## SUPPORTING INFORMATION:

## Design and self-assembly of PBLG-*b*-ELP hybrid diblock copolymers based on synthetic and elastin-like polypeptides

Gaëlle Le Fer<sup>§†</sup>, Delphine Portes<sup>§†</sup>, Guillaume Goudounet<sup>§†</sup>, Jean-Michel Guigner<sup>‡</sup>, Elisabeth Garanger<sup>§†</sup>, Sébastien Lecommandoux<sup>§†\*</sup>

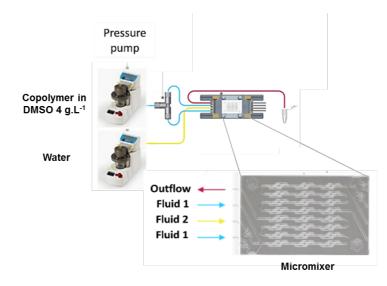
§Université de Bordeaux/Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, Pessac 33607, France

†CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
‡Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC) 4 place Jussieu 75005 Paris – France

## Synthesis mechanism hypothesis

Because the purification of ELP involves the use of sodium chloride, we can reasonably assume the polymerization to be initiated by the *N*-terminal ammonium group of the ELP with the chloride Cl<sup>-</sup> as counter-anion. Consequently, the block copolypeptides  $poly(\gamma-benzyl-L-glutamate)-block$ -ELP were synthesized by ROP of the  $\gamma$ -BLG NCA initiated by the primary ammonium end group of the ELP.

It was previously postulated by Schlaad et *al.* that the ammonium-mediated ROP mechanism may lead to a controlled propagation comparable to nitroxyde-mediated radical or living cationic polymerizations involving an equilibrium between dormant (ammonium) and active (amine) chain ends<sup>1</sup> provided that the counter-anion, here the nucleophilic chloride anion, is quite mobile in the medium.<sup>1,2</sup> The ammonium salt in addition is suspected to suppress the activated monomer mechanism (AMM) due to protonation of the NCA anions.<sup>1</sup>


Interestingly, in the present case of the polymerization of  $\gamma$ -BLG NCA, we suspect the ELP macroinitiator to afford sufficient polarity to the medium to allow an excellent control of ammonium-mediated ROP with the chloride counterion. We additionally presume the formation of hydrogen bonds between the polypeptide chain amide groups and the  $\gamma$ -BLG NCA, stabilizing the latter and limiting the AMM mechanism, and consequently favoring the normal NAM amine mechanism.

**Table S1.** Molecular characteristics of ELP and hybrid diblock copolypeptides PBLG-*b*-ELP obtained by ROP of  $\gamma$ -BLG NCA at 25 °C.

| # | Copolypeptide                      | Expected DP<br>(PBLG) | DP PBLG<br>( <sup>1</sup> H NMR) | $\overline{M_n}$ <sup>1</sup> H NMR       (g.mol <sup>-1</sup> ) | f (%)<br><sup>1</sup> H NMR | $\overline{M_n}$ SEC*<br>(g.mol <sup>-1</sup> ) | Ð<br>SEC* | Yield<br>(%) |
|---|------------------------------------|-----------------------|----------------------------------|------------------------------------------------------------------|-----------------------------|-------------------------------------------------|-----------|--------------|
| - | ELP                                | -                     | -                                | 17,000                                                           | -                           | 18,000                                          | 1.03      | -            |
| 1 | PBLG <sub>21</sub> - <i>b</i> -ELP | 52                    | 21                               | 21,600                                                           | 79                          | 24,900                                          | 1.03      | 73           |
| 2 | PBLG <sub>33</sub> -b-ELP          | 78                    | 33                               | 24,300                                                           | 70                          | 30,200                                          | 1.06      | 80           |
| 3 | PBLG <sub>61</sub> - <i>b</i> -ELP | 117                   | 61                               | 30,400                                                           | 56                          | 37,100                                          | 1.15      | 77           |
| 4 | PBLG <sub>110</sub> -b-ELP         | 181                   | 110                              | 41,200                                                           | 41                          | 44,800                                          | 1.20      | 70           |

\**f*: hydrophilic weight fraction determined from the  $\overline{M_n}$  calculated by <sup>1</sup>H NMR

\*\*SEC in DMF (0.8 mL.min<sup>-1</sup>) at 50 °C in the presence of LiBr (1 g.L<sup>-1</sup>) with RI detector and polystyrene used as standard.



Scheme S1. Schematic representation of the microfluidics device used.

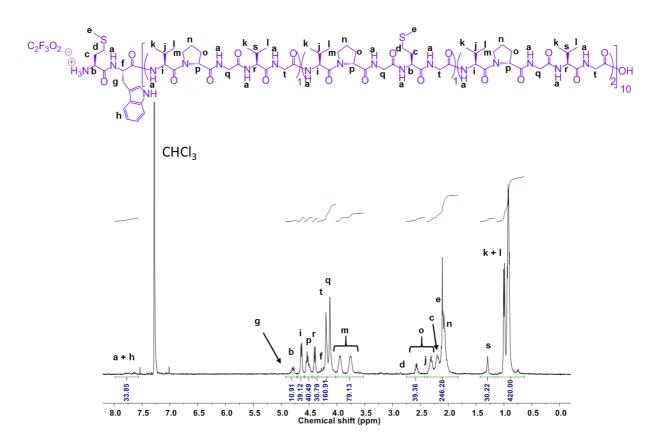
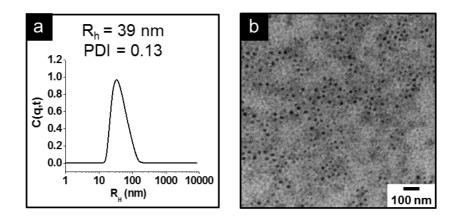
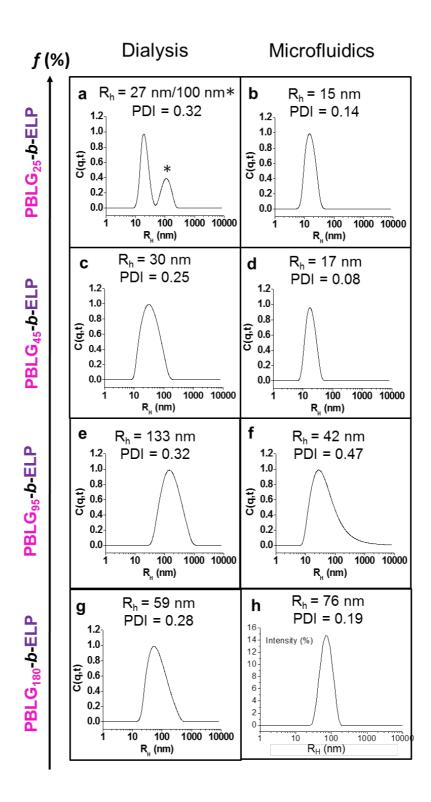





Figure S1. <sup>1</sup>H NMR spectrum of ELP in CDCl<sub>3</sub> containing 15 % trifluoroacetic acid (TFA).



**Figure S2.** (a) Size distribution of nano-particles by DLS.(b) TEM micrographs of nanoparticles obtained from PBLG<sub>25</sub>-*b*-ELP by direct solubilization.



**Figure S3.** Size distribution of nano-particles by DLS depending on the technique of selfassembly process. (i) Characterized directly after the formation of nano-objects. Ratio DMSO:H<sub>2</sub>O by microfluidics is 70:30.

- (1) Dimitrov, I.; Schlaad, H. *Chemical Communications* **2003**, 2944-2945.
- (2) Lutz, J. F.; Schütt, D.; Kubowicz, S. *Macromolecular rapid communications* **2005**, *26*,

23-28.