Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supplementary data for The fluorescently responsive 3-(naphthalene-1-ylethynyl)-3-deaza-2'-deoxyguanosine discriminates cytidine via the DNA minor groove

Azusa Suzuki,^a Masaki Yanagi,^a Takuya Takeda,^a Robert H. E. Hudson,^b and Yoshio Saito^{a*}

a) Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan Email Address: <u>saitoy@chem.ce.nihon-u.ac.jp</u>

> b) Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.

Contents

Figure S1: Excitation and UV absorption spectra of ${}^{3nz}G(1)$ in various solvents of different polarities	. S2
Figure S2: Determination of thermal melting temperature (T_m) for ODN1(^{3nz} G) and ODN2(^{3nz} G)	. S3
Figure S3: CD spectra of $ODN1(^{3nz}G)$ hybridized with $cODN1(N)$, (N = A, G, C, or T)	. S4
Figure S4: UV absorption spectra of (a) $ODN1(^{3nz}G)$ and (b) $ODN2(^{3nz}G)$ hybridized with cDNA	. S5
Figure S5: HPLC profiles of ODN1(^{3nz} G) and ODN2(^{3nz} G)	. S6
Table S1: MALDI-TOF-MS spectral data for ODN1(^{3nz} G) and ODN2(^{3nz} G)	. S7
Figure S6: HPLC data for the products of the enzymatic digestion of $ODN1(^{3nz}G)$ and $ODN2(^{3nz}G)$. S8
Figure S7-S22: ¹ H- and ¹³ C-NMR data of newly synthesized compounds	. S9

Figure S1: (a) Excitation and (b) UV absorption spectra of ${}^{3nz}G(1)$ in various solvents of different polarities. All measurments were performed at a concentration of 10 μ M.

Figure S2: Thermal melting temperature (T_m) of (a) ODN1(${}^{3nz}G$) hybridized with cODN1(N), (N = A, G, C, or T) and (b) ODN2(${}^{3nz}G$) hybridized with cODN2(N), (N = A, G, C, or T) (2.5 μ M duplex, 0.1 M sodium chloride, 50 mM sodium phosphate buffer, pH 7.0, rt).

Figure S3: CD spectra of ODN1(3nz G) hybridized with cODN1(N), (N = A, G, C, or T) (2.5 µM duplex, 0.1 M sodium chloride, 50 mM sodium phosphate buffer, pH 7.0, rt).

Figure S4: UV absorption spectra of (a) $ODN1(^{3nz}G)$ hybridized with cODN1(N), (N = A, G, C, or T) and (b) $ODN2(^{3nz}G)$ hybridized with cODN2(N), (N = A, G, C, or T) (2.5 μ M duplex, 0.1 M sodium chloride, 50 mM sodium phosphate buffer, pH 7.0, rt).

Figure S5. HPLC profiles determinded at 260 nm of single-stranded oligonucleotides. a) $ODN1(^{3nz}G)$, and b) $ODN2(^{3nz}G)$. HPLC analysis was performed on a CHEMCOBOND 5-ODS-H columm (10 × 150 mm) eluted with 50 mM ammonium formate buffer containing acetonitrile. Gradient: from 3 to 20 % acetonitrile at a flow rate 2.0 ml/min over 45 min.

ODNs	Sequences	MALDI-TOF-MS	
		calcd. $[M + H]^+$	found $[M + H]^+$
$\begin{array}{c} \text{ODN1}(^{3nz}G) \\ \text{ODN2}(^{3nz}G) \end{array}$	5'-d(CGCAAC ^{3nz} GCAACGC)-3' 5'-d(CGCAAT ^{3nz} GTAACGC)-3'	4063.83 4093.85	4063.34 4093.99

 Table S1. MALDI-TOF-MS spectral data for the ODNs

Figure S6. HPLC data for the products of the enzymatic digestion of a) $ODN1(^{3nz}G)$, and b) $ODN2(^{3nz}G)$. HPLC analysis was performed on a COSMOSIL 5-ODS-H columm (4.6 × 150 mm) eluted with 50 mM ammonium formate buffer containing acetonitrile. Gradient: from 3 to 50 % acetonitrile at a flow rate 1.0 ml/min over 60 min. Broad signal at around 36 min. is a system peak.

Figure S7. ¹H-NMR spectrum of compound **1** (DMSO-*d*₆)

Figure S8. ¹³C-NMR spectrum of compound 1 (DMSO- d_6)

Figure S9. ¹H-NMR spectrum of compound 3 (CDCl₃)

Figure S10. ¹³C-NMR spectrum of compound 3 (CDCl₃)

Figure S11. ¹H-NMR spectrum of compound 4a (CDCl₃)

Figure S12. ¹³C-NMR spectrum of compound 4a (CDCl₃)

Figure S13. ¹H-NMR spectrum of compound 4b (CDCl₃)

Figure S14. ¹³C-NMR spectrum of compound 4b (CDCl₃)

Figure S15. ¹H-NMR spectrum of compound **5** (Acetone-*d*₆)

Figure S16. ¹³C-NMR spectrum of compound **5** (Acetone- d_6)

Figure S17. ¹H-NMR spectrum of compound **6** (DMSO-*d*₆)

Figure S18. ¹³C-NMR spectrum of compound 6 (DMSO-*d*₆)

Figure S19. ¹H-NMR spectrum of compound **7** (DMSO-*d*₆)

Figure S20. ¹³C-NMR spectrum of compound 7 (DMSO-*d*₆)

Figure S21. ¹H-NMR spectrum of compound **8** (Acetone-*d*₆)

Figure S22. ¹³C-NMR spectrum of compound 8 (Acetone- d_6)