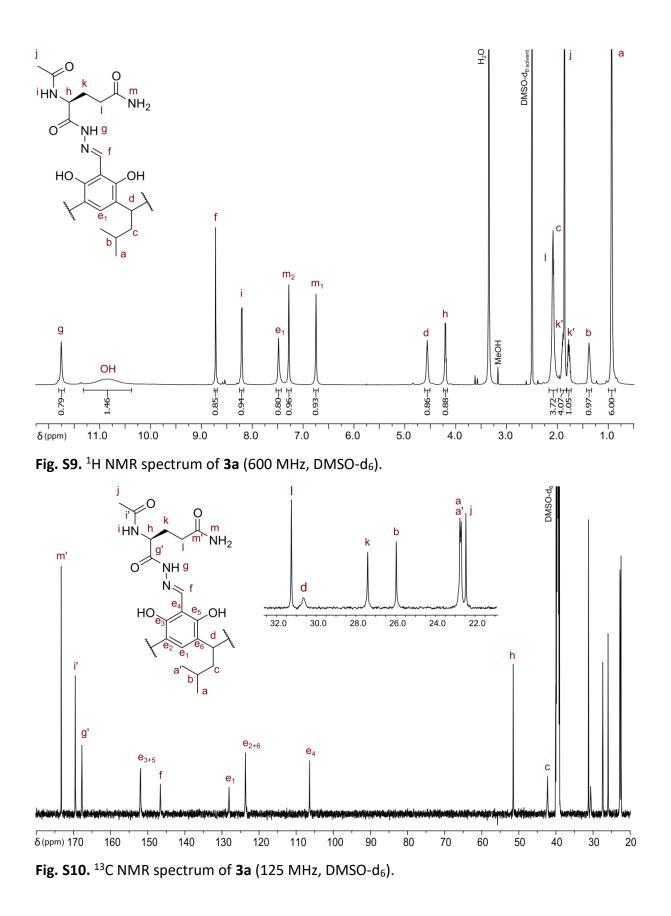
 $(\mathbf{3b})_2 \supset C_{60} \delta$ 13.61 (s, 1H), 8.85 (s, 1H), 8.75 (s, 1H), 8.58 (d, J = 8.9 Hz, 1H), 7.86 (s, 1H), 7.61 (s, 1H), 6.90 (s, 1H), 4.85 (dd, J = 16.2, 7.9 Hz, 1H), 4.34 (t, J = 7.3 Hz, 1H), 3.09 (dd, J = 12.8, 8.3 Hz, 1H), .95 (dd, J = 14.3, 5.8 Hz, 1H), 2.21 - 2.13 (m, J = 4.8 Hz, 2H), 2.03 (s, 3H), 1.42 - 1.34 (m, 1H), 0.94 (d, J = 6.2 Hz, 6H).

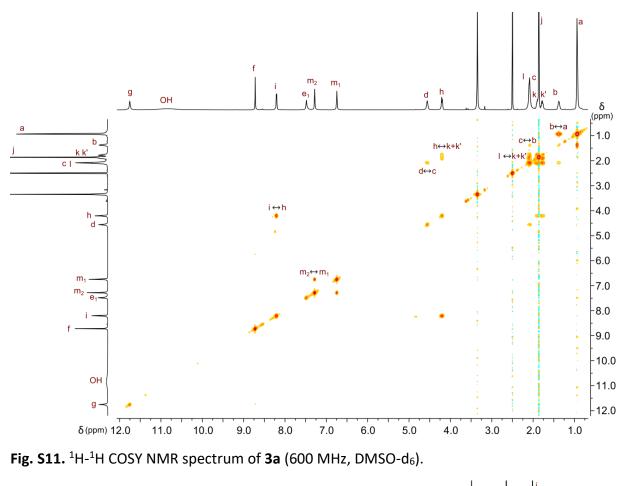

¹³C NMR (150 MHz, DMSO-d₆)


3b δ 169.27, 167.03, 153.91, 148.13, 134.60, 127.66, 116.70, 105.97, 51.98, 42.13, 30.36, 29.53, 25.91, 22.83, 22.77, 22.56.


 $(3b)_2$ ⊃C₆₀ δ 170.86, 165.29, 151.21, 151.12, 147.43, 140.90, 135.48, 124.28, 123.98, 105.94, 51.84, 40.74, 31.58, 30.36, 26.05, 22.96, 22.54, 22.49.


HRMS (ESI-TOF): calcd m/z for $C_{220}H_{204}N_{40}O_{32}^{4+}$ [M + 4H]⁻: 3917.55434; found: 3917.54240. **NOTE**: The low resolution mass spectrum indicates absence of ions for fullerene-free dimeric species (**3b**)₂, what proves that fullerene template is essential for dimeric capsule formation (see Fig. S54).


5. Spectra



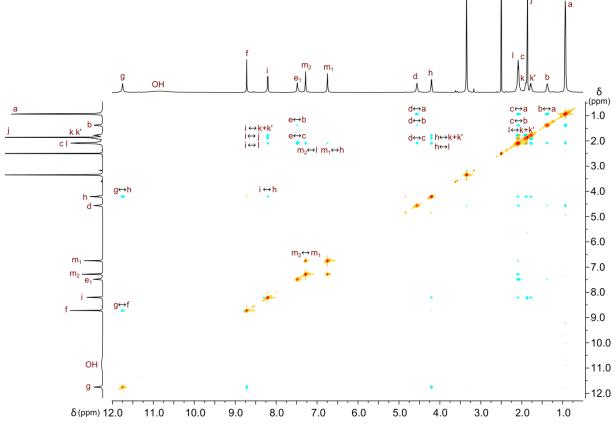


Fig. S12. ¹H-¹H ROESY NMR spectrum of **3a** (600 MHz, DMSO-d₆).

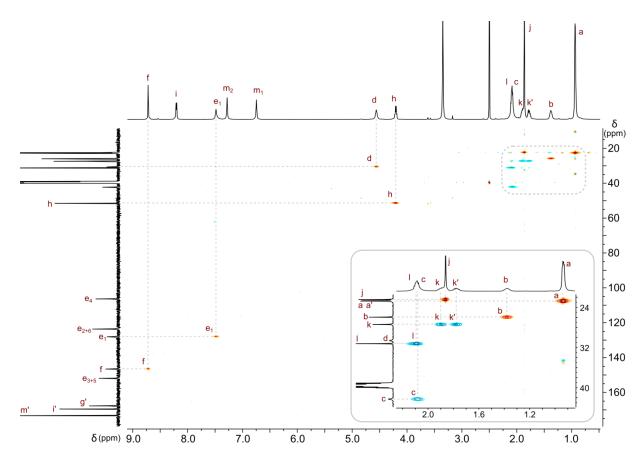
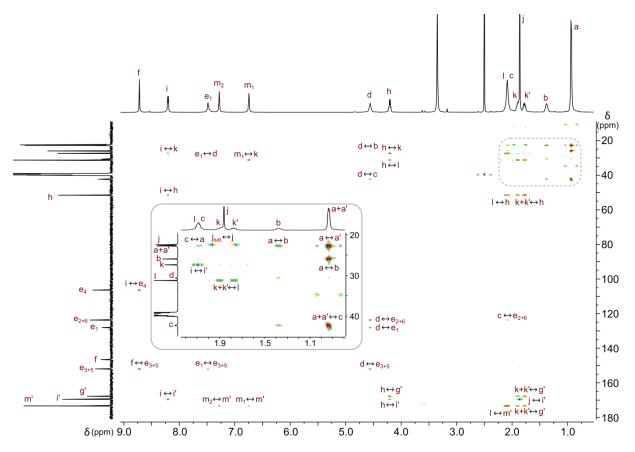
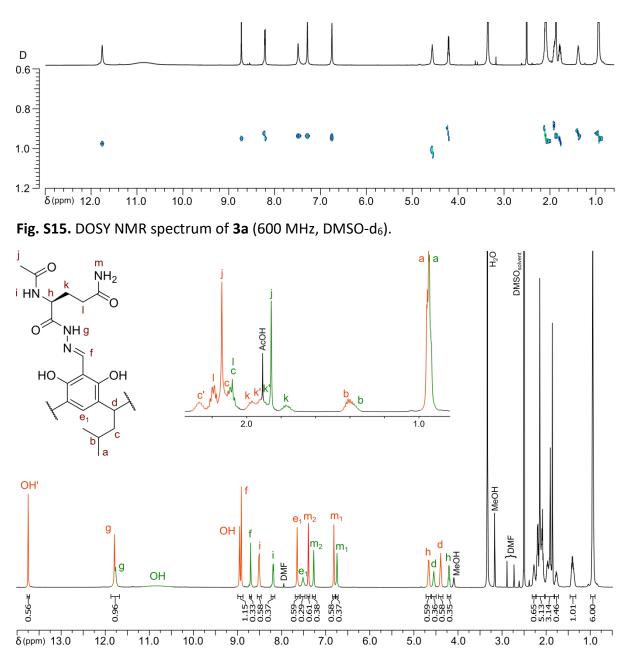
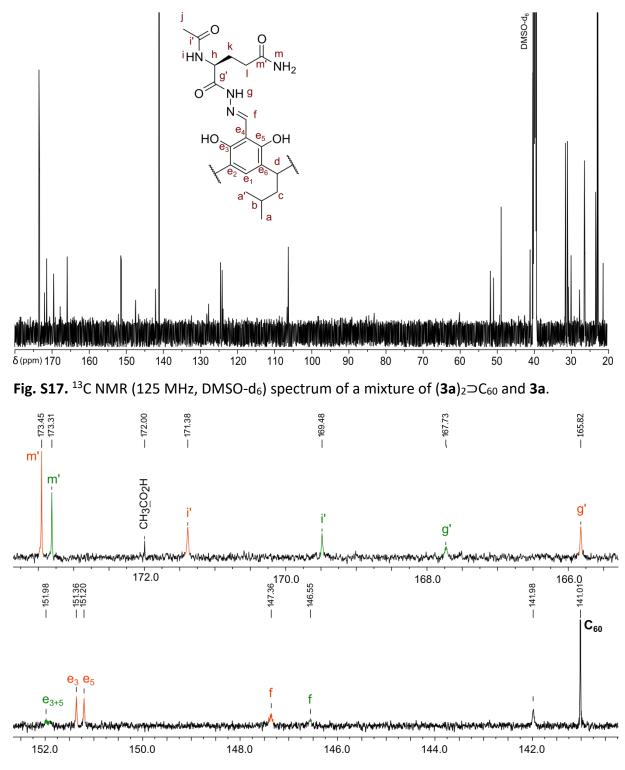
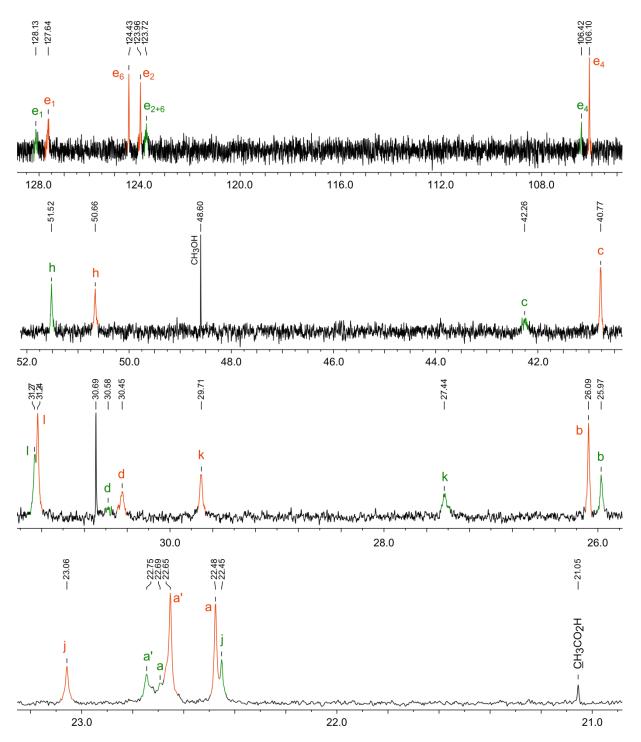
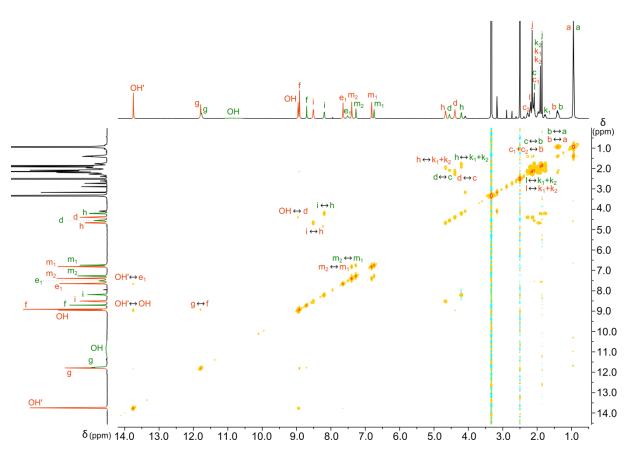
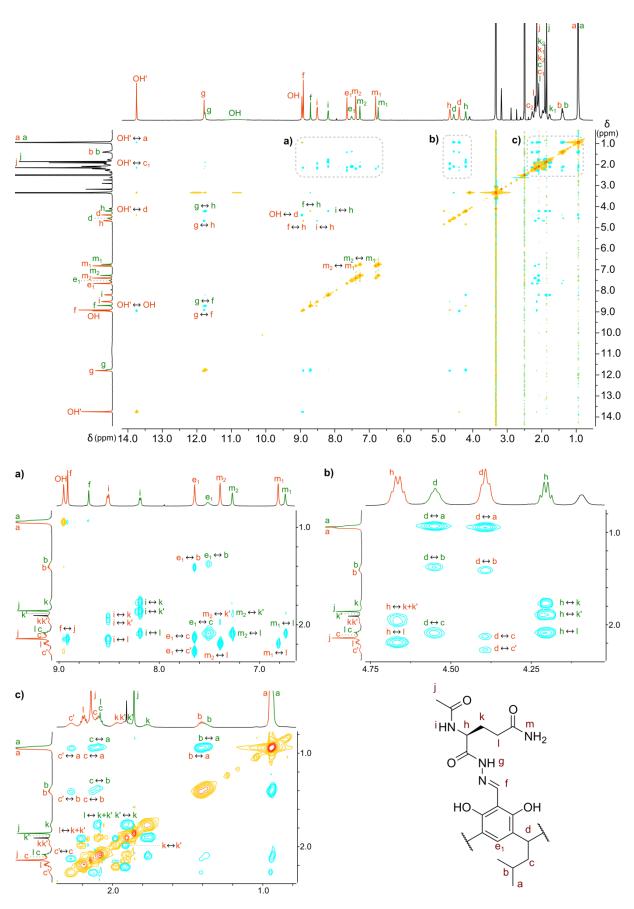


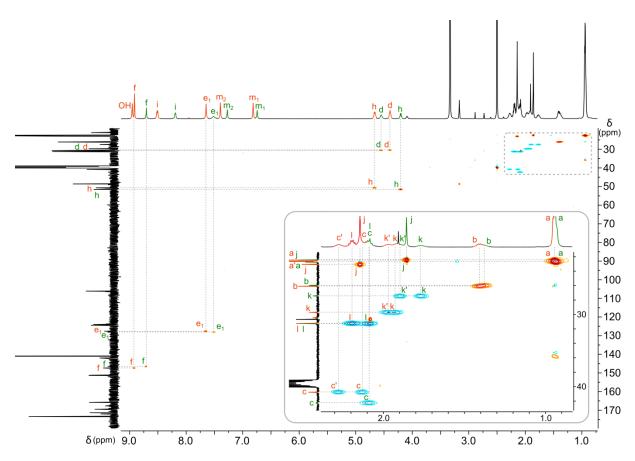
Fig. S13. ¹H-¹³C HSQC NMR spectrum of 3a (600 MHz, DMSO-d₆).

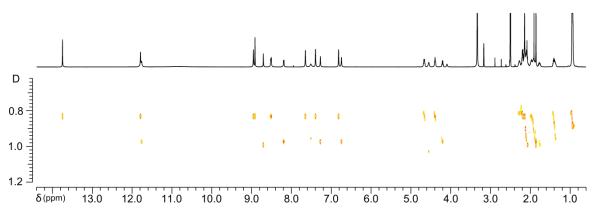




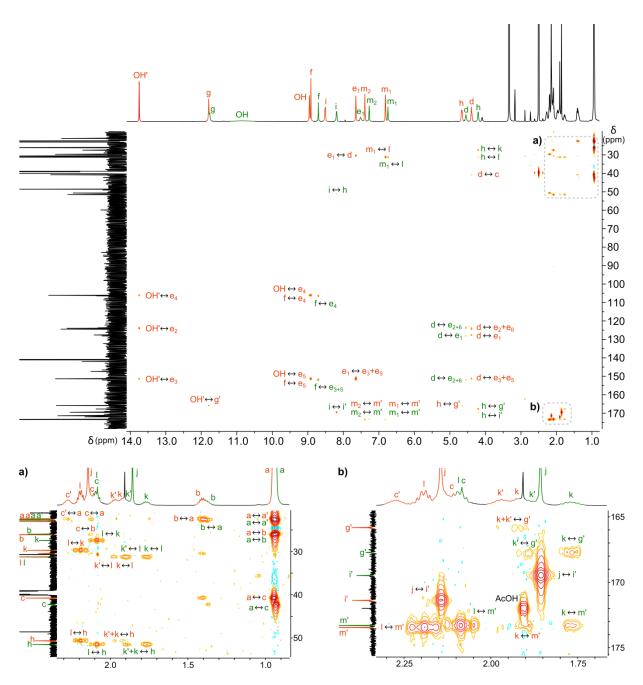

Fig. S14. ¹H-¹³C HMBC NMR spectrum of **3a** (600 MHz, DMSO-d₆).


Fig. S16. ¹H NMR spectrum of a mixture of $(3a)_2 \supset C_{60}$ (orange) and 3a (green) (600 MHz, DMSO-d₆).


Fig. S18. Expanded regions of ¹³C NMR spectrum of a mixture of $(3a)_2 \supset C_{60}$ (orange) and **3a** (green) (125 MHz, DMSO-d₆).


Fig. S19. Expanded regions of ¹³C NMR spectrum of a mixture of $(3a)_2 \supset C_{60}$ (orange) and **3a** (green) (125 MHz, DMSO-d₆).


Fig. S20. ¹H-¹H COSY NMR spectrum of a mixture of $(3a)_2 \supset C_{60}$ (orange) and 3a (green) (600 MHz, DMSO-d₆).


Fig. S21. ¹H-¹H ROESY NMR spectrum of a mixture of $(3a)_2 \supset C_{60}$ (orange) and **3a** (green) (600 MHz, DMSO-d₆).

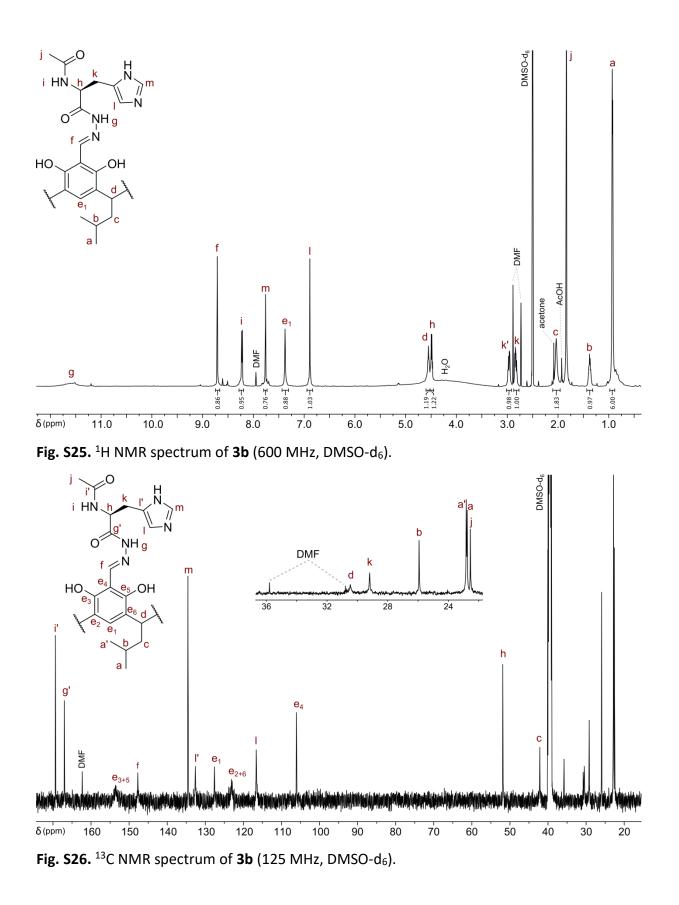

Fig. S22. ¹H-¹³C HSQC NMR spectrum of a mixture of $(3a)_2 \supset C_{60}$ (orange) and 3a (green) (600 MHz, DMSO-d₆).

Fig. S23. DOSY NMR spectrum of a mixture of $(3a)_2 \supset C_{60}$ and 3a (600 MHz, DMSO-d₆).

Fig. S24. ¹H-¹³C HMBC NMR spectrum of a mixture of $(3a)_2 \supset C_{60}$ (orange) and 3a (green) (600 MHz, DMSO-d₆).

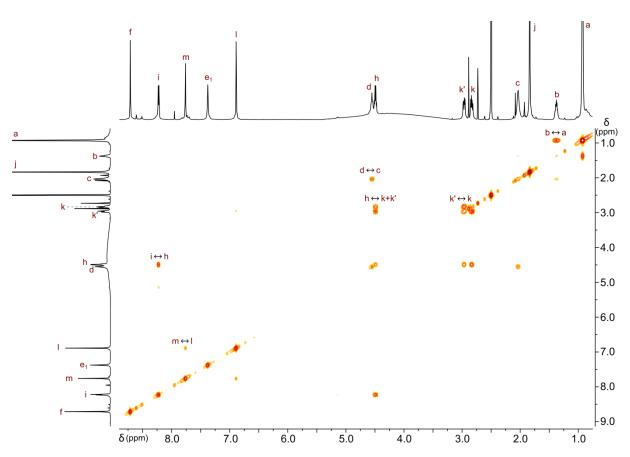
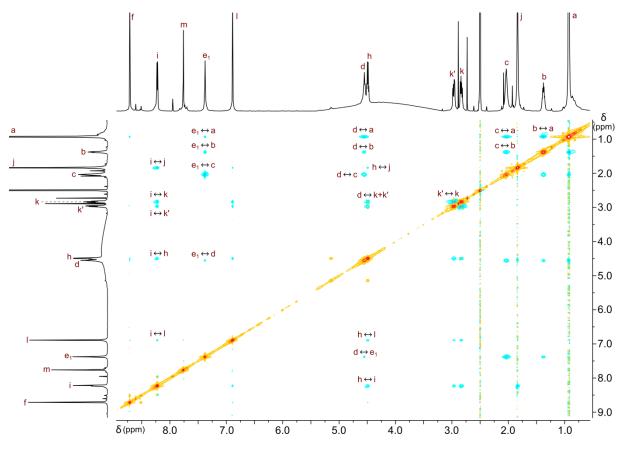
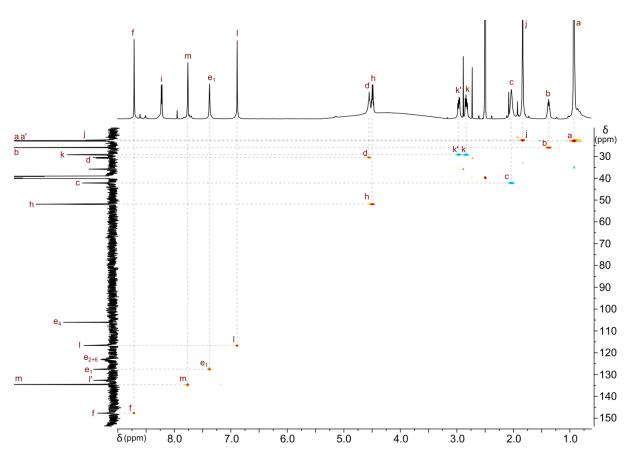
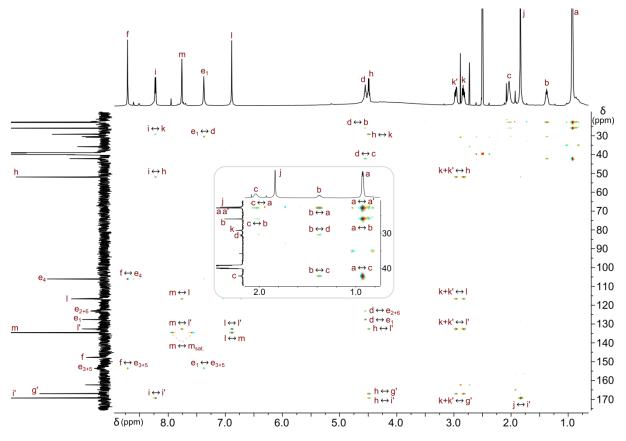
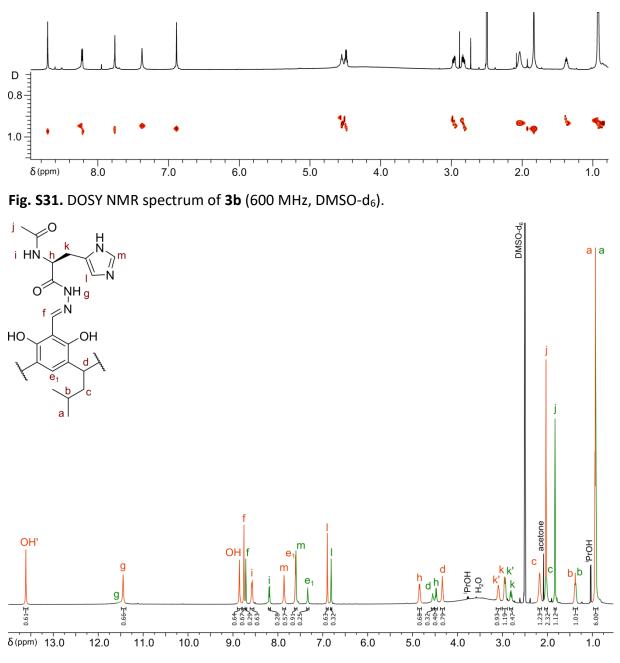
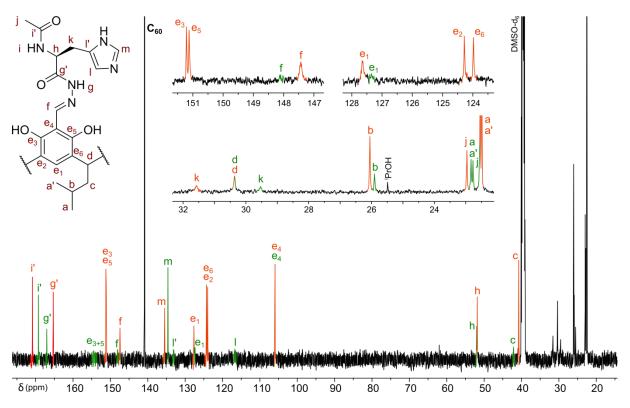
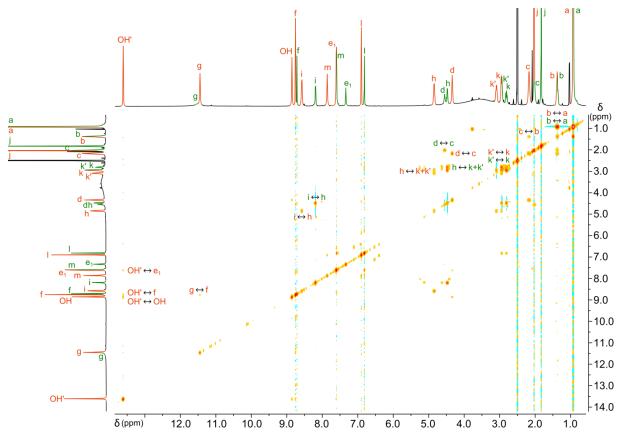



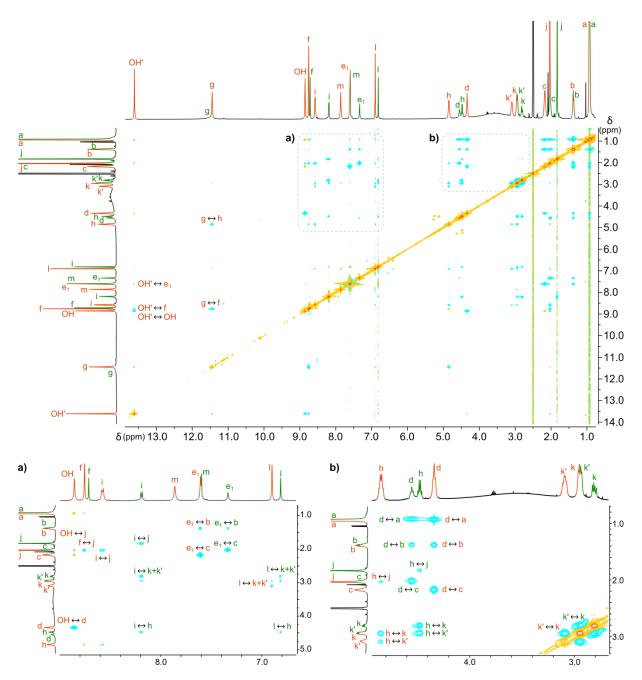
Fig. S27. ¹H-¹H COSY NMR spectrum of **3b** (600 MHz, DMSO-d₆).

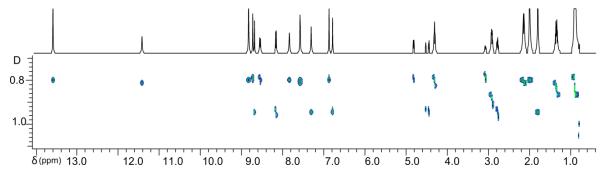
Fig. S28. ¹H-¹H ROESY NMR spectrum of **3b** (600 MHz, DMSO-d₆).

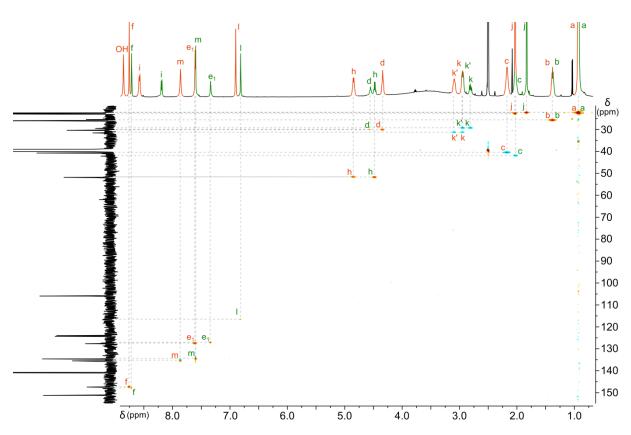




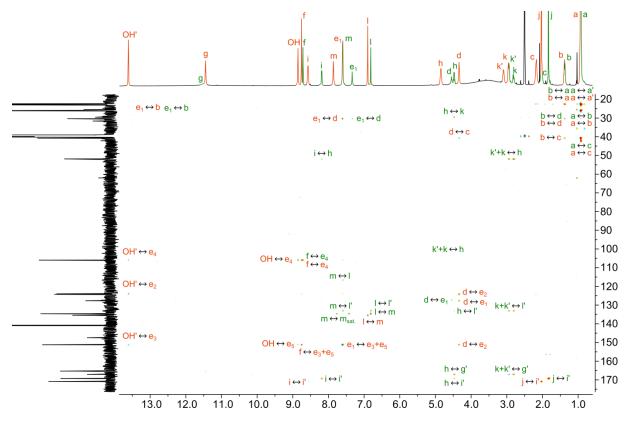

Fig. S29. ¹H-¹³C HSQC NMR spectrum of **3b** (600 MHz, DMSO-d₆).

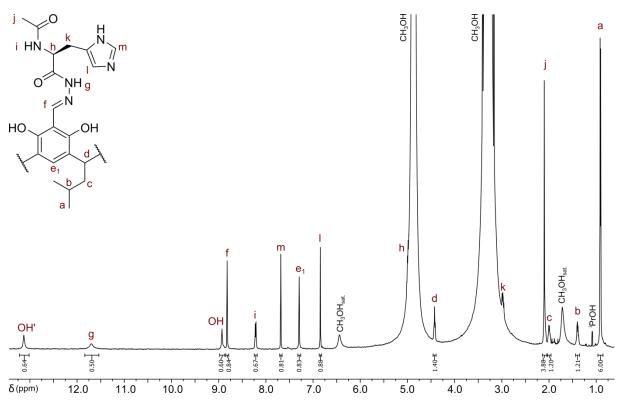

Fig. S30. ¹H-¹³C HMBC NMR spectrum of **3b** (600 MHz, DMSO-d₆).

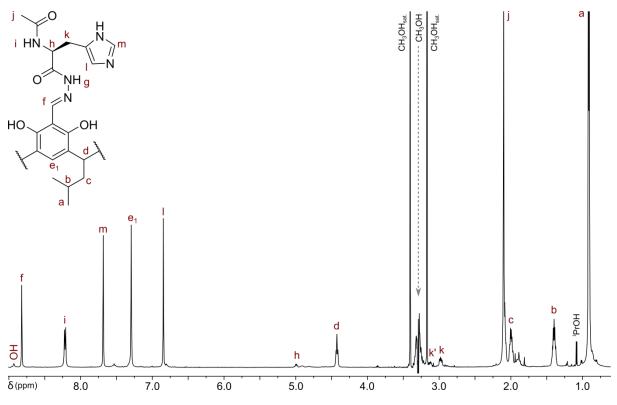

Fig. S32. ¹H NMR spectrum of a mixture of $(\mathbf{3b})_2 \supset C_{60}$ (orange) and **3b** (green) (600 MHz, DMSO-d₆).

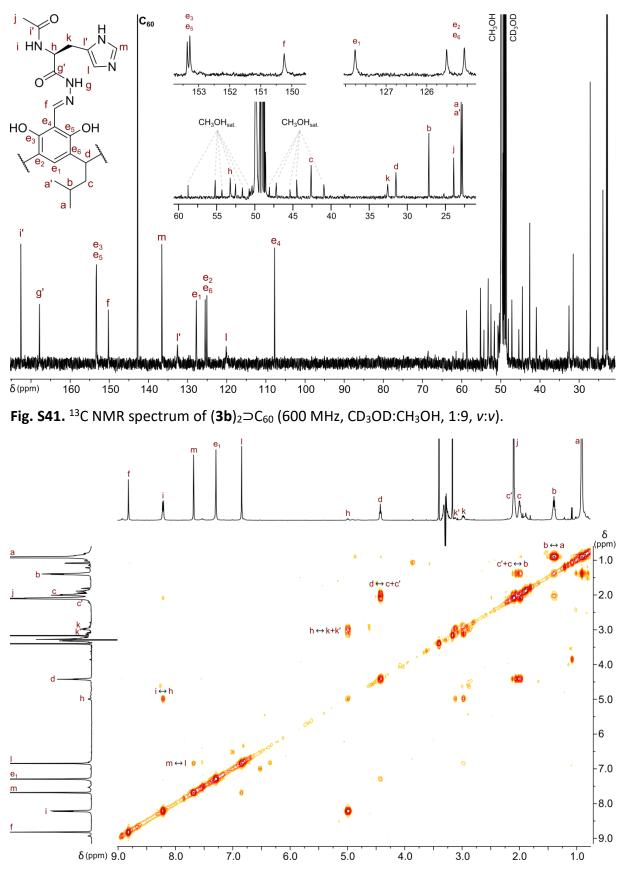

Fig. S33. ¹³C NMR spectrum of a mixture of $(\mathbf{3b})_2 \supset C_{60}$ (orange) and **3b** (green) (125 MHz, DMSO-d₆).

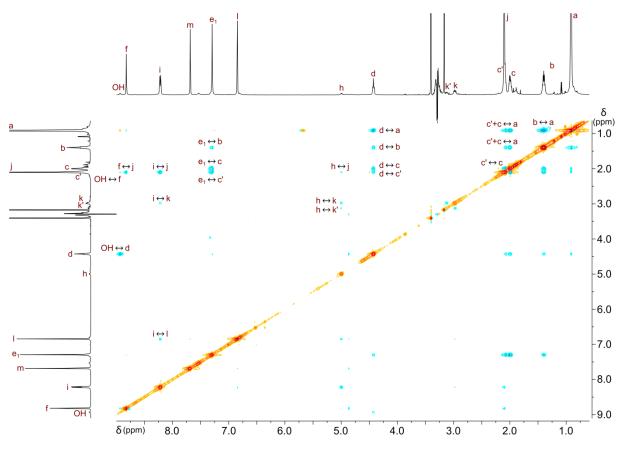

Fig. S34. ¹H-¹H COSY NMR spectrum of a mixture of $(\mathbf{3b})_2 \supset C_{60}$ (orange) and **3b** (green) (600 MHz, DMSO-d₆).

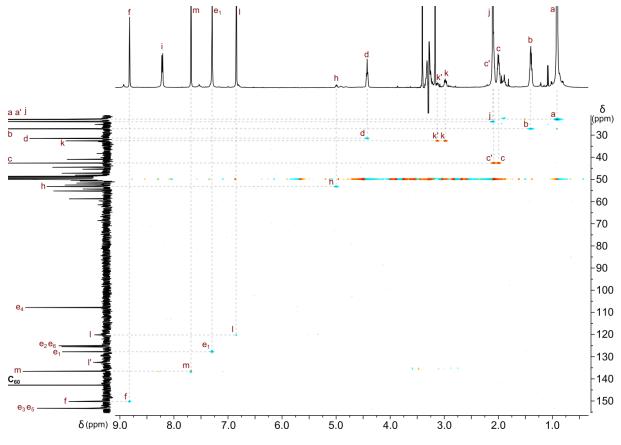

Fig. S35. ¹H-¹H ROESY NMR spectrum of a mixture of $(3b)_2 \supset C_{60}$ (orange) and **3b** (green) (600 MHz, DMSO-d₆).

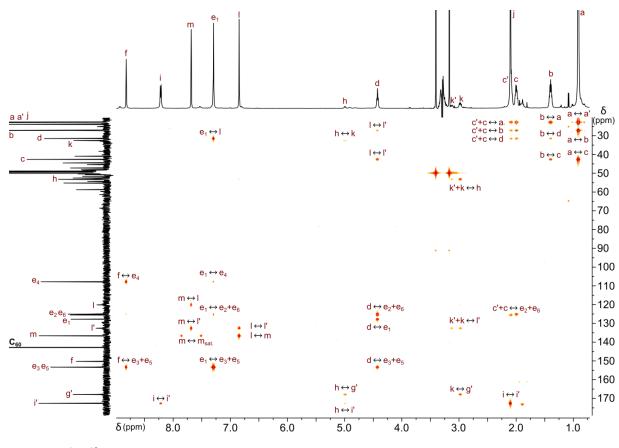

Fig. S36. DOSY NMR spectrum of a mixture of $(3b)_2 \supset C_{60}$ and $3b(600 \text{ MHz}, \text{DMSO-d}_6)$.


Fig. S37. ¹H-¹³C HSQC NMR spectrum of a mixture of $(3b)_2 \supset C_{60}$ (orange) and **3b** (green) (600 MHz, DMSO-d₆).


Fig. S38. ¹H-¹³C HMBC NMR spectrum of a mixture of $(3b)_2 \supset C_{60}$ (orange) and **3b** (green) (600 MHz, DMSO-d₆).


Fig. S39. ¹H NMR spectrum of $(3b)_2 \supset C_{60}(600 \text{ MHz}, \text{CD}_3\text{OD}:\text{CH}_3\text{OH}, 1:9, v:v \text{ without presaturation}).$


Fig. S40. ¹H NMR spectrum of $(3b)_2 \supset C_{60}$ (600 MHz, CD₃OD:CH₃OH, 1:9, *v*:*v* with presaturation of CH₃OH signal).


Fig. S42. ¹H-¹H COSY NMR spectrum of (**3b**)₂⊃C₆₀ (600 MHz, CD₃OD:CH₃OH, 1:9, *v*:*v*).

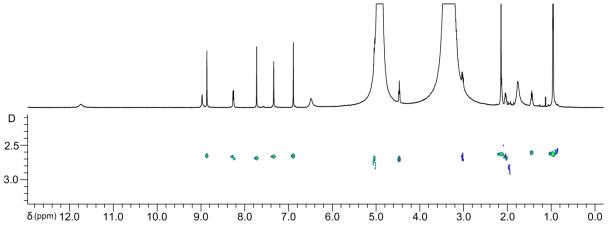

Fig. S43. ¹H-¹H ROESY NMR spectrum of (**3b**)₂⊃C₆₀ (600 MHz, CD₃OD:CH₃OH, 1:9, *v*:*v*).

Fig. S44. ¹H-¹³C HSQC NMR spectrum of (**3b**)₂⊃C₆₀ (600 MHz, CD₃OD:CH₃OH, 1:9, *v*:*v*).

Fig. S45. ¹H-¹³C HMBC NMR spectrum of (**3b**)₂⊃C₆₀ (600 MHz, CD₃OD:CH₃OH, 1:9, *v*:*v*).

Fig. S46. DOSY NMR spectrum of (**3b**)₂⊃C₆₀ (600 MHz, CD₃OD:CH₃OH, 1:9, *v*:*v*).

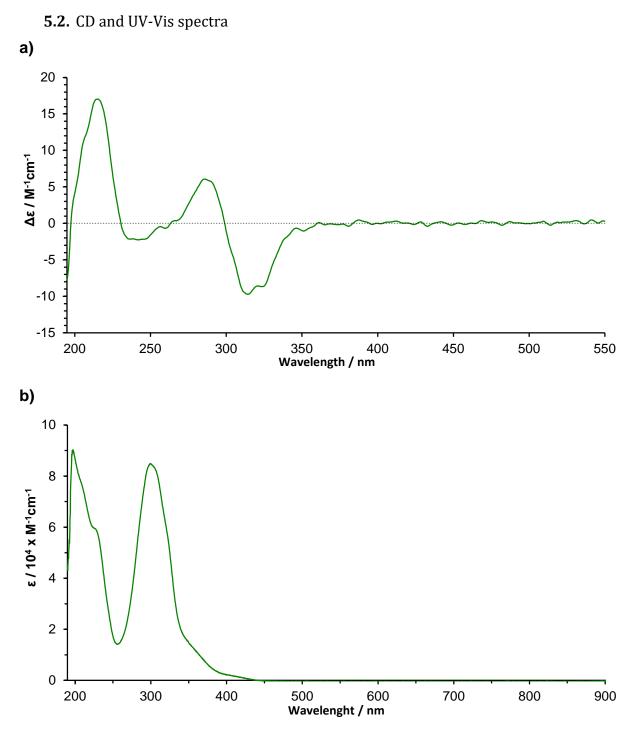


Fig. S47. a) ECD spectrum and b) UV-Vis spectrum of 3a in MeOH (I = 0.2 cm, c = 0.0000401 mol/dm³).

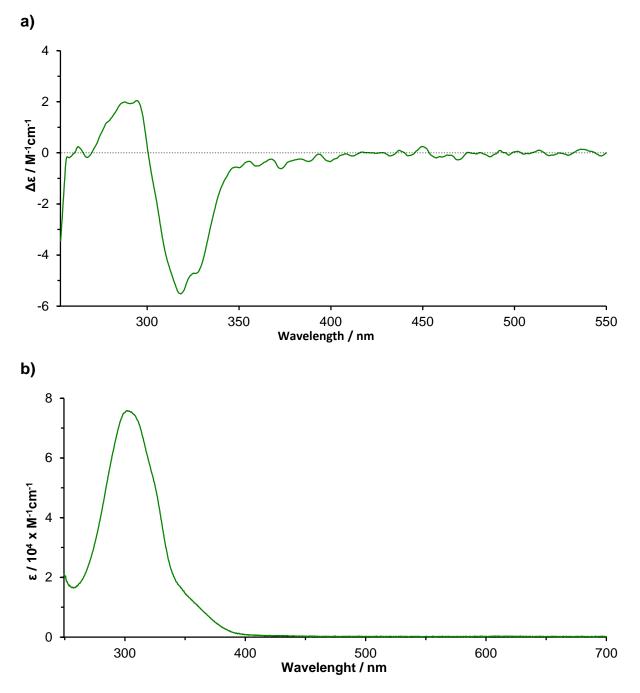


Fig. S48. a) ECD spectrum and b) UV-Vis spectrum of 3a in DMSO.

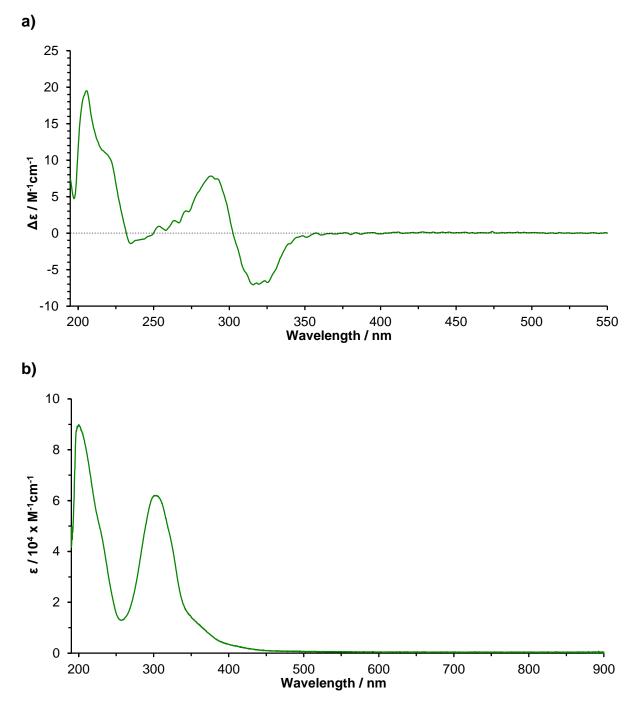


Fig. S49. a) ECD spectrum and b) UV-Vis spectrum of 3b in MeOH.

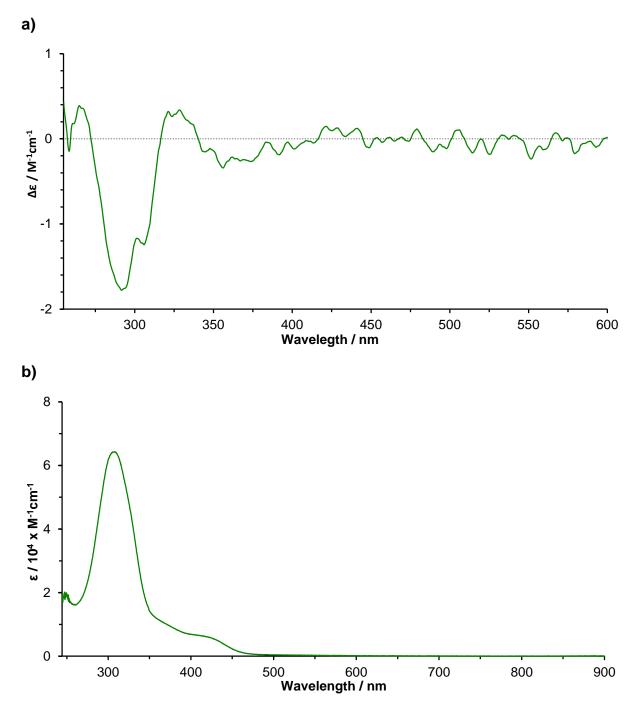
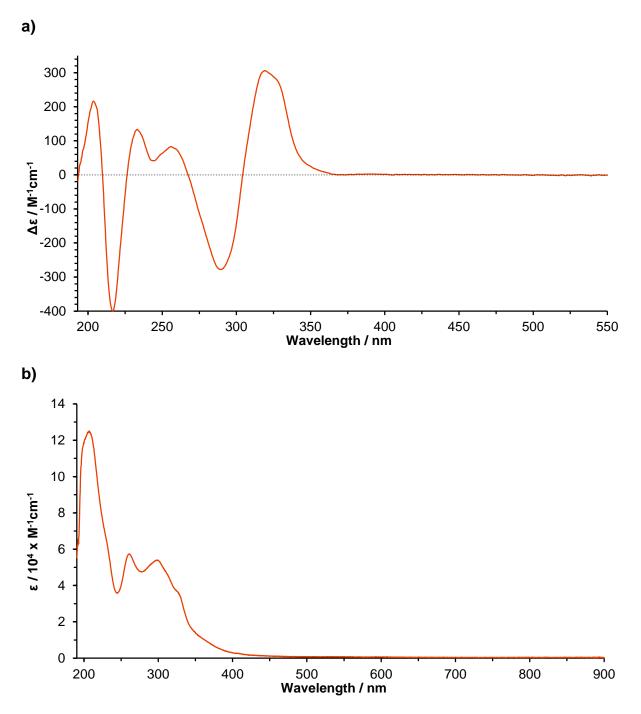
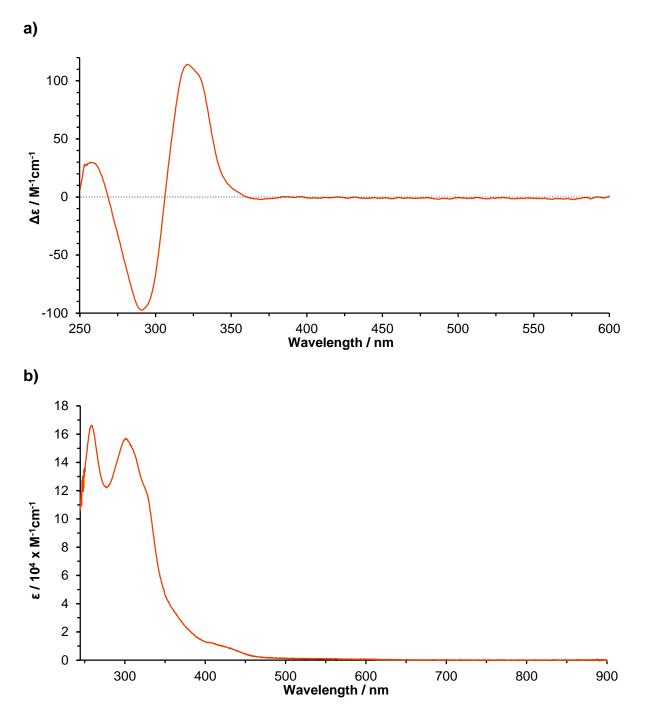
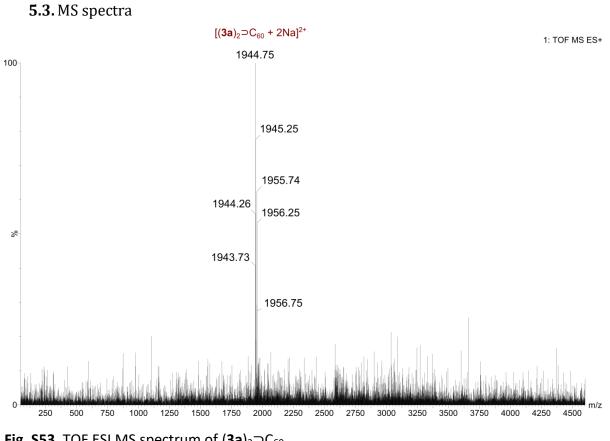


Fig. S50. a) ECD spectrum and b) UV-Vis spectrum of 3b in DMSO.

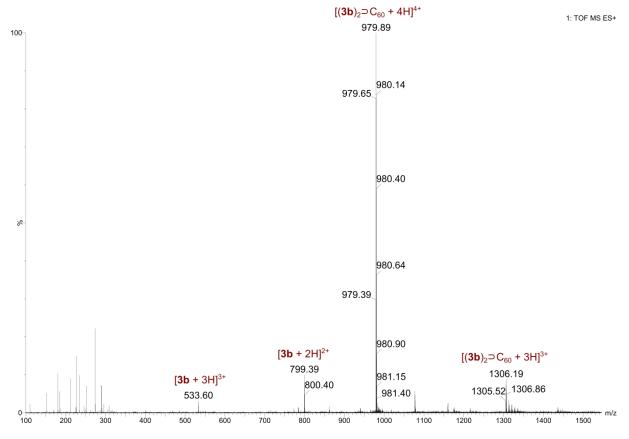

Fig. S51. a) ECD spectrum and b) UV-Vis spectrum of (3b)₂⊃C₆₀ in MeOH.

Fig. S52. a) ECD spectrum and **b)** UV-Vis spectrum of $(\mathbf{3b})_2 \supset C_{60}$ in DMSO.

Fig. S53. TOF ESI MS spectrum of $(3a)_2 \supset C_{60}$.

Fig. S54. TOF ESI MS spectrum of $(3b)_2 \supset C_{60}$.