The Diaza-Nazarov Cyclization Involving 2,3-Diaza-pentadienyl Cation for the Synthesis of Polysubstituted Pyrazoles

Balakrishna Aegurla, Rama Krishna Peddinti*

Department of Chemistry, Indian Institute of Technology Roorkee Roorkee-247667, Uttarakhand, India

ELECTRONIC SUPPLEMENTARY INFORMATION

Table of Contents	S-1
Table S1: Iodine mediated one-pot, three-component approach for the synthesis of	
substituted pyrazoles	S-2–S-5
Monitoring reactions with mass spectral analysis	S-6–S-9
Table S2: Attempted cyclization of heterodienes	S-10
Figure S1: X-Ray crystal structure of the product 5a	S-10
Scheme S1: Substrate scope of DAN reaction	S-11
Computational calculations	S-12–S-18
¹ H and ¹³ C NMR and DEPT Spectra of substituted pyrazoles	S-19–S-48

S. No.	Aldehyde/ Hydrazone	Acetophenone/ Derivative	Product	Yield (%)
1	CHO CI 1a	2a O Za	CI N 3a	71
2	CHO OMe 1b	2a O Za	OMe N H 3b	70
3	CHO F 1c	2a O Za		71
4	CHO Br 1d	2a O Za	N N H 3d	67
5	CHO NO ₂ 1e	2a O Za	No ₂ N H 3e	82
6	S CHO	2a O Za	N N H Sf	58
7	CHO CI 1a	F 2b	F 4a	70

Table S1. Iodine-mediated one-pot, three-component approach for the synthesis of substituted pyrazoles.

8	CHO OMe 1b	F 2b	F 4b	66
9	CHO F 1c	F 2b	F 4c	61
10	CHO Pr 1g	F 2b	Pr Z N H 4d	55
11	CHO Br 1d	F 2b	F He	67
12	CHO OMe 1i	F 2b	F 4f	72
13	CHO CI 1a		CI 5a	58
14	CHO OMe 1b		CI Sb	61

15	CHO Br 1d		CI Sc Br	66
16	CHO OMe 1i		CI Sd	72
23	СНО 1ј		CI Se	49
17	CHO F 1c	Me 2d	Me Ga	67
18	CHO Pr 1g	Me 2d	Me 6b	65
19	CHO Br 1d	Me 2d	Me 6c	64
20	CHO F 1c	MeO 2e	MeO 7a	50
21	CHO NO ₂ 1e	MeO 2e	MeO 7b	81

22	CHO F 1h	MeO 2e	MeO 7c	52
24	CHO OMe 1b	O 2f	Me N Ba	52
25	CHO F 1c	O 2f	Me NE Sb	47
26	CHO OMe 1b	2g	Me O ₂ S N 9a	49
27	CHO F 1c	2g	Me O ₂ S N 9b	50
28	СНО	2g	Me O ₂ S N 9c	90
29	NH ₂ N /Pr 1g'	2h	Pr N H 12	24

Monitoring reactions with mass spectral analysis

Bruker Compass DataAnalysis 4.0

Page 1 of 1

 Table S2. Attempted cyclization of heterodienes.

Entry	Conditions	Product 9b Yield (%)	Product 9b' Yield (%)
1	I ₂ /TFA, EtOH, 80 °C, 12 h	52	Not observed
2	I ₂ /TFA, EtOH, 120 °C, 12 h	54	Not observed
3	SnCl4, EtOH, 80 °C, 12 h	46	Not observed
4	SnCl4, EtOH, 120 °C, 12 h	45	Not observed
5 ^a	FeCl ₃ , EtOH, 80 °C, 12 h	0	Not observed
6 ^a	FeCl ₃ , EtOH, 120 °C, 12 h	0	Not observed

Conditions: **1c** (0.5 mmol), Hydrazine hydrate (1 mmol), **2g** (0.6 mmol). ^a Starting materials **1a** and **2g** were recovered as such.

Figure S1. X-Ray crystal structure of the product 5a.

Scheme S1. Substrate scope of DAN reaction.

Conditions: intermediate A' (0.5 mmol), iodine (0.6 mmol), EtOH (3 mL) at 70 °C for 12 h.

Conditions: 1k (1.0 mmol), 2a (1.0 mmol) iodine (0.6 mmol), EtOH (3 mL) at 70 °C for 12 h

Computational calculations

Table S3. Calculated electronic energies (in Hartree) for the B3LYP/6-311G** optimized structures of 1,5-, 1,6- and 1,7-cyclization pathways for electro-cyclization step of diaza-Nazarov reaction in gas phase.

Pathway	Energy	R	TS	Р
	Е	-688.76357468	-688.7450556	-688.7694985
1,5-	Н	-688.508430	-688.491138	-688.513388
	G	-688.567734	-688.546576	-688.570101
1,6-	E	-688.7701048	-688.7371205	-688.737944
	Н	-688.514615	-688.483234	-688.482915
	G	-688.573574	-688.537699	-688.538274
	E	-688.7632717	-688.7207741	-688.7466207
1,7-	Н	-688.508123	-688.466286	-688.490507
	G	-688.567709	-688.520559	-688.544822

Table S4. Calculated relative electronic energies (in kcal/mol) for the B3LYP/6-311G** optimized structures of 1,5-, 1,6- and 1,7-cyclization pathways for electro-cyclization step of diaza-Nazarov reaction in gas phase.

Pathway	Energy	R	TS	Р
	ΔE	0	11.62	-3.72
1,5-	$\Delta \mathrm{H}$	0	10.85	-3.11
	ΔG	0	13.28	-1.49
	ΔE	0	20.70	20.18
1,6-	ΔH	0	19.69	19.89
	ΔG	0	22.51	22.15
	ΔE	0	26.67	10.45
1,7-	ΔH	0	26.25	11.05
	ΔG	0	29.59	14.36

Table S5. Calculated electronic energies (in Hartree) for the structures of 1,5-, 1,6- and 1,7-
cyclization pathways for electro-cyclization step of diaza-Nazarov reaction optimized
at B3LYP/6-311G** level of theory using CPCM solvation model, with Ethanol
solvent.

Pathway	Energy	R	TS	Р
	E	-688.7635747	-688.7450556	-688.7694985
1,5-	Н	-688.508430	-688.491138	-688.513388
	G	-688.567734	-688.546576	-688.570101
	E	-688.7701048	-688.7371204	-688.737944
1,6-	Н	-688.514615	-688.483234	-688.482915
	G	-688.573574	-688.537700	-688.538274
	E	-688.7632717	-688.7207743	-688.7466207
1,7-	Н	-688.508123	-688.466288	-688.490507
	G	-688.567709	-688.520560	-688.544822

Table S6. Calculated electronic energies (in kcal/mol) for the structures of 1,5-, 1,6- and 1,7-
cyclization pathways for electro-cyclization step of diaza-Nazarov reaction optimized
at B3LYP/6-311G** level of theory using CPCM solvation model, with Ethanol
solvent.

Pathway	Energy	R	TS	Р
	ΔΕ	0	11.62	-3.72
1,5-	ΔH	0	10.85	-3.11
	ΔG	0	13.28	-1.49
1,6-	ΔE	0	20.69	20.18
	ΔH	0	19.69	19.89
	ΔG	0	22.51	22.15
1,7-	ΔE	0	26.67	10.45
	ΔH	0	26.44	11.25
	ΔG	0	29.60	14.37

Table S7. Single point electronic energy, E (in Hartree) for the structures of 1,5-, 1,6- and 1,7cyclization pathways for electro-cyclization step of diaza-Nazarov reaction calculated at M06/6-311+G(d,p)//B3LYP/6-311G** level of theory using CPCM solvation model, with Ethanol solvent

Pathway	Energy	R	TS	Р
1,5-	E	-688.2902521	-688.2709314	-688.3065877
1,6-	E	-688.2960064	-688.2722362	-688.2768907
1,7-	E	-688.290431	-688.2525481	-688.2866835

Table S8. Single point electronic energy, E (in kcal/mol) for the structures of 1,5-, 1,6- and 1,7cyclization pathways for electro-cyclization step of diaza-Nazarov reaction calculated at M06/6-311+G(d,p)//B3LYP/6-311G** level of theory using CPCM solvation model, with Ethanol solvent.

Pathway	Energy	R	TS	Р
1,5-	ΔΕ	0	12.12	-10.25
1,6-	ΔE	0	14.91	11.99
1,7-	$\Delta \mathrm{E}$	0	23.77	2.35

Figure S2. A comparative energy profile diagrams for the 1,5-, 1,6- and 1,7-cyclization pathways of electro-cyclization step of diaza-Nazarov reaction for (a) gas phase (optimized at B3LYP/6-311G** level), (b) Solution phase (optimized at B3LYP/6-311G** level using Ethanol solvent with CPCM model) and (c) Single point energies (at M06/6-311+G(d,p)//B3LYP/6-311G** level using Ethanol solvent with CPCM model).

Figure S3. Optimised structures of TSs with HOMO and HOMO-1 molecular diagrams of each TS of the 1,5-, 1,6- and 1,7-cyclization pathways of electrocyclization step of diaza-Nazarov reaction at B3LYP/6-311G** level of theory in gas phase.

Table S9. Cartesian coordinates of B3LYP/6-311G** optimized structures of 1,5-, 1,6- and 1,7electro-cyclization pathways of electro-cyclization step of Nazarov reaction in gas phase.

E

6	1.329117000	2.100506000	1.190977000
6	-1.941242000	1.305377000	-0.608226000
6	1.492683000	1.113699000	0.290877000
1	0.411261000	2.671369000	1.258871000
6	2.681876000	0.263654000	0.092479000
6	3.492128000	-0.060118000	1.190302000
6	3.021871000	-0.217982000	-1.180715000
6	4.634754000	-0.829825000	1.011829000
6	4.168175000	-0.986202000	-1.351445000
6	4.976961000	-1.291861000	-0.259043000
1	3.219745000	0.270614000	2.185863000
1	2.402647000	0.019589000	-2.036499000
1	5.253411000	-1.077979000	1.865684000
1	4.430364000	-1.344758000	-2.339402000
1	5.866566000	-1.895121000	-0.394561000
6	-2.934176000	0.322878000	-0.229341000
6	-2.586679000	-0.966879000	0.215197000
6	-4.287170000	0.691688000	-0.344080000
6	-3.585891000	-1.870684000	0.532819000
6	-5.279258000	-0.223372000	-0.021810000
6	-4.930038000	-1.500474000	0.415967000
1	-1.546415000	-1.257048000	0.307692000
1	-4.552612000	1.685183000	-0.687565000
1	-3.325656000	-2.865162000	0.873180000
1	-6.321401000	0.056345000	-0.111592000
1	-5.706004000	-2.213157000	0.668636000
7	0.462904000	0.861022000	-0.676388000
7	-0.681684000	1.165296000	-0.485837000
1	-2.258418000	2.280445000	-0.978539000
1	2.139313000	2.383031000	1.849080000
Т	See		
6	-0.210895000	0.694356000	-0.927639000
6	1.172753000	-0.294893000	0.501336000
6	-1.155794000	-0.227086000	-0.477394000
1	0.563292000	0.380923000	-1.615495000
6	-2.557123000	-0.006542000	-0.220394000
6	-3.206177000	1.157327000	-0.690454000
6	-3 298104000	-0.961533000	0 513276000
6	-4.544374000	1.369438000	-0.409323000
0	1.5 1 157 1000	1.507 150000	0.10/020000

6	-4.638203000	-0.741774000	0.784301000
6	-5.260993000	0.422611000	0.329043000
1	-2.666646000	1.879364000	-1.290954000
1	-2.814708000	-1.869228000	0.850921000
1	-5.039623000	2.260415000	-0.774596000
1	-5.202830000	-1.475469000	1.345931000
1	-6.311095000	0.588529000	0.539068000
6	2.573895000	-0.058937000	0.303250000
6	3.328976000	-0.839786000	-0.599631000
6	3.199097000	0.985130000	1.017680000
6	4.675657000	-0.576414000	-0.775684000
6	4.546673000	1.245825000	0.827936000
6	5.283351000	0.466697000	-0.067047000
1	2.856231000	-1.659161000	-1.128241000
1	2.622922000	1.580829000	1.717389000
1	5.261546000	-1.180906000	-1.456839000
1	5.028533000	2.044663000	1.377528000
1	6.338677000	0.667318000	-0.209885000
7	-0.625992000	-1.503853000	-0.199848000
7	0.575033000	-1.493721000	0.137666000
1	0.689862000	0.202265000	1.343207000
1	-0.421886000	1.756964000	-0.918302000
F			
∎ 6	-0.003775000	0.635539000	0 752172000
6	1 153756000	-0.350475000	0.982287000
6	-1 087738000	-0.272823000	0.306555000
1	0.232535000	1 3/2925000	-0.053284000
6	-2 436561000	-0.016743000	0.039907000
6	-2 983532000	1 292225000	0.000000
6	-3 282595000	-1.083760000	-0 399453000
6	-4 314346000	1 517271000	-0.063099000
6	-4 614825000	-0.839439000	-0.657628000
6	-5 128/37000	0.453060000	-0.037028000
1	-2 349957000	2 106267000	0.531492000
1	-2.855623000	-2.069704000	-0 524352000
1	-4 738035000	2.005704000	0.055948000
1	-5 262103000	-1 640934000	-0.990059000
1	-6 176532000	0.639//9000	-0.697609000
6	2 / 96761000	-0.035828000	0.326761000
6	2.490701000	-1.073275000	-0.022810000
6	2 889182000	1 290/130000	0.124791000
6	2.889182000	0.780383000	0.124791000
6	4.000480000	1 576511000	0.427658000
6	4.133309000	0.542134000	0.78760000
1	3 077200000	-2 103642000	0.13/1/3000
1 1	2 247242000	2.103042000	0.134143000
1 1	2.24/242000 5 27/125000	2.113361000	0.419290000
1 1	<i>J.27</i> +123000 <i>J.1</i> 27017000	2 608222000	0.550174000
1 1	5 962383000	0.765578000	-0.303007000
1	5.702505000	0.705570000	1.220090000

7	-0.577891000	-1.578876000	0.134266000
7	0.629678000	-1.636196000	0.475847000
1	1.306303000	-0.525163000	2.057655000
1	-0.283050000	1.226132000	1.627821000

_			
7	-0.631998000	2.018172000	0.255677000
7	0.129818000	1.227509000	0.756479000
6	1.165865000	0.706421000	1.276096000
6	2.317521000	0.217013000	0.544808000
6	3.301909000	-0.476820000	1.270816000
6	2.484876000	0.442269000	-0.834350000
6	4.439274000	-0.938443000	0.622837000
6	3.625164000	-0.020740000	-1.469622000
6	4.600500000	-0.712057000	-0.743583000
1	3.173470000	-0.646758000	2.333849000
1	1.736888000	0.987855000	-1.398146000
1	5.199548000	-1.470794000	1.180561000
1	3.762325000	0.155881000	-2.529201000
1	5.489600000	-1.071800000	-1.247508000
6	-1.899648000	1.611405000	-0.235641000
6	-2.347225000	0.201789000	-0.162882000
6	-3.574093000	-0.096898000	0.444070000
6	-1.578446000	-0.833816000	-0.711852000
6	-4.023738000	-1.412469000	0.500034000
6	-2.035282000	-2.146292000	-0.656012000
6	-3.255897000	-2.437212000	-0.048531000
1	-4.167316000	0.697144000	0.883160000
1	-4.971827000	-1.636029000	0.973908000
1	-1.444681000	-2.940369000	-1.096695000
1	-3.608995000	-3.460584000	-0.006562000
6	-2.609853000	2.653299000	-0.713157000
1	-2.203915000	3.656530000	-0.675446000
1	-3.593209000	2.505533000	-1.140403000
1	-0.643746000	-0.618277000	-1.218254000
1	1.121553000	0.577208000	2.357466000
TS			
7	1 275723000	-2 121646000	0 721773000
7	0.254361000	1 551440000	1 03058/000
6	0.234301000	0.245056000	0.746830000
6	1 64600000	0.164403000	0.740030000
6	-1.040909000	0.88902000	0.340920000
6	-2.432393000	-1 125008000	-0 50713/000
6	_3 772524000	0.08351/000	0.307134000
6	-3.772324000	1 026750000	0.403133000
6	-3.334400000 1 332601000	-1.020739000	0.382002000
U	-4.552004000	0.020329000	-0.362903000

1	-2.001336000	1.625942000	1.494411000
1	-1.626090000	-1.960534000	-0.866860000
1	-4.379170000	1.794329000	0.847379000
1	-3.996134000	-1.776266000	-1.509343000
1	-5.376857000	0.099861000	-0.662489000
6	2.297810000	-1.478480000	-0.117828000
6	2.142683000	-0.043522000	-0.264890000
6	3.087064000	0.873004000	0.188653000
6	0.828438000	0.413454000	-0.660635000
6	2.807082000	2.237057000	0.144031000
6	0.594343000	1.832481000	-0.718536000
6	1.558731000	2.716324000	-0.299131000
1	4 042806000	0 523036000	0 559708000
1	3 566304000	2 944516000	0.457627000
1	-0.361820000	2.187302000	-1 083977000
1	1 37/201000	3 783097000	-0.329019000
6	3 260063000	2 296233000	0.550540000
1	3.200003000	-2.290233000	-0.330349000
1	4.057520000	1 046204000	1 103463000
1	4.037320000	-1.940294000	-1.193403000
1	0.528510000	-0.182382000	-1.420/10000
1	0.016950000	0.403823000	1.592758000
F'			
7	1.253850000	-2.140371000	0.697231000
7	0.217931000	-1.590009000	1.002467000
6	-0.191908000	-0.222713000	0.676698000
6	-1.645708000	-0.143785000	0.296265000
6	-2.481306000	0.765670000	0.950889000
6	-2.172715000	-0.981028000	-0.694305000
6	-3.830455000	0.843342000	0.614057000
6	-3.520219000	-0.904095000	-1.025173000
6	-4.349276000	0.010781000	-0.374213000
1	-2.083702000	1.405402000	1.731905000
1	-1.543140000	-1.710861000	-1.192768000
1	-4.474528000	1.546291000	1.128179000
1	-3.927115000	-1.561531000	-1.783806000
1	-5.399370000	0.068375000	-0.634409000
6	2.321661000	-1.470264000	-0.069011000
6	2.157101000	-0.044889000	-0.214663000
6	3.120060000	0.889340000	0.138908000
6	0.789998000	0.383908000	-0.544963000
6	2.826940000	2,250564000	0.060683000
6	0 559981000	1 824645000	-0.626349000
6	1 546289000	2 717635000	-0 309424000
1	4 101965000	0.561171000	0.457936000
1	3 603888000	2,970908000	0 292048000
1	-0 425576000	2 165181000	-0.921167000
1	1 359670000	2.105101000	-0 357520000
6	3 316474000	-2 268976000	-0.466130000
1	3 286203000	_3 321/12000	_0.210263000
1	J.200203000	-1 90122000	-1.06/82/000
1	+.1400/3000 0 38/720000	-1.701220000	-1.004024000
1	0.304/30000	-0.134083000	-1.40/002000
1	-0.007072000	0.300324000	1.364194000

$ Ar \qquad Ar $	> 3"
E" [0.19] TS _{EF"} [26.86] F" [10.64]
E''	
6 0.999620000 -1.576083000 1.1	96294000
6 -1.806909000 -0.593003000 -1.1	159738000
6 1.426797000 -0.652375000 0.3	14564000
1 -0.037111000 -1.885001000 1.2	250220000
6 2.802681000 -0.156958000 0.1	25295000
6 3.887893000 -0.999424000 0.4	07910000
6 3.045455000 1.149955000 -0.3	23927000
6 5.188879000 -0.533505000 0.2	69097000
6 4.350742000 1.609770000 -0.4	59136000
6 5.423438000 0.772660000 -0.1	61259000
1 3.718116000 -2.025241000 0.7	13452000
1 2.218350000 1.809197000 -0.5	54995000
1 6.020864000 -1.192660000 0.4	85031000
1 4.529310000 2.623139000 -0.7	97548000
1 6.439410000 1.131714000 -0.2	73367000
6 -3.001058000 -0.155578000 -0.4	466275000
6 -2.949069000 0.645951000 0.6	89836000
6 -4.242156000 -0.539533000 -1.0	005528000
6 -4 127460000 1 057717000 1 2	88481000
6 -5 416441000 -0 121499000 -0 3	395125000
6 -5.359808000 0.673979000 0.7	48651000
1 -1 996243000 0 948233000 1 1	09350000
1 -4 280626000 -1 155646000 -1 8	896792000
1 -4 094192000 1 678161000 2 1	75366000
1 -6 373297000 -0 412910000 -0 8	809747000
1 -6.277641000 -0.999185000 -1.2	23684000
7 0 472277000 0 023754000 -0 5	17334000
7 -0.614062000 -0.427839000 -0.7	748748000
1 -1 895364000 -1 164937000 -2 (083582000
1 1685285000 -2.017068000 1.9	06650000
1 1.005205000 2.017000000 1.5	00020000
TS _{EF} "	
6 0.322642000 -0.335265000 1.0	42327000
6 2.059994000 2.019796000 0.0	35968000
6 -0.701356000 0.538063000 0.5	41925000
1 1063489000 0.041441000 1.7	34906000
6 -2 070508000 0 110659000 0 2	33413000
6 -2 606288000 -1 041783000 0.8	30216000
6 -2 875102000 0 872002000 -0 e	531286000
6 -3.910157000 -1.435516000 0.5	.51200000
6 -4 174125000 0.472298000 -0.0	51453000
-0.2	551453000 007274000
6 -4 694098000 -0 683440000 03	551453000 907274000 320225000
6 -4.694098000 -0.683440000 -0.3 1 -2.022863000 -1.622691000 1.5	551453000 907274000 320225000
6 -4.694098000 -0.683440000 -0.3 1 -2.022863000 -1.622691000 1.5 1 -2.475708000 1.772561000 1.6	551453000 907274000 320225000 535404000 981439000
6 -4.694098000 -0.683440000 -0.3 1 -2.022863000 -1.622691000 1.5 1 -2.475708000 1.772561000 -1.0 1 -4.316743000 -2.321962000 1.0	551453000 907274000 320225000 535404000 981439000 922606000

1	-5.711247000	-0.988887000	-0.534479000
6	2.522327000	0.675039000	-0.267363000
6	1.631832000	-0.396339000	-0.658975000
6	3.832714000	0.352268000	0.112939000
6	2.153781000	-1.724109000	-0.749463000
6	4.288083000	-0.957514000	0.050781000
6	3.442452000	-2.005377000	-0.366055000
1	0.792129000	-0.168080000	-1.298533000
1	4.501081000	1.138635000	0.443755000
1	1.507138000	-2.508650000	-1.125123000
1	5.317708000	-1.174087000	0.311043000
1	3.824401000	-3.017271000	-0.418893000
7	-0.248949000	1.671343000	0.028212000
7	0.831648000	2.276334000	0.341359000
1	2.783530000	2.780551000	0.306220000
1	0.111664000	-1.392412000	1.105273000
F"	,		
6	0.402692000	-0.294518000	1.109497000
6	1.927279000	2.006996000	-0.035670000
6	-0 674673000	0 564695000	0.481699000
1	0.823207000	0.208544000	1.984551000
6	-2.020962000	0.082274000	0.184753000
6	-2.360995000	-1 281371000	0 269859000
6	-3.009392000	1.005190000	-0.219927000
6	-3.639636000	-1.709120000	-0.060555000
6	-4.281984000	0.570583000	-0.550730000
6	-4.601767000	-0.786610000	-0.471921000
1	-1.632650000	-2.020951000	0.577355000
1	-2.763779000	2.058981000	-0.244389000
1	-3.888721000	-2.761228000	0.003120000
1	-5.034275000	1.288731000	-0.853105000
1	-5 601705000	-1 122911000	-0 718993000
6	2 377491000	0 669861000	-0.213697000
6	1.509104000	-0.528172000	0.046089000
6	3.732866000	0.465861000	-0.533519000
6	2.232252000	-1.829889000	0.157159000
6	4.289548000	-0.796292000	-0.523833000
6	3.541597000	-1.955808000	-0.158029000
1	0.972736000	-0.664304000	-0.922951000
1	4.353353000	1.324059000	-0.763150000
1	1.643011000	-2.697055000	0.435180000
1	5.336693000	-0.911026000	-0.782298000
1	4.034190000	-2.919097000	-0.118297000
7	-0.371385000	1.778050000	0.138700000
7	0.732062000	2.447684000	0.308457000
1	2.686627000	2.782685000	-0.059887000
1	0.006064000	-1.248643000	1.445723000

S-22

S-32

S-39

